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The entorhinal cortex (EC) receives prominent cholinergic innervation from the medial
septum and the vertical limb of the diagonal band of Broca (MSDB). To understand
how cholinergic neurotransmission can modulate behavior, research has been directed
toward identification of the specific cellular mechanisms in EC that can be modulated
through cholinergic activity. This review focuses on intrinsic cellular properties of neurons
in EC that may underlie functions such as working memory, spatial processing, and
episodic memory. In particular, the study of stellate cells (SCs) in medial entorhinal has
resulted in discovery of correlations between physiological properties of these neurons
and properties of the unique spatial representation that is demonstrated through unit
recordings of neurons in medial entorhinal cortex (mEC) from awake-behaving animals.
A separate line of investigation has demonstrated persistent firing behavior among
neurons in EC that is enhanced by cholinergic activity and could underlie working
memory. There is also evidence that acetylcholine plays a role in modulation of synaptic
transmission that could also enhance mnemonic function in EC. Finally, the local circuits
of EC demonstrate a variety of interneuron physiology, which is also subject to cholinergic
modulation. Together these effects alter the dynamics of EC to underlie the functional role
of acetylcholine in memory.
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INTRODUCTION
There is strong evidence to support the claim that acetylcholine
modulates the physiology and the function of the entorhinal cor-
tex (EC). From behavioral experiments in humans, non-human
primates and rodents it is clear that cholinergic activity can
affect performance in memory tasks (for review see: Hasselmo,
2006; Deiana et al., 2011; Newman et al., 2012). From in vivo
electrophysiological recordings in awake-behaving animals and
electrophysiological recordings using in vitro slice preparations
it is clear that acetylcholine can modulate many aspects of the
neurophysiology in EC. The purpose of this review will be to
summarize data, primarily from the rat, that demonstrates how
acetylcholine activity can modulate the physiology of EC, pay-
ing specific attention to cellular mechanisms that may underlie
cholinergic dependent modulation of EC function. This paper
can be read independently or in concert with Newman et al.
(2012) in the same issue, which provides a further description of
the behavioral correlates of cholinergic modulation that relate to
the function of EC.

This review is broken into four major parts. The first section
provides an overview of the anatomy and the basic physiology of
EC and the major cholinergic input to the EC, the medial sep-
tum, and vertical limb of the Diagonal Band of Broca (MSDB).
The second section focuses upon cholinergic modulation of sub-
threshold electrophysiological properties of neurons in medial
entorhinal cortex (mEC). The focus of the third section is upon

suprathreshold physiology, including a description of the role
of acetylcholine in persistent spiking activity, ionic mechanisms
that likely underlie this unique firing activity and cholinergic
modulation of synaptic transmission in the EC. Finally, the last
section focuses upon modulation of interneurons, which have
been shown to exhibit substantial diversity in other brain regions
and therefore have been detailed in a separate section.

ANATOMY AND CYTOARCHITECTURE OF THE BASAL
FOREBRAIN AND ENTORHINAL CORTEX
In the rodent brain, the most common anatomical characteriza-
tion of the EC is to divide the area into a medial and a lateral
subdivision, which is delineated based upon differential connec-
tivity with the dentate gyrus. The mEC projects to the middle
one-third of the molecular layer of dentate gyrus whereas the
lateral entorhinal cortex (lEC) projects to the outer one-third
(Figure 1) (Steward, 1976; Van Groen et al., 1993). Other stud-
ies have divided the EC into three distinct rostro-caudal bands
based upon exclusive projections to different positions along
the longitudinal axis of the dentate gyrus (Dolorfo and Amaral,
1998).

The EC is a six layer structure with perikaryon of principal
cells located in layers II, III, V, and VI (Lorente de Nó, 1933; for
review see Wouterlood, 2002). In both mEC and lEC, layer I is
a molecular layer which contains the distal dendrites of princi-
pal neurons in the superficial and deep layers. Layers II and III
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FIGURE 1 | Schematic representation of the overall organization of

the entorhinal cortex and its connectivity. (A) Position of the entorhinal
cortex and surrounding cortices and hippocampus in the rat left
hemisphere. Indicated are the dorsoventral extent of the hippocampus,
positions of LEC and MEC, and the approximate position of a
representative horizontal section, illustrated in (B). (B) Horizontal section
illustrating entorhinal-hippocampal connectivity (see text for more details).
(C) and (D) Representation of the topographical arrangement of
entorhinal-hippocampal reciprocal connections. A dorsolateral band of
entorhinal cortex (magenta) is preferentially connected to the dorsal

hippocampus. Increasingly, more ventral and medial bands of entorhinal
cortex (purple to blue) are connected to increasingly more ventral levels of
the hippocampus. Yellow line in (C) indicates the border between LEC and
MEC. (E) Enlarged entorhinal cortex, taken from (C), indicating the main
connectivity of different portions of entorhinal cortex. Brain areas
preferentially connected to LEC are printed in green, those connected to
MEC are in magenta. The color of the arrows indicates preferential
connectivity to the dorsolateral-to ventromedial bands of entorhinal cortex
(magenta or blue, respectively) or that no preferential gradient is present
(green) (taken with permission from Canto et al., 2008).

in mEC and lEC both contain medium to large principal cells.
Layer II in mEC can be differentiated from layer II of lEC due to
the high density of glutamatergic, large spiny stellate cells (SCs)
present exclusively in layer II of mEC (Klink and Alonso, 1993),
whereas layer II of lEC contains fan cells with similar morphol-
ogy to SCs, but have significantly different physiological profiles
(Alonso and Klink, 1993; Tahvildari and Alonso, 2005; Canto
and Witter, 2011; Shay et al., 2012). Layer III of mEC and lEC

contains predominately loosely packed, large to medium pyrami-
dal neurons (Steward, 1976; Steward and Scoville, 1976; Witter
and Groenewegen, 1984). The spiny dendritic arbor of SCs radi-
ates in all directions, extending into layer I and across layer II.
The deeper layers V and VI have a less recognizable interlami-
nar border, but can be easily differentiated from the superficial
layers due to an empty cell layer IV which is referred to as lam-
ina dissecans. Principal neurons in layer V and VI can be roughly
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described as pyramidal, horizontal, or polymorphic-based upon
dendritic arborization (Hamam et al., 2000, 2002).

The medial septum and vertical limb of the diagonal band of
Broca provide the major cholinergic input to the EC (Beckstead,
1978; Alonso and Köhler, 1984; Insausti et al., 1987). Although
there are neurons in the MSDB that express a range of classi-
cal neurotransmitters and neurohormones, this review focuses on
the population of putative cholinergic neurons expressing choline
acetyltransferase (ChAT) and the separate population of GABA-
ergic neurons expressing GAD, which together comprise the main
MSDB projection to the EC (Kiss et al., 1990; Gritti et al., 1993;
Manns et al., 2001). Cells in both the GABAergic and cholinergic
populations range in size and shape from bipolar to multipolar
with somata ranging in size from small (10–15 μm diameter) to
large (30–40 μm diameter) (Gritti et al., 1993; Manns et al., 2001).
Furthermore, the firing properties of the two populations show
no clear differences, making it difficult to define their functional
roles (Simon et al., 2006).

While there has been some research directed toward under-
standing the reciprocal connectivity between the basal forebrain
and the EC, much of the knowledge of this pathway has come
through studies that have been primarily focused upon forebrain-
hippocampal projections (Jones et al., 1976; Meibach and Siegel,
1977; Mesulan et al., 1983; Milner et al., 1983; Amaral and Kurz,
1985; Nyakas et al., 1987; Kiss et al., 1990; Gaykema et al., 1991).
It is important to note that in the rat, the connectivity patterns
that exist between the basal forebrain and the hippocampus dif-
fer considerably from those of the basal forebrain and neocortex.
In particular, the hippocampus receives the majority of its basal
forebrain projections from the MSDB, whereas the neocortex
receives its forebrain cholinergic input from the nucleus basalis
of Meynert (Jones et al., 1976; Mesulan et al., 1983; Amaral and
Kurz, 1985). As the laminar structure of the EC can be viewed as a
developmental middle ground between the tri-layered hippocam-
pus and six layered neocortex, careful attention must be paid
when using anatomical data of forebrain projections to neocortex
or the hippocampus to make predictions about entorhinal-basal
forebrain connectivity.

Anatomical tracing studies have demonstrated several topo-
graphic patterns along the axis of the MSDB. When studied as
a whole, MSDB fibers projecting to the hippocampus maintain
rostral-caudal specificity such that neurons located rostrally in the
MSDB project to septal levels of the hippocampus (Meibach and
Siegel, 1977; Milner et al., 1983; Amaral and Kurz, 1985). This
pattern is in contrast to the topography of cholinergic neurons in
the MSDB, which seem to follow an inverse projection pattern.
ChAT positive neurons in the dorsal MSDB send axons prefer-
entially to the temporal pole of the hippocampus, whereas ChAT
positive neurons in the ventral band of the MSDB send a higher
percentage of their output to septal hippocampus (Amaral and
Kurz, 1985). There is also data to suggest that there are relatively
more cholinergic neurons throughout the MSDB that project to
temporal levels of the hippocampus (Hoover et al., 1978; Milner
et al., 1983; Amaral and Kurz, 1985). This could arise from the
mediolateral topographic organization that is observed, especially
within the dorsal band of MSDB. Increased ChAT expression is
seen in the lateral aspect of the dorsal band of MSDB, which

project preferentially to temporal hippocampus (Meibach and
Siegel, 1977; Amaral and Kurz, 1985; Nyakas et al., 1987; Kiss
et al., 1990; Gaykema et al., 1991). This is contrast to the medial
aspect of the dorsal band of MSDB, which show lower levels of
ChAT expression and project more strongly to the septal pole of
the hippocampus.

Early anatomical tracing studies focusing on the EC of the rat
demonstrated that the mEC and lEC receive overlapping, yet dis-
tinct patterns of input from the MSDB. While neurons in the
MSDB send projections throughout the extent of the EC, the diag-
onal band of Broca projects preferentially to the lEC, and this is
contrast to the medial septal projection which targets the mEC
(Beckstead, 1978; Insausti et al., 1987; Kerr et al., 2007). Future
studies are needed to determine whether similar topographic pro-
jection patterns exist from the MSDB to the entorhinal cortex
as seen in the projections of the MSDB to the hippocampus.
In particular, a similar topography of MSDB projections along
the septal-temporal axis of the hippocampus may exist in MSDB
efferents along the dorsal-ventral axis of EC and this could result
in differential cholinergic modulation at different positions along
the dorsal-ventral axis of the EC. These potential anatomical
and physiological features have important implications for mEC
where the spatial representation of the neurons in mEC grid cells
changes in neurons along the dorsal to ventral axis (Fyhn et al.,
2004; Hafting et al., 2005).

OVERVIEW OF EC PHYSIOLOGY
The superficial layers of EC contain two general classes of prin-
cipal neurons. Both layers II and III contain regular-spiking
pyramidal neurons, whereas layer II also contains large excita-
tory SCs in mEC and “fan cells” with similar morphology in
lEC (Alonso and Llinás, 1989; Alonso and Klink, 1993; Klink and
Alonso, 1993; Jones, 1994; Dickson et al., 1997). SCs in mEC can
be distinguished electrophysiologically due to the presence of a
large amplitude hyperpolarization activated cation current (Ih)
(Klink and Alonso, 1993; Dickson et al., 2000a,b). Using whole-
cell patch clamp recordings in current clamp, Ih manifests in
the characteristic “sag” response due to hyperpolarizing current
injection (Figure 2A). While there have not been comprehensive
voltage clamp studies to isolate and directly compare Ih across
all known principal cells in the EC, a reasonable estimate of Ih

using the sag ratio suggests that Ih present in SCs is at least two
times larger than any other class of principal cells that has been
recorded throughout the EC (Alonso and Klink, 1993; Dickson
et al., 1997, 2000a,b; Hamam et al., 2000, 2002; Tahvildari and
Alonso, 2005). In addition, layer II SCs show large amplitude sub-
threshold membrane potential oscillations at theta frequencies
(4–12 Hz) (Figure 2B) and subthreshold membrane potential res-
onance at theta frequencies (4–12 Hz) (Figure 2C) (Alonso and
Llinás, 1989; Erchova et al., 2004; Giocomo et al., 2007; Heys
et al., 2010; Shay et al., 2012). Interestingly, all three electrophys-
iological features of SCs change systematically along the dorsal to
ventral axis of mEC (Giocomo et al., 2007), which coincides with
systematic changes in the characteristic spatial representation of
grid cells along the same anatomical axis of mEC (Hafting et al.,
2005). The subthreshold membrane potential oscillations have
an average frequency of 6.42 ± 0.40 Hz in dorsal SCs at −50 mV
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FIGURE 2 | Subthreshold electrophysiological properties of stellate

cells in medial entorhinal cortex. (A) Whole cell patch clamp recordings
demonstrate that hyperpolarizing current injections from a membrane
potential of approximately −60 mV produces membrane potential sag
in SCs. Inset: the sag amplitude is measured as the difference between the
hyperpolarized membrane potential and the steady state membrane
potential. (B) Subthreshold membrane potential oscillations recorded in
dorsal stellate cells (left) and ventral stellate cells (right) at average

membrane potentials of −50 mV (top) and −45 mV (bottom).
(C) Subthreshold membrane potential resonance characterized in
current clamp recordings of three different stellate cells. The membrane
potential (top three traces) is shown response to the sinusoidal current
injection (bottom trace). The subthreshold membrane resonance is
measured in control (blue) and after application of carbachol (green).
(Figures 2A and 2B reprinted with permission from Giocomo et al., 2007.
Figure 2C reprinted with permission from Heys et al., 2010).

(Figure 2B, left) and 4.23 ± 0.32 Hz in ventral SCs at −50 mV
(Figure 2B, right).

The electrophysiological properties of neurons in the deep lay-
ers of EC have been studied by several groups. However, the
three morphological classes of principal neurons (pyramidal,
horizontal, or polymorphic) do not seem to display any dis-
tinguishing electrophysiological features (Jones and Heinemann,
1988; Schmitz et al., 1998; Hamam et al., 2000, 2002; Gloveli et al.,
2001). While there is evidence of some hyperpolarization acti-
vated inward rectification in the deep layer cells, this rectification
is significantly smaller than that of layer II SCs. Along with all
superficial principal neurons, deep layer principal neurons also
exhibit both monophasic after-spike hyperpolarization potentials
(AHPs) and biphasic afterspike depolarization potentials (ADPs)
along with AHPs (Alonso and Klink, 1993; Hamam et al., 2000,
2002).

At the network level, the local field potential in EC demon-
strates a prominent oscillation in the theta band (4–12 Hz) with
a mean frequency of approximately 7 Hz (Mitchell and Ranck,
1980). While the intrinsic oscillatory electrophysiological prop-
erties of SCs are suggestive of a local source for theta gener-
ation in the EC, which was suggested by Alonso and Llinás
(1989), there now seems to be evidence that the theta is gen-
erated, or at least initiated, by synaptic input from the MSDB
(Jeffery et al., 1995; Zhang et al., 2010; Brandon et al., 2011;
Koenig et al., 2011). However, further research is necessary to
determine how the intrinsic physiology in EC and feedback pro-
jections to the MSDB may help to facilitate or modulate the
LFP theta in EC. Indeed, in HCN1 knock-out mice the fre-
quency of the LFP theta in mEC is significantly lower than
wild-type, suggesting that intrinsic oscillatory mechanism such
as Ih have a modulatory effect upon theta (Giocomo et al., 2011).
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In addition to intrinsic cellular properties in EC, there may
also be features of the synaptic architecture which give rise to
network level theta, which depend critically upon muscarinic
acetylcholine receptor activation (mAChR) (Konopacki et al.,
1992).

There are two general classes of receptors that demonstrate
an affinity for acetylcholine and can be dissociated according to
their binding affinity for either muscarine or nicotine. This review
focuses upon modulation in the EC that can be largely attributed
to activation of the muscarinic sensitive acetylcholine receptor.
mAChRs are G-protein coupled receptors that are expressed in
the central nervous system as one of five subtypes in the cen-
tral nervous system (M1–M5) and can be grouped into two more
general classes, M1-like which are associated with the Gq subtype
G-protein coupled receptor and M2-like which are linked with
the Gi sub-type, (for review see Caulfield and Birdsall, 1998).
While mAChR sub-type specific immunostaining has not been
done in the EC, mAChR subtypes M1–M4 have been shown to be
expressed in the hippocampus (Levey et al., 1995).

CHOLINERGIC MODULATION OF SUBTHRESHOLD
ELECTROPHYSIOLOGY IN mEC LAYER II STELLATE CELLS
One way to characterize the range of single cell electrophysiologi-
cal properties, which is particularly convenient for SCs in mEC, is
group them into either subthreshold properties (i.e., electrophys-
iological phenomenon that occur within a range of membrane
potentials that are below firing threshold) and suprathreshold
properties (i.e., electrophysiological phenomenon that occur in
a range of membrane potentials above the spiking threshold).
As mentioned above, mEC SCs show characteristic subthreshold
properties including a sag in response to hyperpolarizing cur-
rent injection, subthreshold membrane potential oscillations, and
a resonance frequency that manifests as a difference in ampli-
tude of response to different frequencies of oscillations in input
current (Figure 2). These properties are commonly attributed
to the hyperpolarization-activated cation current (h current).
Recently, it has been shown that Ih in SCs is subject to modu-
lation through activation of mAChR (Heys and Hasselmo, 2012).
Using voltage clamp, the results of this study demonstrate that
cholinergic activation produces a decrease in the amplitude of Ih

and a hyperpolarizing shift in the activation curve. In addition,
Ih expressed in more ventrally located SCs display more promi-
nent modulation than Ih expressed in SCs located more dorsally
in mEC. Heterologous expression of mAChR and h-channels
in xenopus oocytes produces a 1.5 to 2-fold slowing of the h-
current deactivation time constant, leading to the prediction that
the time course of Ih deactivation should be similarly affected
by cholinergic modulation in SCs (Pian et al., 2007). Yet, sur-
prisingly application of cholinergic agonists does not produce
any change in the time course of Ih activation or deactivation
(Heys and Hasselmo, 2012). Recent work has shown that the co-
expression of PEX5R/TRIP8b along with h-channels significantly
reduces the influence of cyclic nucleotide and adrenergic acti-
vation upon the h-current steady state activation (Zolles et al.,
2009). In light of this finding, it is plausible that modulatory
effects in SCs are also subject to secondary effects of regulatory
subunit expression such as PEX5R/TRIP8b which may alter the

effects seen using more simple heterologous expression systems
and further research should be conducted to determine whether
this is in fact the case.

Related to modulation of Ih, other characteristic electrophys-
iological properties of SCs have been shown to be subject to
cholinergic modulation. Work from Klink and Alonso (1997)
demonstrated that the average frequency of the large amplitude
(1–5 mV) subthreshold membrane potential oscillations could be
decreased significantly after application of cholinergic agonist,
carbachol. Similarly, the frequency and strength of subthresh-
old membrane potential resonance is reduced after application
of carbachol (Figure 2C) (Heys et al., 2010). As such, the voltage
clamp work demonstrating cholinergic modulation of Ih pro-
vides a potential ionic mechanism which could be underlying
cholinergic modulation of membrane potential resonance and
cholinergic modulation of subthreshold membrane oscillations
in SCs (Heys et al., 2010). Furthermore, the results of Heys and
Hasselmo (2012) demonstrate that the current generated through
expression of the voltage sensitive Kv7 potassium channels
(m-current or Im) is not expressed in neurons in the EC. This
result demonstrates that membrane potential oscillations in EC
are not the result of Im, which has been suggested in previous
research (Yoshida and Alonso, 2007).

Unit recordings from awake-behaving rodents demonstrate
that the neurons in the mEC fire in a spatially selective manner.
In particular, as the animal explores a 2D environment, a single
neuron will fire repeatedly at many selective locations which tile
the entire environment and form the vertices of a nearly sym-
metrical hexagonal grid (Fyhn et al., 2004; Hafting et al., 2005).
These “grid cells” have been shown to change in spatial scale sys-
tematically along the dorsal-ventral axis of mEC such that grid
cells in dorsal mEC have smaller grid fields and have more nar-
row spacing between the grid fields than grid cells in ventral mEC
(Hafting et al., 2005; Brun-Kjelstrup et al., 2008). This finding
is particularly interesting when compared with electrophysio-
logical properties of SCs such as Ih, subthreshold membrane
potential oscillation frequency, subthreshold membrane poten-
tial resonance frequency, and temporal integration. In each case,
the electrophysiological properties change systematically along
the dorsal-ventral axis of mEC (Giocomo et al., 2007; Garden
et al., 2008; Giocomo and Hasselmo, 2008). Recent work from
Giocomo and Colleagues (2011) has demonstrated that knock
out of the HCN1 subunit of h-channels in mice produces an
expansion of the grid field and the grid field spacing. Similarly,
exploration of a novel environment produces an expansion of grid
field spacing and grid field size, which returns to baseline upon
subsequent explorations of the same environment (Barry et al.,
2009). Since there is evidence to suggest that acetylcholine levels
in the hippocampus increase during exploration of a novel stim-
uli (Acquas et al., 1996), the data together suggests the exciting
possibility that cholinergic modulation of Ih in a novel environ-
ment could be underlying the expansion of grid field size and grid
field spacing that is observed during exploration of the novel envi-
ronment (Jeewajee et al., 2008; Barry et al., 2012). In this way, grid
expansion in novel environments may orthogonalize inputs to the
hippocampus and may cause place field remapping (Barry et al.,
2012).
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CHOLINERGIC MODULATION OF SUPRATHRESHOLD
PHYSIOLOGY IN EC
Neurophysiological, functional imaging, and lesion studies in
humans and animal models have demonstrated the critical role
of cholinergic modulation in working memory (Hasselmo and
Stern, 2006) and reveal the central position and function of EC
among the prefrontal cortex (PFC) and parahippocampal regions
(PHR) recruited by object and place recognition tasks (Otto
and Eichenbaum, 1992; Meunier et al., 1993; Eacott et al., 1994;
Leonard et al., 1995; Suzuki et al., 1997; Young et al., 1997; Yee and
Rawlins, 1998; Schon et al., 2005). (Also see Murray et al., 2000;
Hasselmo and Stern, 2006 for related reviews). Systemic disrup-
tion of cholinergic modulation impairs performance on working
memory tasks including delayed match or non-match to sample
tasks (DMS/DNMS), systemic enhancement of cholinergic mod-
ulation can improve or rescue performance (Bartus and Johnson,
1976; Bartus, 1978; Penetar and McDonough, 1983; Aigner and
Mishkin, 1986; Furey et al., 1997, 2008; Spinelli et al., 2006; Plakke
et al., 2008; Myers and Hamilton, 2011), and selective choliner-
gic deafferentation of EC impairs DNMS performance with novel
stimuli (McGaughy et al., 2005). As in PFC, parietal cortex, and
throughout PHR (Fuster and Alexander, 1971; Kubota and Niki,
1971; Gnadt and Andersen, 1988; Miyashita and Chang, 1988;
Miller et al., 1993, 1996; Chafee and Goldman-Rakic, 1998; Stern
et al., 2001; Habeck et al., 2005; Schon et al., 2008), EC neurons
exhibit activity selective for aspects of recognition memory for

visually presented objects, odors, and locations in DMS/DNMS
tasks (Suzuki et al., 1997; Young et al., 1997). In particular, some
EC neurons exhibit “delay” activity consisting of elevated spike
rates maintained during the interval between sample and test
stimulus presentations (Suzuki et al., 1997; Young et al., 1997),
providing a potential neural substrate for information held in
working memory (Fuster and Alexander, 1971; Kubota and Niki,
1971). In the presence of muscarinic agonists and blockers of
synaptic transmission in vitro, many EC neurons exhibit intrinsic
bistability in that they can be switched to a sustained spiking state
from quiescence by a brief depolarizing input. Figure 3A shows an
in vitro recording made from a synaptically isolated layer V mEC
neuron during the typical protocol used to elicit persistent spik-
ing: first, the neuron is held near threshold using tonic applied
current (A1); second, a depolarizing current step (2 s, 100 pA)
is applied to briefly drive spiking at a high frequency (A2); and
last, the applied current is returned to the previous tonic level
(A3). As Figure 3A shows, the neuron continues firing (indefi-
nitely) after the step, whereas it had been quiescent prior to the
step. These two fundamentally different behaviors were exhib-
ited even though the holding current applied to the neuron was
exactly the same before and after the depolarizing step. Thus, as
the phase portrait in Figure 3B illustrates, this “bistable” neuron
possesses two stable states or behaviors, quiescence, and spik-
ing, with which it can respond to a single, fixed level of input.
The spiking state simply reflects the neuron’s “memory” of the

FIGURE 3 | Bistable persistent spiking. (A) (Top) Recording from a layer V
mEC neuron during the typical protocol used to elicit persistent spiking.
Note, the recorded neuron was quiescent (A1) prior to delivery of a 100 pA
current step (A2) (stimulus depicted in Bottom left panel). After the current
step, the recorded neuron spiked continuously (A3, ∼1 minute shown).
(A) (Bottom right panel) Recording from another layer V mEC neuron
illustrating a stimulus evoked, after-depolarization. This voltage profile reflects
the inward CAN current carried by TRPC channels and often results when the
applied holding current (as depicted to the left) is insufficient to support

persistent spiking. (B) Phase portrait depicting the bistability of the persistent
spiking mEC neuron shown in A (Top). Note, in blue, the stable fixed point
representing the voltage during quiescence (as in A1). Note also, the spiking
state (during persistent spiking) that was achieved following the depolarizing
step (as in A3). The spiking trajectory of the first few spikes (indicated with
gray arrows) converged quickly to a stable spiking trajectory during persistent
spiking. Spike afterhyperpolarizations, spike threshold, and spike peaks are
also indicated with grey text and/or arrows. Note lastly, the quiescent and
spiking states were exhibited in non-overlapping voltage ranges.
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depolarizing stimulus, suggesting the possibility that the intrinsic
mechanisms underlying bistable persistent spiking (PSB) in vitro
could subserve delay activity observed in behaving animals while
remembering or “holding” a stimulus in working memory.

Bistable persistent spiking and mechanistically-related,
stimulus-evoked afterdepolarizations (Figure 3A, lower right)
or plateau potentials have been observed in vitro in layers II,
III, and V of mEC (Klink and Alonso, 1997; Egorov et al., 2002;
Reboreda et al., 2007; Yoshida et al., 2008; Zhang et al., 2011),
layer III of lateral EC (Tahvildari et al., 2007, 2008), as well as
in most other structures of the extended medial temporal lobe
memory system including the hippocampus (El-Hassar et al.,
2011), subiculum (Kawasaki and Avoli, 1996; Kawasaki et al.,
1999), postsubiculum (Yoshida and Hasselmo, 2009), layers II
and III of anterior cingulate cortex (Zhang and Seguela, 2010),
lateral amygdala (Egorov et al., 2006), and even primary sensory
cortex (Rahman and Berger, 2011). Bistable persistent spiking
neurons in layer V (LV) in mEC and basolateral amygdala exhibit
an additional feature whereby the firing frequency of persistent
spiking can be stably increased, i.e., “graded,” by additional
depolarizing or cholinergic inputs, and can be stably decreased
by additional hyperpolarizing inputs (Egorov et al., 2002, 2006;
Fransen et al., 2006). The multistability of different spike rates
exhibited by graded persistent spiking (PSG) neurons represents
a potential enhancement of working memory mechanisms by
allowing information to be held in terms of spike rate rather than
only as a function of whether a neuron is spiking or quiescent.

Seminal investigations of persistent spiking identified that the
spiking state is dependent on a calcium-sensitive, mixed-cation
current (INCM or ICAN) (Klink and Alonso, 1997; Shalinsky
et al., 2002). Accumulating evidence now suggests that mem-
bers of the canonical subfamily of transient receptor potential
(TRPCs) membrane channels are responsible for the CAN cur-
rent that generates persistent spiking (Yan et al., 2009; Zhang and
Seguela, 2010; El-Hassar et al., 2011; Wang et al., 2011; Zhang
et al., 2011). (For review see Reboreda et al., 2011). TRPC chan-
nels are ubiquitously expressed in the nervous system, serving a
diversity of functions including calcium regulation and signal-
ing in addition to contributing to the firing properties of neurons
(Bollimuntha et al., 2011; Reboreda et al., 2011). TRPC channels
also possess several modulatory domains and can be activated
by multiple mechanisms involving store-operated calcium or
receptor-operated second messenger signaling, depending largely
on their heteromeric composition by TRPC1/4/5 or TRPC3/6/7
subunits and organization into microdomains with calcium sig-
naling accessory proteins (Putney, 2005; Ambudkar et al., 2006;
Ambudkar and Ong, 2007; Trebak et al., 2007; Pani and Singh,
2009). In brief, bistable persistent spiking of LV mEC neurons
and plateau potentials exhibited by cultured cortical neurons
appear to depend primarily on the activation of TRPC1/4/5 sub-
units by the Gαq/PLCβ1 signaling cascade initiated by muscarinic
receptor binding (Yan et al., 2009; Zhang et al., 2011), but it is
likely that the diversity of CAN current-dependent afterdepolar-
ization, bursting, and persistent spiking phenomena across brain
regions results from considerable heterogeneity of mechanisms
controlling expression, insertion, and regulation of the TRPC
channels.

Bistable persistent spiking (PSB) and plateau potentials evoked
in vitro with muscarinic agonists requires continued receptor
binding, since halting stimulation of cholinergic inputs, agonist
washout, or subsequent blockade of muscarinic receptors elim-
inates the persistent response to depolarizing inputs (Kawasaki
et al., 1999; Egorov et al., 2006; Tahvildari et al., 2007). Thus,
in vivo neuronal activity in PHR regions showing PSB would be
expected to differ markedly between behavioral states such as nav-
igation, active attending, or remembering which strongly engage
the cholinergic system and those that do not.

In addition to muscarinic induction in synaptically isolated
neurons, PSB and TRPC-dependent plateau potentials can also
be elicited in brain slice preparations using synaptic inputs
triggered by stimulation of cholinergic (Egorov et al., 2006)
or metabotropic glutamatergic inputs (Egorov et al., 2002;
Tahvildari et al., 2007; Yoshida et al., 2008). Importantly, Yoshida
and colleagues (2008) showed that bistable persistent spiking
(PSB) could be elicited by glutamatergic synaptic stimulation even
in the presence of muscarinic blockers and ionotropic glutamater-
gic blockers. This raises the possibility that the metabotropic
glutamatergic pathway may converge with the muscarinic path-
way to control TRPC channel activation in intact systems, which
is critical in light of potentially shared intracellular signaling
mechanisms and observations that TRPC activation and per-
sistent spiking can depend on precise control of intracellu-
lar calcium (Kinoshita-Kawada et al., 2000; Zhu, 2005; Blair
et al., 2009; Zhang et al., 2011) in addition to transmem-
brane calcium influx (Kawasaki et al., 1999; Egorov et al., 2002;
Tahvildari et al., 2008; Zhang and Seguela, 2010). Considerable
work remains to be done to elucidate the shared and distinct
mechanisms of TRPC activation and regulation in brain regions
exhibiting PSB.

As described in this section, persistent spiking has now been
observed in numerous structures that contribute to working
memory. In this context, it is important to distinguish intrin-
sic persistent spiking (PSB, as illustrated in Figure 3, or PSG)
observed in vitro from persistent activity observed in unit record-
ings from behaving animals (which cannot distinguish intrinsic
and network factors). In EC, less than 10% of recorded cells
show sample-specific delay activity (Suzuki et al., 1997; Young
et al., 1997), whereas much higher proportions of persistent spik-
ing neurons are typically found in vitro. This discrepancy could
be a consequence of the finite set of stimuli that were used in
each in vivo experiment, i.e., neurons that did not show per-
sistent activity may have been selective for untested stimuli or
stimulus features. However, about half of recorded neurons show-
ing sample-specific delay activity exhibited decreases in firing
rate, rather than increases, indicating that competitive network
mechanisms are likely to shape the spiking output of EC neu-
rons that in vitro might otherwise exhibit PSB (Gupta et al.,
2012). Recurrent network architectures can also generate persis-
tent activity (Major and Tank, 2004), in which context intrinsic
PSB can stabilize working memory representations (Camperi
and Wang, 1998). Furthermore, simulations of networks with
PSB neurons have reproduced not only delay response activity,
but also sample-match suppression and enhancement as in unit
recordings during DMS/DNMS tasks (Fransen et al., 2002).
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In this section we have introduced the involvement of EC
in working memory function assessed with DMS/DNMS tasks,
and summarized evidence that the intrinsic mechanisms under-
lying bistable persistent spiking in vitro (Figure 3) are well suited
to contribute to persistent activity in vivo (Hasselmo and Stern,
2006). We emphasize, however, that intrinsic persistent spiking
should not be thought to directly correspond to delay activity
in delayed match to sample tasks, since as in all neural systems
in intact animals, both cellular and network mechanisms, both
of which are subject to modulation, are critical to the behav-
ior of individual neurons and working memory performance in
behavioral assays.

CHOLINERGIC MODULATION OF SYNAPTIC TRANSMISSION
In addition to the influence of acetylcholine on the intrin-
sic properties of neurons, acetylcholine also modulates synaptic
transmission within the EC and hippocampus. The modulation
of synaptic transmission may regulate the relative influence of
afferent, feedforward excitatory input versus excitatory feedback
connections. Computational models suggest that these effects
may enhance encoding and attention to external input, while
reducing the influence of retrieval and consolidation (Hasselmo
et al., 1995; Hasselmo, 1999, 2006) or the top-down influences on
perception (Yu and Dayan, 2005).

Early studies in the hippocampus demonstrated that cholin-
ergic stimulation of muscarinic receptors causes presynaptic
inhibition of excitatory synaptic potentials in the middle molec-
ular layer of the dentate gyrus (Yamamoto and Kawai, 1967),
where synapses from the mEC terminate. In contrast, this presy-
naptic inhibition is weaker in the outer molecular layer of
the dentate gyrus (Kahle and Cotman, 1989), which contains
synapses from lEC. Muscarinic presynaptic inhibition was sub-
sequently shown in stratum radiatum of region CA1 of the hip-
pocampus (Hounsgaard, 1978; Valentino and Dingledine, 1981).
Acetylcholine suppresses excitatory potentials more in stratum
radiatum of region CA1, where CA3 inputs terminate, than in
stratum lacunosum-moleculare (SLM), where EC layer III input
terminates (Hasselmo and Schnell, 1994). In the piriform cortex,
cholinergic modulation causes selective presynaptic inhibition of
excitatory feedback potentials in layer Ib, while having a much
weaker effect on synaptic potentials in layer Ia receiving afferent
input from the olfactory bulb (Hasselmo and Bower, 1992). In
region CA3 of hippocampus, muscarinic presynaptic inhibition
reduces excitatory transmission at recurrent connections in stra-
tum radiatum (Hasselmo et al., 1995; Vogt and Regehr, 2001),
but not at afferent synapses in stratum lucidum (Hasselmo et al.,
1995) or stratum lacunosum moleculare (Kremin and Hasselmo,
2007).

In all these regions, the same synapses that show muscarinic
presynaptic inhibition of synaptic transmission also show mus-
carinic enhancement of long-term potentiation in dentate gyrus
(Burgard and Sarvey, 1990), piriform cortex (Patil et al., 1998)
and region CA1 (Blitzer et al., 1990; Huerta and Lisman, 1995).
Stimulation of the medial septum enhances long-term poten-
tiation (LTP) induction in vivo (Ovsepian et al., 2004) and
scopolamine blocks the LTP enhancement associated with medial
septal activity (Leung et al., 2003). Presynaptic inhibition appears

to be stronger for synapses with AMPA receptors versus silent
synapses in hippocampus (de Sevilla et al., 2002) consistent with
physiological evidence that presynaptic inhibition is stronger for
recently potentiated synapses in piriform cortex (Linster et al.,
2003).

Muscarinic presynaptic inhibition of excitatory synaptic
transmission has also been shown in the EC. The presynaptic
inhibition in EC suppresses the feedback connections from the
subiculum that terminate in the EC (Hamam et al., 2001, 2007) as
well as synaptic connections within the EC (Richter et al., 1999).
Similar to other structures, muscarinic receptors also enhance
induction of long-term potentiation in EC (Cheong et al., 2001).
Presynaptic inhibition appears at feedback connections from
region CA1 to the subiculum (Kunitake et al., 2004), but also
affects input from presubiculum. The effects are not just on feed-
back, as subiculum also shows selective presynaptic inhibition
of medial entorhinal but not lateral entorhinal input. Effects in
neocortical structures are overall consistent with this same func-
tional framework, as cholinergic modulation causes presynaptic
inhibition of feedback synapses from higher order somatosensory
cortex, while having less effect on synaptic potentials elicited in
layer IV (Hasselmo and Cekic, 1996). Similarly, acetylcholine sup-
presses intracortical synaptic potentials but not thalamocortical
input in the auditory cortex (Metherate and Hsieh, 2004), and
primary visual cortex (Kimura, 2000).

At the same time that feedback is suppressed by muscarinic
presynaptic inhibition, activation of nicotinic cholinergic recep-
tors causes enhancement of afferent input to cortical structures.
For example, nicotinic enhancement of excitatory synaptic trans-
mission has been shown for the afferent input to hippocampal
region CA3 from EC (Giocomo and Hasselmo, 2005) and from
the dentate gyrus (Radcliffe et al., 1999), but not for excitatory
feedback within CA3. Similarly, in thalamocortical slice prepa-
rations of somatosensory cortex (Gil et al., 1997), activation
of nicotinic receptors enhances thalamic input but not excita-
tory feedback synapses. Nicotinic enhancement of glutamatergic
transmission has also been shown at the medial dorsal thala-
mic input to PFC (Gioanni et al., 1999). Nicotinic suppression
of GABAergic transmission appears to enhance visual cortex
responses to thalamic input (Disney et al., 2007). These effects
could enhance the influence of sensory input on cortical spiking
activity during encoding, particularly since they would be accom-
panied by enhancement of the spiking response to afferent input
due to muscarinic depolarization of pyramidal cells and reduc-
tions in spike frequency accommodation (reviewed in Patil and
Hasselmo, 1999; Hasselmo and McGaughy, 2004).

Computational modeling shows that these cholinergic effects
on synaptic transmission may enhance attention and encod-
ing of stimuli in the environment (Hasselmo and Schnell,
1994; Hasselmo et al., 1995; Hasselmo, 2006). The depo-
larization of neurons by muscarinic receptors coupled with
nicotinic enhancement of afferent transmission will ensure a
stronger response to afferent input. At the same time, the
muscarinic presynaptic inhibition of excitatory feedback pre-
vents interference from the retrieval or consolidation of pre-
viously formed memories (Hasselmo et al., 1995; Hasselmo,
1999, 2006) and reduces top-down influences on perception

Frontiers in Behavioral Neuroscience www.frontiersin.org July 2012 | Volume 6 | Article 32 | 8

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Heys et al. Acetylcholine and cortical networks

(Yu and Dayan, 2005). Interference is specifically prevented dur-
ing the encoding of new stimuli because the selective muscarinic
presynaptic inhibition of excitatory feedback occurs during mus-
carininc enhancement of LTP at the same synapses (Hasselmo
et al., 1995; Hasselmo, 2006). In this manner, the effects of
acetylcholine may work together to enhance attention to external
stimuli, and enhance encoding through an increase in synap-
tic modification coupled with a reduction of interference from
previous memories.

CHOLINERGIC MODULATION OF INTERNEURONS
Despite the fact that interneurons only comprise about 10% of
the cortical neuronal population (Rudy et al., 2011), interneu-
rons make up an extremely diverse group of cells. Accordingly,
the classification of interneurons has proven difficult. To date the
most complete attempt has been provided in the hippocampus
by Freund and Buzsáki (1996), and the reader is referred there
for a comprehensive review. Here only a brief introduction to
interneuron classes within the hippocampus (CA1 and CA3) will
be provided, with a focus on correlations between expression of
different neurochemicals and axonal targets onto principal cell
spatial domains. This introduction is by no means a complete
description of all interneurons. It is merely meant to provide a
basic background for readers who may not be familiar with dif-
ferent interneuron subtypes that will be discussed throughout this
section.

The calcium-binding protein parvalbumin (PV) is expressed
in fast spiking basket and chandelier cells of the hippocam-
pus (Kawaguchi et al., 1987; Kosaka et al., 1987) and neocor-
tex (Kawaguchi and Kubota, 1997). Basket cell axons surround
the soma and proximal dendrites, whereas axons of chande-
lier cells synapse on axon initial segments of principal cells
(Sik et al., 1995; Buhl et al., 1994). Some basket cells lack PV
and instead express the neuropeptide(s) cholesystokinin (CCK)
and/or vasoactive intestinal polypeptide (VIP, Kosaka et al., 1985;
Freund and Katona, 2007). CCK basket cells can be differentiated
physiologically from PV basket cells by their regular spiking phe-
notype (Cea-del Rio et al., 2010; Szabó et al., 2010). Recently,
in CA1, a second class off CCK expressing interneurons have
been described as containing axons targeting principal cell den-
drites within the stratum radiatum (Klausberger et al., 2005;
Cea-del Rio et al., 2011) and therefore are sometimes referred to
as Schaffer-collateral associated cells.

Immunostaining for somatostatin (SOM) has revealed exten-
sive labeling in all regions of the hippocampus (Köhler and Chan-
Palay, 1982; Somogyi et al., 1984; Sloviter and Nilaver, 1987).
Within CA1, SOM expressing interneurons are largely located in
the stratum oriens/alveus (Gulyás et al., 2003), and can be fur-
ther separated into subtypes based upon their synaptic targets.
The first group is termed O-LM cells because they have cell bodies
and dendrites confined to stratum oriens, and axons that extend
to the lacunosum moleculare, where they give off extensive axon
collaterals (Katona et al., 1999a). The second group sends axons
to CA1 and CA3 and is therefore termed back-projection cells (Sik
et al., 1995). The last group projects to the medial septum and is
therefore referred to as hippocampal-septal interneurons (Gulyás
et al., 1996).

Lastly, there are interneurons in both the hippocampus and
neocortex that selectively target other interneurons. VIP express-
ing interneurons in the hippocampus synapse on SOM O-LM,
calbindin, as well as other VIP interneurons (Acsády et al., 1996).
Interneurons expressing the calcium binding protein calretinin
form dense dendro- and axo-dendritic connections between
one another and target other interneurons including calbindin,
VIP/CCK basket, and SOM O-LM cells (Gulyás et al., 1996).
Similarly, the neocortex contains VIP/calretinin double bouquet
and arcade cells that also target other interneurons (Kawaguchi
and Kubota, 1997).

As suggested above, most of what we know about interneu-
rons has come from research conducted in the hippocampus and
neocortex. Surprisingly, data from interneurons of the EC is for
the most part lacking, despite the structure’s critical role in gat-
ing information flow between the neocortex and hippocampus.
However, recent advances in genetics have led to the production
of transgenic mouse lines expressing enhanced green fluorescent
protein (EGFP) in specific populations of interneurons. These
transgenic strains have provided powerful tools to investigate
neuromodulation in specific and easily identifiable interneurons.
Investigations with these strains have been focused in the hip-
pocampus and neocortex, while very little work has been reported
from the EC. Therefore, in the remainder of this section, data on
the cholinergic modulation of interneurons from the hippocam-
pus (CA1 and CA3 subfields), neocortex, and, when available,
the EC will be briefly reviewed with the goal of raising impor-
tant questions to guide future experiments in interneurons of the
EC.

Application of mAChR agonists by bath (carbachol, mus-
carine, ACh) or focal (ACh) perfusion induces a number of mem-
brane potential responses in CA1 interneurons. These responses
predominantly include a sustained depolarization, but also hyper-
polarization, biphasic (hyperpolarization, followed by depolar-
ization), and to a lesser extent oscillatory and unresponsive cells
(McQuiston and Madison, 1999a). These diverse responses have
also been reported upon endogenous ACh release via electri-
cal stimulation in CA1 stratum oriens (Widmer et al., 2006).
Additionally, pharmacological or synaptic muscarinic activation
of CA1 interneurons transforms responses to intracellular current
injection from afterhyperpolarizations (AHP) to afterdepolariza-
tions (ADP) (McQuiston and Madison, 1999b), increasing cell
excitability. Similar results have been found in the neocortex.
For instance, in the frontal cortex, application of muscarine or
carbachol to CCK interneurons results in a depolarizing or bipha-
sic response, whereas in SOM and VIP expressing interneurons
only depolarizing responses were reported (Kawaguchi, 1997). In
contrast, PV basket cells of the frontal cortex are unresponsive
to muscarinic activation (Kawaguchi, 1997). Given muscarinic
responses are diverse but conserved in interneurons of the hip-
pocampus and neocortex, it is likely that the EC will show similar
responses across interneuron subtypes.

Recent studies utilizing EGFP expressed in CCK or PV
interneurons of CA1 have provided significant insight to the
studies above. For instance, the transformation from an AHP to
an ADP, as well as the biphasic membrane potential response,
requires activation of M1 and M3 mAChRs. These responses
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were found in CCK basket and Schaffer-collateral associated cells
(Cea-del Rio et al., 2010, 2011), as well as in SOM expressing
O-LM interneurons (Lawrence et al., 2006a). This latter study
showed the emergence of the ADP was dependent on inhibi-
tion of the M-current and a slow calcium-activated potassium
channel, as well as activation of calcium-dependent non-selective
cationic current (ICAN). In contrast, the membrane potential
depolarization and increased firing frequency in CA1 PV basket
cells require activation of M1 mAChRs (Cea-del Rio et al., 2010,
2011).

Immunocytochemical studies have shown differential expres-
sion of muscarinic receptor subtypes within the whole brain
(Levey et al., 1991) and hippocampus (Levey et al., 1995; Hájos
et al., 1998). Most notably, in the hippocampus M2 mAChRs
are densely expressed on axon terminals of PV basket and axo-
axonic cells, while in dendritic targeting interneurons (calretinin
and SOM) M2 mAChRs are expressed on the soma and dendrites
(Hájos et al., 1998). Similarly, M2 mAChRs are expressed on PV
basket cells of the auditory cortex (Salgado et al., 2007) and EC
(Chaudhuri et al., 2005). Activation of the M2 mAChRs has been
shown to decrease the amplitude of unitary IPSPs in CA3 pyra-
midal cells (Szabó et al., 2010), IPSCs in pyramidal cells of the
auditory cortex (Salgado et al., 2007) and IPSPs in pyramidal and
SCs of the EC (Apergis-Schoute et al., 2007). These data strongly
support a heterosynaptic regulatory role for M2 mAChRs, where
their activation on interneurons inhibits the synaptic release of
GABA and decreases inhibitory potentials in pyramidal cells.
In contrast, M1 mAChRs and M3 mAChRs activation have a
predominantly excitatory effect on interneurons, increasing lev-
els of inhibition in principal cells. Interesting questions remain
unanswered within the EC. For instance, in what interneurons
are muscarinic receptors other than M2 expressed, and are they
localized in particular cellular compartments? Can muscarinic
receptor expression be correlated with interneuron innervation of
particular principal cell domains, and do the same neurochemi-
cal markers (CCK, PV, SOM, neuropeptide Y (NPY), calbindin,
calretinin, etc.) correlate with similar innervation of principal cell
domains as seen in the hippocampus (reviewed by Freund and
Buzsáki, 1996)?

Van der Zee and colleagues have contributed extensively to
mAChR immunocytochemistry of the hippocampus, neocortex,
and amygdala (reviewed in Van der Zee et al., 1999). In the
interest of space, here we will focus on their data concerning
the hippocampus. Their body of work uses M35, a pan-mAChR
antibody which labels all muscarinic receptors that are in an
activated state (André et al., 1984). Therefore, M35 immunore-
activity (ir) allows visualization of phosphorylated/internalilzed
mAChRs and can be used as a tool to investigate the functional
cholinergic properties of a cell or network. Immuncytochemical
studies in naïve animals have found M35-ir in basket cells within
stratum pyramidale of CA1-CA3 as well as other interneuron
types in SLM and stratum oriens/alveus (Van der Zee et al.,
1989, 1991a). Similar studies found a high degree of colocal-
ization between M35 and the GABA markers PV and SOM
(Van der Zee et al., 1991a,b, 1993). Out of 2730 hippocampal
interneurons expressing mAChRs, 33% colocalized with SOM,
52% with PV, and 72.8% with SOM and/or PV. Furthermore,

97.5% of hippocampal GAD positive cells express mAChRs,
suggesting a ubiquitous role of cholinergic modulation in
interneurons.

The use of M35 as a functional tool has been shown by sig-
nificant changes in hippocampal M35-ir before and after learning
in various paradigms. For example, in the holeboard task, a spa-
tial learning task where rats learn to find food rewards arranged
in fixed patterns according to the location of external cues,
trained rats show dense M35-ir in the cell soma and dendrites
of hippocampal pyramidal cells. This is in contrast to naïve and
pseudo-trained (all holes baited with food) animals who show
M35-ir in interneurons (Van der Zee et al., 1995). Similarly, in
eye blink conditioning, an associative learning task, hippocampal
M35-ir shifts from being high in interneurons of naïve rabbits, to
being high in pyramidal cells of conditioned rabbits (Van der Zee
et al., 1997). The data above suggests that a shift in muscarininc
activity occurs in the hippocampus during learning. Before learn-
ing mAChRs activity is high in interneurons, while after learning,
mAChR activity is high in principal cells.

The data describing a shift in mAChR activity during plas-
ticity correlate well with the computational model by Hasselmo
et al. (1995) describing acetylcholine dynamics during encoding
and retrieval. The model utilizes experimental data describing dif-
ferential effects of pre- and postsynaptic mAChR activation in
hippocampus and piriform cortex (Hasselmo and Bower, 1992;
Hasselmo and Schnell, 1994; Hasselmo et al., 1995). High acetyl-
choline levels support encoding of new information by silencing
intrinsic (local) input via activation of presynaptic mAChRs and
at the same time enhancing extrinsic input via activation of
postsynaptic mAChRs. Postsynaptic activation causes depolariza-
tion, which increases LTP and facilitates learning. In contrast,
low acetylcholine levels favor retrieval because in the absence of
presynaptic inhibition and postsynaptic depolarization, afferent
activity dominates. Data on M35-ir can be applied to this model
as follows: before learning M35-ir is initially low in pyramidal
cells, indicating mAChRs are unbound and open for encoding.
After training, M35-ir is very high indicating mAChRs have been
activated and internalized. In this situation the network would
be in recall mode. Given the predominant excitatory nature of
mAChR activation, in non-learning (low acetylcholine) condi-
tions, mAChR activation on interneurons could help to keep
pyramidal cell excitability low and maintain an open window for
encoding. Whether similar patterns of M35-ir are present in the
EC before and after learning is unknown. However, given the role
of the EC in spatial memory and gating information between the
hippocampus and neocortex, it seems reasonable that similarities
would exist.

Recent studies using the 5HT3aR-BAC EGFP transgenic
mouse line have reported broad expression of the ionotropic
serotonin (5HT3a) receptor in the superficial layers of the pri-
mary somatosensory cortex (Lee et al., 2010; Rudy et al., 2011).
This expression pattern is consistent with immunocytochemical
studies showing diffuse expression, likely indicative of localiza-
tion on interneurons (Tecott et al., 1993). Accordingly, 5HT3aRs
are expressed in all interneurons originating from the caudal
ganglionic eminences (including VIP, NPY, and CCK express-
ing interneurons) but are absent in PV and SOM interneurons
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(Lee et al., 2010). Moreover all 5HT3aR expressing interneurons
co-express nicotinic AChRs (nAChRs). The physiological effect
of both serotonergic and nicotinic activation is a fast depolariza-
tion. Focal somatic puffs of 100 μM mCPBG or 1 mM carbachol
elicit a burst of spikes, while 100 μM nicotine elicits depolar-
izations (Lee et al., 2010). Very similar results have also been
reported in an earlier study by Ferezou et al. (2002). McQuiston
and Madison (1999c) have shown in CA1 interneurons of stratum
radiatum/stratum lacunosum moleculare that fast nAChR depo-
larization is mediated by alpha-7 subunits, while interneurons in
stratum oriens, display a dual fast and non-alpha-7 mediated slow
depolarization. Given the excitatory nature of both serotonergic
and nicotinic responses, a portion of these EGFP interneurons
are likely to take part in feedforward inhibition of principal
cells. In fact work has been done within the EC showing that
activation of 5HT3aRs decreases acetylcholine release, through
apparent inhibition of principal cells (Ramírez et al., 1996). In
support of this, focal iontophoretic activation of nAChRs on
CA1 PV basket cells releases quantal GABA. This release is inde-
pendent of action potentials but dependent on the activation
of Cav3.1 T-type calcium channels and calcium from internal
stores (Tang et al., 2011). In contrast to feedforward inhibition,
VIP cells in somatosensory cortex (Dávid et al., 2007) and the
hippocampus (Acsády et al., 1996) have been shown to selec-
tively synapse onto other interneurons. Therefore a subset of
EGFP (VIP/5HT3aR/nAChR) interneurons could play a role in
disinhibiting principal cells.

Indeed a form of disinhibition, termed depolarization-
induced suppression of inhibition (DSI), exists between CCK
expressing basket cells and principal cells of the neocortex (Fortin
et al., 2004; Trettel et al., 2004) and hippocampus (Katona
et al., 1999b). CCK interneurons express cannabinoid-1 receptors
(CB1R) on their nerve terminals (Tsou et al., 1999; Hájos et al.,
2000), which bind retrograde endocannabinoids released from
principal cells upon depolarization (Ohno-Shosaku et al., 2001).
CB1R activation then inhibits GABA release in CCK interneurons
(Katona et al., 1999b), thereby suppressing IPSCs in principal
cells (Hoffman and Lupica, 2000). Carbachol enhances DSI in the
hippocampus (Kim et al., 2002; Ohno-Shosaku et al., 2003) and
this enhancement is due to activation of M1 and M3 mAChRs
(Ohno-Shosaku et al., 2003) and subsequent modulation of
G-proteins (Kim et al., 2002). In the EC, CCK interneurons selec-
tively synapse on principal cells expressing calbindin (Varga et al.,
2010). These cells are likely SCs and they target the contralateral
EC, as opposed to those forming the perforant path. This selec-
tive targeting of CCK cells suggests a specialized function, perhaps
utilizing DSI as a mechanism of action.

This specialized function may well include the synchronization
of the entorhinal cortices across hemispheres, as there is convinc-
ing evidence that basket cells (PV and CCK) play critical roles in
synchronizing oscillatory activity in principal cells (reviewed by
Buzsáki, 2002; Whittington and Traub, 2003; Klausberger et al.,
2005; Freund and Katona, 2007). Cobb et al. (1995) have shown
that single basket cells of CA1 can entrain subthreshold mem-
brane potential oscillations and spiking of multiple pyramidal
cells. Interestingly the phase of interneuron and pyramidal activ-
ity is separated by 180◦, similar to phase differences between

CA1 perisomatic interneurons and pyramidal cell firing in vivo
(Klausberger and Somogyi, 2008). Moreover, CB1R activation has
been shown to interrupt kainate-induced gamma activity in the
hippocampus (Hájos et al., 2000) and EC (Morgan et al., 2008).
Gamma oscillations are also induced by bath application of carba-
chol in all layers of somatosensory cortex (Buhl et al., 1998) and in
CA3 where it is then transferred to CA1 likely through excitatory
Schaffer-collateral afferents (Fisahn et al., 1998). In both regions,
GABAA receptor and AMPA/kainite receptor activation are nec-
essary for the emergence of gamma activity. In addition, electrical
synapses in PV basket cells of the neocortex (Gibson et al., 1999;
Tamás et al., 2000; Blatow et al., 2003; Whittington and Traub,
2003) synchronize large numbers of interneurons and principal
cells and are crucial for gamma activity. Additionally, mAChR
activation induces theta rhythmic IPSPs in hippocampal pyra-
mid cells which are disrupted by subsequent activation of CB1Rs
(Reich et al., 2005). This mAChR activation is physiologically
relevant as optogenetic stimulation of cholinergic fibers of the
MSDB activates CCK interneurons resulting in theta rhythmic
IPSC bursts in CA1 pyramidal cells. Moreover this rhythmic inhi-
bition is abolished with postsynaptic depolarization and this DSI
is blocked with application of a CB1R antagonist (Nagode et al.,
2011).

Freund (2003) has suggested that CCK interneurons trans-
mit information of the emotional state (mood) of the animal
and act to fine-tune principal cell activity, while PV basket cells
control the clock-like rhythm of principal cells. In agreement
with this, the data above suggests that CCK interneurons, via
CB1Rs, modulate, while PV basket and principal cells gener-
ate and maintain oscillatory activity. Additional support for a
modulatory role in oscillatory activity by CCK interneurons is
provided by the rapid desensitization of nAChRs (McQuiston and
Madison, 1999c) and 5HT3aRs (Sugita et al., 1992). Rapid desen-
sitization results in transient depolarization following receptor
activation. For this reason it has been suggested that nicotinic
receptors are unlikely to make significant contributions to the
generation of theta (Buhler and Dunwiddie, 2001), and it seems
reasonable to suppose the same for 5HT3Rs. This transient nature
of nAChR and 5HT3aR activation seems well posed to func-
tion as a switch between oscillatory states, or oscillatory and
non-oscillatory states. Accordingly, Vertes and Kocsis (1997) have
suggested a role for serotonin in the desynchronization of the
hippocampal theta rhythm, and nAChR activation in the hip-
pocampus has been shown to switch a purely mAChR induced
oscillatory bursting mode, characterized by individual depolariz-
ing events occurring at low frequencies (<1 Hz), to a theta-mode
discharge, characterized by rhythmic oscillatory depolarization
between 4 and 12 Hz (Cobb et al., 1999).

It is likely that the modulatory functions of CCK expressing
cells are mirrored in the EC as the median raphe nucleus sends
serotonergic projections to both the hippocampus and EC (Vertes
et al., 1999), and 5HT3aR immunoreactivity is found throughout
the hippocampal formation (Morales et al., 1998; Miquel et al.,
2002) and the EC (Miquel et al., 2002). In addition, both the
hippocampus (Nyakas et al., 1987) and EC (Alonso and Köhler,
1984) receive cholinergic input from the MSDB. Moreover, theta
activity of deep layers of the EC is in phase with CA1, while
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superficial layers are in phase with dentate gyrus (Mitchell and
Ranck, 1980; Alonso and Garcia-Austt, 1987), suggesting oscilla-
tory activity of the two regions are similarly governed according
to synaptic connectivity between the two regions. To date, direct
investigations of the physiological properties of CCK cells in the
EC have not been conducted. Given that entorhinal SCs display
intrinsic subthreshold oscillations with depolarization (Alonso
and Llinás, 1989; Klink and Alonso, 1993) and carbachol induces
depolarization and subthreshold oscillations at rest, future work
focusing on the effects of nicotinic, muscarinic, serotonergic, and
endocannabinoid activation in CCK interneurons can provide
valuable information on possible modulation of these oscillatory
properties in the EC.

Basket cells are not the only interneurons that can regu-
late the phase of pyramidal cell activity. Interneurons of the
stratum lacunosum moleculare display oscillatory behavior in
response to muscarinic activation by carbachol (Chapman and
Lacaille, 1999). Moreover minimal stimulation at 3 Hz causes
rhythmic rebound spikes in pyramidal cells that are ∼180◦ out
of phase with the activation of SLM interneurons. Perisomatic
interneurons have powerful control over cell output, while den-
dritic interneurons control integration of inputs and synaptic
plasticity (Miles et al., 1996). An important question pertain-
ing to the EC is what cell types mediate control over dendritic
integration? Some insight can be gained through comparison
of data from SOM expressing interneurons of the hippocam-
pus and neocortex. The transgenic GFP-expressing inhibitory
neuron (GIN) mouse line selectively expresses EGFP in SOM
interneurons (Oliva Jr. et al., 2000). In the neocortex of GIN
mice, Martinotti cells are found in layers II, III, V, and VI and
their axons extend into superficial layers and give off dense axonal
collaterals in layer I (McGarry et al., 2010). These same morpho-
logical results were found by Kawaguchi and Kubota (1996) in
rats. In addition, McGarry et al. (2010) found two other types
of SOM cells that contained axons that did not reach layer I and
lacked dense collaterals. It was suggested that these cells could
innervate distant regions of cortex or contained immature pro-
cesses. SOM neurons of the hippocampus include O-LM cells,
which are very similar to Martinotti cells in that their soma and
dendrites are located in the region of principal cell axons (stratum
oriens) and their axons extend to lacunosum moleculare where
they too have diffuse axonal collaterals (Katona et al., 1999a).
Additionally, hippocampal-septal interneurons, a subset of CA1
SOM interneurons, project to the medial septum, CA1 and CA3,
where they selectively target other interneurons (Gulyás et al.,
2003). The question remains if similar morphological properties
exist in the EC? It is known that SOM interneurons are present
in the layers II, III, and V of the EC, but the majority of SOM
expressing cells are non-GABAergic (Wouterlood and Pothuizen,
2000). Therefore, future studies focusing on possible morpholog-
ical differences between GABA positive and GABA negative SOM
cells are warranted.

The conserved morphology and function of SOM cells of
the neocortex and hippocampus suggests that these cells play a
general role in feedback inhibition across the brain. In fact, in
layer V somatosensory cortex, SOM late spiking Martinotti cells
take part in disynaptic inhibition of pyramidal cells (Silberberg

and Markram, 2007). This study reported that Martinotti cells
contacted 79% of neighboring pyramidal cells, while 68% of
pyramidal cells contacted neighboring Martinotti cells. This high
degree of local connectivity is also present in layer II/III of the
frontal cortex, where 70% of Martinotti cells within 200 μm of
pyramidal cells are connected (Fino and Yuste, 2011). This high
degree of connectivity between Martinotti and pyramidal cells
results in supralinear inhibition of pyramidal cells. In layer II/III
of somatosensory cortex, spiking of two pyramidal cells increases
inhibition in a third pyramidal cell in a supralinear manner. This
supralinear feedback inhibition upon activation of two pyrami-
dal cells is due to a tenfold increase in the recruitment of SOM
interneurons compared to when only a single pyramidal cell is
firing (Kapfer et al., 2007).

In addition to feedback inhibition, Martinotti cells also
synchronize their activity in response to mAChR or mGluR acti-
vation (Beierlein et al., 2000; Fanselow et al., 2008). Cholinergic-
induced synchronization is in the theta range (Fanselow et al.,
2008) and is dependent on the activation of M1 and M4 mAChRs
(Beierlein et al., 2000). Moreover, both studies show that syn-
chronization is independent of chemical synapses as it is TTX
resistant. Moreover, Martinotti cell synchronization via gap junc-
tions also synchronizes activity in regular spiking as well as fast
spiking cells. As mentioned above, muscarinic activation in hip-
pocampal O-LM cells increases excitability and transforms an
AHP to an ADP, all of which are mediated by M1 and M3
mAChRs (Lawrence et al., 2006a). In addition, mAChR activa-
tion increases spike reliability to sinusoidal inputs increasing the
bandwidth at which O-LM cells can maintain firing on all cycles
from 5–12 Hz to 7–17 Hz (Lawrence et al., 2006b). This increase
in the theta bandwidth is due to the increased slope during the
upswing, which can be attributed to the ADP. O-LM cells densely
innervate pyramidal cells and therefore muscarinic activation can
potentially synchronize large populations of both interneurons
and pyramidal cells to help coordinate theta rhythmic activity in
the cortex. Given that the EC displays a prominent theta rhythm,
and the largest amplitude theta rhythm of CA1 is in lacunosum
moleculare where entorhinal afferents synapse (Buzsáki, 2002),
it seems likely that SOM interneurons could contribute to the
generation of theta in the EC as well as in the neocortex and
hippocampus.

Both O-LM (Maccaferri and McBain, 1996) and Martinotti
cells (Wang et al., 2004) express the h-current which paces
action potential firing and contributes to AHP in O-LM cells.
Muscarinic activation has been shown to modulate the time
constant of the h-current (Pian et al., 2006, 2007) and mus-
carinic activation decreases subthreshold resonance (Heys et al.,
2010) and induces subthreshold membrane potential oscilla-
tions (Klink and Alonso, 1997) in layer II EC SCs. Both sub-
threshold membrane potential resonance (Shay et al., 2012) and
subthreshold membrane potential oscillations (Dickson et al.,
2000a,b) have been associated with expression of Ih. It still
remains to be seen whether SOM expressing interneurons in the
EC possess Ih or if they display similar subthreshold resonance
properties as reported in the hippocampus (Pike et al., 2000;
Zemankovics et al., 2010). If resonance is found within entorhinal
SOM interneurons, an important question to ask is whether
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similar frequency gradients are observed as in stelllate cells
(Giocomo et al., 2007)? If so, entorhinal SOM interneurons could
function to synchronize and bind SCs at specific frequencies along
the dorsal-ventral axis. This could have implications for the gen-
eration of grid cells as gradients in their field size and spacing
have been observed along the dorsal-ventral axis of mEC (Fyhn
et al., 2004; Sargolini et al., 2006; Brun-Kjelstrup et al., 2008).
Lastly, can subthreshold oscillations and resonance properties be
modulated by acetylcholine and in what ways? Assuming GIN
mice express detectable amounts of EGFP in SOM interneurons
of the EC, this transgenic line could prove valuable to answering
these questions.

To summarize, the activation of muscarinic receptors has dif-
ferential consequences on membrane potential, depending on
which subtypes are expressed on a given cell or cell compartment.
These diverse responses could play various roles in information
processing. For example, muscarinic induced membrane poten-
tial hyperpolarization could function to bring a cell further from
threshold, while the ADP could then selectively enhance inputs
with sufficient strength to reach threshold, thus enhancing the
signal to noise ratio (McQuiston and Madison, 1999b). In addi-
tion, a muscarinic induced membrane potential depolarization
and ADP could sufficiently increase firing frequency to release
neuropeptides such as SOM, CCK, VIP, and NPY, which by them-
selves have diverse effects. Additionally, muscarinic activation
induces synchronized oscillatory activity in both interneurons
and pyramidal cells, which could contribute to the generation
of theta and gamma rhythms. On the other hand muscarinic
activation also disrupts rhythmic inhibition of principal cells
through retrograde activation of endocannabinoid receptors on
CCK interneurons. The activation of ionotropic nicotinic AChRs
and 5HT3aRs, also expressed by CCK interneurons, are also likely
to modulate oscillatory states, suggesting cholinergic modulation
can play dual roles in the generation of rhythms. Lastly, cholin-
ergic activation affects intrinsic properties including subthresh-
old oscillations and resonance, which if displayed by entorhinal

interneurons could have functional implications for grid cell
function.

SUMMARY
In this review, we have described multiple effects of acetylcholine
on the physiology of entorhinal neurons. Cholinergic activa-
tion of muscarinic receptors causes a decrease in the resonance
frequency of SCs in layer II of EC that appears to arise from
cholinergic decreases in the hyperpolarization activated cation
current. Acetylcholine also activates a calcium-sensitive non-
specific cation current that enhances the appearance of persistent
spiking in entorhinal pyramidal cells. In addition, muscarinic
receptors cause presynaptic inhibition excitatory synaptic trans-
mission at feedback connections to the EC, and at a subset of
output synapses from mEC to the middle molecular layer of the
dentate gyrus. Modeling has shown how these modulatory effects
of acetylcholine could alter the dynamics of EC in a manner that
could contribute to the role of cholinergic modulation in spa-
tial representations for episodic memory function (Fransen et al.,
2002, 2006; Hasselmo and Stern, 2006; Hasselmo, 2008, 2012).
These clear effects of cholinergic modulation motivate future
studies to demonstrate how the currents underlying persistent
spiking could influence other dynamical properties of entorhinal
neurons, as well as to determine whether acetylcholine influences
entorhinal inhibitory interneurons as strongly as it influences
the oscillatory and repetitive spiking properties of hippocampal
interneurons. Further analysis of cellular mechanisms combined
with computational modeling will help us understand how the
dense cholinergic innervation of EC alters cellular dynamics to
underlie the important role of cortical acetylcholine in cognitive
function.
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