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The orexin/hypocretin (Orx/Hcrt) system has long been considered to regulate a wide
range of physiological processes, including feeding, energy metabolism, and arousal. More
recently, concordant observations have demonstrated an important role for these peptides
in the reinforcing properties of most drugs of abuse. Orx/Hcrt neurons arise in the lateral
hypothalamus (LH) and project to all brain structures implicated in the regulation of arousal,
stress, and reward. Although Orx/Hcrt neurons have been shown to massively project to
the paraventricular nucleus of the thalamus (PVT), only recent evidence suggested that the
PVT may be a key relay of Orx/Hcrt-coded reward-related communication between the LH
and both the ventral and dorsal striatum. While this thalamic region was not thought to
be part of the “drug addiction circuitry,” an increasing amount of evidence demonstrated
that the PVT—particularly PVT Orx/Hcrt transmission—was implicated in the modulation of
reward function in general and several aspects of drug-directed behaviors in particular. The
present review discusses recent findings that suggest that maladaptive recruitment of PVT
Orx/Hcrt signaling by drugs of abuse may promote persistent compulsive drug-seeking
behavior following a period of protracted abstinence and as such may represent a relevant

target for understanding the long-term vulnerability to drug relapse after withdrawal.
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INTRODUCTION

Drug addiction is a chronically relapsing disorder characterized
by compulsive drug seeking and use (O’Brien and McLellan,
1996; Leshner, 1997; O’Brien et al., 1998; McLellan et al., 2000).
Advances have been made in elucidating the neurocircuitry that
mediates craving and drug seeking. Functional brain imaging in
humans (e.g., Miller and Goldsmith, 2001; Goldstein and Volkow,
2002; Daglish and Nutt, 2003) and brain site-specific manipula-
tions in animals (e.g., Everitt et al., 2001; Cardinal et al., 2002;
See, 2002; Weiss, 2005) implicate interconnected cortical and
limbic brain regions in response to drug cue-, drug priming-,
and stress-induced reinstatement. Major components of this cir-
cuitry include the medial prefrontal cortex (mPFC), basolateral
amygdala (BLA), central nucleus of the amygdala (CeA), bed
nucleus of the stria terminalis (BNST), hippocampus, nucleus
accumbens (NAC), and, more recently, dorsal striatum, which
is thought to participate in consolidating stimulus-response
habits via the engagement of corticostriatal loops (Everitt et al.,
2001; McFarland and Kalivas, 2001; Ito et al., 2002; Kalivas and
Volkow, 2005; Belin and Everitt, 2008; Steketee and Kalivas, 2011).
However, unclear is what differentiates neural signaling related to
normal appetitive behavior vs. compulsive behavior that results
from long-term drug exposure. There is an overlap between the
brain regions implicated in the processing of natural rewards and
drugs of abuse, and it is thought that neural circuitry encoded
for natural rewards is usurped by drugs of abuse. Neuroplasticity

within this neural circuitry is believed to be responsible for the
maladaptive (compulsive) behavior characteristic of addiction
(Kelley and Berridge, 2002; Aston-Jones and Harris, 2004; Kalivas
and O’Brien, 2008; Wanat et al., 2009), which may account for the
interindividual vulnerability to drug abuse.

RECRUITMENT OF THE Orx/Hcrt SYSTEM BY DRUGS OF
ABUSE

About 10 years ago, the orexin/hypocretin (Orx/Hcrt) system,
already known to regulate a wide range of physiological pro-
cesses, was shown to be recruited by drugs of abuse. Indeed,
orexin A (Orx-A or hypocretin-1 [Hcrt-1]) and orexin B (Orx-B
or hypocretin-2 [Hcrt-2]) were initially considered hypothalamic
neuropeptides that regulate feeding, energy metabolism (Sakurai
et al., 1998; Edwards et al., 1999; Haynes et al., 2000, 2002; Willie
et al., 2001; Teske et al., 2010), and arousal (Sutcliffe and de
Lecea, 2002; Taheri et al., 2002). Among the two Orx/Hcrt recep-
tors identified, Hert-rl binds to Orx-A/Hcrt-1 with 20-30 nM
affinity but has much lower affinity (10—1000-fold lower) for Orx-
B/Hcrt-2, and Hert-r2 binds to both peptides with similar affinity
(in the 40 nM range; Sakurai et al., 1998; Ammoun et al., 2003;
Scammell and Winrow, 2011). Orx/Hcrt cell bodies are essen-
tially found in the lateral hypothalamus (LH), a brain region long
associated with reward and motivation (for review, see DilLeone
et al., 2003), perifornical hypothalamus (PFA), and dorsomedial
hypothalamus (DMH). Hypothalamic Orx/Hcrt neurons project
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to brainstem nuclei where they are considered to play a major role
in the regulation of arousal and modulation of stress responses
(Baldo et al., 2003; Winsky-Sommerer et al., 2004). They also
project to the paraventricular nucleus of the thalamus (PVT),
NAC shell (NACsh), ventral pallidum (VP), ventral tegmental
area (VTA), CeA, and BNST (Peyron et al., 1998; Baldo et al,,
2003). A past conjecture suggested a dichotomy in Orx/Hcrt func-
tion, with Orx/Hcrt neurons in the LH regulating reward pro-
cesses and Orx/Hcrt neurons in the PFA and DMH being mostly
involved in the regulation of arousal and stress responses (Harris
and Aston-Jones, 2006). However, recent evidence opposes this
interpretation because similar patterns of Fos-positive Orx/Hcrt
cells were observed in both the PFA/LH and DMH in rats exposed
to contextual stimuli previously paired with ethanol availability
(Dayas et al., 2008). Furthermore, medial and lateral Orx/Hcrt
cells were shown to project to both the locus coeruleus and VTA,
confirming that convergent projections from different Orx/Hcrt
populations to these two brain areas may strengthen the tem-
poral association between stress, arousal, and reward-seeking,
thus optimizing goal-oriented behavioral strategies (Calipari and
Espana, 2012; Gonzalez et al., 2012).

In addition to their involvement in the regulation of natu-
ral rewards, recent evidence showed that hypothalamic Orx/Hert
neurons played a significant role in the modulation of reward
function and, particularly, drug-directed behaviors (Harris et al.,
2005). Hypothalamic Orx/Hcrt neurons become activated by
stimuli associated with food, morphine, cocaine, and ethanol
(Harris et al., 2005; Dayas et al., 2008; Martin-Fardon et al.,
2010; Jupp et al., 2011). Similarly, the expression of conditioned
place preference induced not only by food but also by morphine
and cocaine is associated with activation of Orx/Hcrt neurons
in the LH (Harris et al., 2005) likely due to the stimulation
of LH Orx/Hcrt by rostral lateral septum afferents (Sartor and
Aston-Jones, 2012). Consistent with these observations, intra-
VTA microinjection of Orx-A produces a renewal of morphine-
induced conditioned place preference, whereas administration
of the Hert-r1 antagonist N-(2-methyl-6-benzoxazolyl)-N’-1,5-
n-aphthyridin-4-yl urea (SB334867) decreases the expression of
morphine-induced conditioned place preference (Harris et al.,
2005). SB334867 also blocks the acquisition of cocaine-induced
behavioral sensitization and potentiation of excitatory cur-
rents induced by cocaine in VTA dopamine neurons (Borgland
et al., 2006). Intra-VTA administration of SB334867 reduces
the motivation to self-administer cocaine and attenuates the
cocaine-induced enhancement of dopamine signaling in the
NAC (Espana et al, 2010). Blockade of Hcrt-rl decreases
ethanol (Lawrence et al., 2006) and nicotine (Hollander et al.,
2008) self-administration, inhibits cue-induced reinstatement
of ethanol (Lawrence et al.,, 2006) and cocaine (Smith et al.,
2010) seeking, and attenuates stress-induced reinstatement of
cocaine and ethanol seeking (Boutrel et al., 2005; Richards et al.,
2008).

Thus, behavioral and functional evidence indicates a role for
Orx/Hcrt signaling in the motivational effects of cocaine and
other drugs of abuse (Borgland et al., 2006; Bonci and Borgland,
2009; Thompson and Borgland, 2011), but questions remain
about what differentiates Orx/Hecrt signaling related to normal

appetitive behavior vs. compulsive behavior that results from
long-term drug exposure.

DIFFERENTIAL RECRUITMENT OF THE Orx/Hcrt SYSTEM BY
DRUGS OF ABUSE AND NATURAL REWARDS

One hypothesis concerning the control of drug-seeking behavior
is that the neural circuits that mediate these effects are com-
mon motivational circuits that are more robustly activated by
drug-related stimuli and not specific to addiction-related events.
This activation that normally governs responding for natural
rewards creates new motivational states or tilts processes that
normally govern responding for natural rewards toward drug-
directed behavior (Kelley and Berridge, 2002). Considered to
orchestrate the appropriate levels of alertness required for the
elaboration and execution of goal-oriented behaviors, Orx/Hert
is one legitimate candidate for further investigating how a system
normally involved in the regulation of motivation and arousal
may trigger a pathological state that elicits compulsive craving
and relapse to drug seeking (Boutrel et al., 2010).

Evidence has accumulated that the Orx/Hcrt system is, in fact,
more strongly engaged by drugs of abuse compared with natural
non-drug reinforcers. For example, it has been shown that SB-
334867 treatment significantly reduced responding for ethanol
but not sucrose under a progressive-ratio schedule of reinforce-
ment (Jupp et al,, 2011). An even more striking observation
was that, although the stimuli conditioned to cocaine, ethanol,
and a conventional reinforcer were shown to equally elicit rein-
statement, SB334867 treatment selectively reversed conditioned
reinstatement induced by a cocaine- or ethanol-related stimulus
but had no effects on the same stimulus conditioned to a conven-
tional reinforcer (sweetened condensed milk [SCM] or SuperSac
[3%/0.125%, w/v, glucose/saccharin]; Martin-Fardon and Weiss,
2009, 2012; Martin-Fardon et al., 2010).

The pharmacological and neural mapping data are difficult
to reconcile with the role of the Orx/Hcrt system in behavior
motivated by food (i.e., a natural reward) and its more recently
discovered role in drug reward. One hypothesis concerning the
control of drug-seeking behavior is that the neural circuits that
mediate the effects of drug cues are not specific to addiction-
related events but rather are common motivational circuits that
are more robustly activated by drug-related stimuli. This acti-
vation will create new motivational states or tilt processes that
normally govern responding for natural rewards toward drug-
directed behavior (Kelley and Berridge, 2002). Drugs of abuse
may produce this effect by neuroadaptively altering the neural sys-
tems that regulate motivation directed toward natural rewards.
Evidence of drug-induced dysregulation of the Orx/Hcrt sys-
tem exists for alcohol. For example, prepro-orexin mRNA is
up-regulated in the LH in inbred alcohol-preferring (iP) rats
following chronic ethanol consumption (Lawrence et al., 2006).
A possibility derived from this hypothesis is that the Orx/Hcrt
system may, over the course of repeated drug use, acquire a pref-
erential role in mediating the effects of stimuli conditioned to
drugs of abuse vs. natural rewards. Consequently, one explanation
for the preferential role of SB334867 in conditioned reinstatement
for drugs vs. non-drugs could be that drugs neuroadaptively alter
the neural systems that regulate motivation normally directed
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toward natural rewards that is revealed by pharmacological (e.g.,
SB334867) manipulations.

Maladaptive recruitment of the Orx/Hcrt system by drugs of
abuse is also suggested by findings that described neuroadap-
tive changes within the VTA. For example, voluntary cocaine
and natural reward self-administration induces a common, short-
lasting neuroadaptation in VTA dopaminergic neurons (i.e.,
increased glutamatergic function; Chen et al., 2008). However,
this enhanced synaptic strength persists and is resistant to extinc-
tion in rats that self-administer cocaine only and not in rats
that self-administer a non-drug reinforcer (Chen et al., 2008).
Interestingly, several lines of evidence suggest that the partici-
pation of the VTA in cocaine-induced neuronal and behavioral
changes requires Orx/Hcrt inputs. For example, activation of
Hert-r1 in the VTA is necessary for the development of cocaine-
induced locomotor sensitization (Borgland et al., 2006), and
Orx-A/Hcrt-1-mediated N-methyl-D-aspartate (NMDA) recep-
tor plasticity in the VTA is increased in rats that self-administer
cocaine (Borgland et al., 2009). Additionally, short-lasting neu-
roadaptations in VTA dopaminergic neurons induced by high-fat
chocolate food pellets have been described (Borgland et al., 2009),
suggesting that the Orx/Hcrt-VTA system initially participates
in the regulation of the motivation to obtain potent reinforcers
in general (i.e., drug or highly palatable food). In contrast,
drug-induced neuroadaptation of the Orx/Hcrt-VTA system is
long-lasting, an effect that may be linked to the possible tilting
of this system toward promoting and controlling drug-directed
behavior.

IMPLICATION OF Orx/Hcrt-PVT TRANSMISSION IN
MALADAPTIVE (DRUG-SEEKING) BEHAVIOR

Anatomically, it has been shown that the PVT is the tar-
get of numerous hypothalamic peptides involved in energy
homeostasis (Freedman and Cassell, 1994; Otake, 2005), includ-
ing Orx/Hert (Kirouac et al., 2005, 2006; Ishibashi et al., 2005).
It is believed that the PVT plays a key role in energy homeosta-
sis, arousal, temperature modulation, endocrine regulation, and
reward (Bhatnagar and Dallman, 1998, 1999; Van Der Werf et al.,
2002; Kelley et al., 2005; Parsons et al., 2006). Specifically and par-
ticularly important for this review, lesions of the PVT were shown
to increase feeding behavior and body weight (Bhatnagar and
Dallman, 1999) while attenuating the increases in both locomotor
activity and blood corticosterone levels normally seen during the
anticipation of food reward (Nakahara et al., 2004). Furthermore,
the PVT was shown to be critically involved in mediating the
effects of Orx/Hcrt on brain dopamine levels and reward-based
feeding behaviors (Choi et al., 2012). These findings strongly sug-
gest an important role for Orx/Hcrt-PVT signaling in food intake
regulation.

A major Orx/Hcrt projection exists from the LH/PFA to the
PVT (Kirouac et al., 2005; Parsons et al., 2006), and the PVT has
been proposed to be a key relay (see Figure 1), gating Orx/Hcrt-
coded reward-related communication between the LH/PFA and
both the ventral and dorsal striatum (Kelley et al., 2005). This
“hypothalamic-thalamic-striatal axis” may have evolved to pro-
long central motivational states and promote feeding beyond the
fulfillment of immediate energy needs, thereby creating energy

FIGURE 1 | Schematic diagram representing PVT connectivity. PVT,
paraventricular nucleus of the thalamus; LC, locus coeruleus; DR, dorsal
raphe; VTA, ventral tegmental area; CeA, central nucleus of the amygdala;
LH, lateral hypothalamus; ARC, arcuate nucleus; SCN, suprachiasmatic
nucleus; BNST, bed nucleus of the stria terminalis; NAC, nucleus
accumbens; PFC, prefrontal cortex; HIPRE hippocampus (for details, see
Kelley and Berridge, 2002; Kelley et al., 2005; Kirouac et al., 2005; Parsons
et al.,, 2006; Hsu and Price, 2009; Martin-Fardon et al., 2010; Li and Kirouac,
2012).

reserves for potential future food shortages (Kelley et al., 2005).
With regard to “drug seeking-related brain regions,” it is impor-
tant to note that the PVT specifically projects to the CeA, BNST,
NAC, VTA, and hippocampus (e.g., Kelley and Berridge, 2002;
Kelley et al., 2005; Parsons et al., 2006; Hsu and Price, 2009;
Martin-Fardon et al., 2010). Finally, recent data have shown
that the PVT receives projections from the PFC, suggesting that
these connections could modulate the expression of emotional
behaviors (Li and Kirouac, 2012).

Although not usually thought of as part of drug-seeking
neurocircuitry, direct and indirect findings recently supported
a role for Orx/Hcrt-PVT signaling in drug-oriented behaviors.
First, acute nicotine treatment was shown to activate Orx/Hecrt
neurons that project to the basal forebrain and PVT, supporting
a role for the Orx/Hcrt system in mediating certain aspects
of nicotine-elicited wakefulness rather than proving a role for
Orx/Hcrt-PVT signaling in tobacco addiction (Pasumarthi and
Fadel, 2008), but such a link cannot be underestimated until
proven false. Second, Orx/Hcrt peptides within the PVT have
been suggested to regulate negative emotional states (Li et al.,
2010a,b). Orx/Hcrt-PVT signaling was also shown to be criti-
cally involved in the expression of conditioned place aversion to
morphine withdrawal (Li et al., 2011). These latter two obser-
vations may support a role for Orx-Hcrt signaling within the
PVT in the negative emotional state that is putatively respon-
sible for triggering the urge to seek drug during withdrawal of
after a period of abstinence. A more direct observation con-
firmed that drug-related contextual cues activate Orx/Hcrt neu-
rons (Dayas et al., 2008). Indeed, significantly larger numbers of
Fos-positive hypothalamic Orx/Hcrt neurons were seen in rats
exposed to contextual stimuli previously associated with ethanol
availability compared with rats exposed to the same stimulus pre-
viously paired with non-reward. Moreover, presentation of the
ethanol-related stimuli also increased the number of Fos-positive
PVT neurons, and these neurons were closely associated with
Orx/Hcrt fibers (for additional details, see Dayas et al., 2008).
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Other evidence supports a role for Orx/Hcrt projections from
the LH to PVT in regulating drug-seeking behavior. Recent data
confirmed that context-induced reinstatement of alcoholic beer
seeking is associated with recruitment of a PVT-ventral stria-
tum pathway and that excitotoxic lesion of this structure (Hamlin
et al., 2009) or discrete administration of a k opioid receptor
agonist (Marchant et al., 2010) prevents context-induced rein-
statement of alcohol seeking. In conclusion, it is hypothesized
that maladaptive recruitment of the Orx/Hcrt system by drugs of
abuse may tilt its function toward excessive drug-directed behav-
ior, which may explain the increased sensitivity of this peptidergic
system to antagonist interference with drug-seeking behavior as
opposed to behavior directed toward natural rewards.

Furthermore, it was recently shown that although Orx/Hecrt
microinjections into the PVT exerted a priming-like effect, rein-
stating both extinguished cocaine- and SCM-seeking behavior,
Orx/Hcrt produced (1) two different dose-response functions for
cocaine seeking vs. SCM seeking and (2) a stronger reinstatement
of cocaine seeking vs. SCM seeking at moderate doses (Martin-
Fardon et al.,, 2011). This observation suggests of a leftward shift
of the Orx-A/Hcrt-1 dose-response curve in cocaine-experienced
animals, implying that cocaine produced a dysregulation of
Orx/Hcrt-PVT transmission that is revealed following exogenous
Orx/Hcrt administration. Moreover, recent findings have demon-
strated that discrete inactivation of the PVT with tetrodotoxin
(TTX) prevented cocaine priming-induced reinstatement (James
et al,, 2010), further implicating this thalamic structure in drug-
seeking behavior, although the same researchers claimed that
Orx/Hcrt-1 receptor signaling within the VTA but not PVT
was critical in the regulation of cue-induced reinstatement of
cocaine-seeking behaviors (James et al., 2011).

CONCLUSION/PERSPECTIVES

Currently, the available therapeutic approaches fail to completely
treat and address the compulsive nature of drug seeking and drug
taking associated with addiction. Evidence indicates that dys-
functional Orx/Hcrt transmission contributes to drug seeking vs.
natural reward seeking, and an increasing amount of data has

now identified the PVT, a brain region not usually included in
the neurocircuitry of addiction, to be recruited by drugs of abuse,
opening up a new area of targets for efficient pharmacotherapy.

Notably, however, drug addiction is often associated with
increased drug consumption that can modify the pharmacolog-
ical profile of promising therapeutic agents, possibly resulting
in drug-induced neuroadaptation (for review, see Kalivas
and O’Brien, 2008; Moussawi et al., 2009). For instance, fol-
lowing extended-access cocaine self-administration (6h/day),
it was shown that (-)-2-oxa-4-aminobicylco[3.1.0]hexane-
4,6-dicarboxylic acid (LY379268), a metabotropic glutamate
receptor (mGIuR) 2/3 agonist, became more efficient at
preventing anxiety-like behavior and decreasing cocaine self-
administration (Aujla et al., 2008; Hao et al.,, 2010), whereas
the effects of an mGluR5 antagonist, 3-[(2-methyl-1,3-thiazol-4-
yl)ethynyl]piperidine (MTEP), were blunted (Hao et al., 2010).
A similar behavioral pharmacological profile was observed in
animals that had a history of alcohol dependence, in which
LY379268 and MTEP dose-dependently reduced both alcohol
self-administration and the reinstatement of alcohol seeking
induced by footshock stress, but LY379268 was more effective
than MTEP in inhibiting both behaviors in postdependent ani-
mals compared with non-dependent animals (Sidhpura et al.,
2010). Consequently, considering the importance of relapse
prevention in postdependent individuals, important issues that
require further research are to identify (1) whether Orx/Hcrt-
PVT transmission becomes further dysfunctional following
dependence and (2) the most effective pharmacological tools
(i.e., Hert-r antagonists) for relapse and craving prevention in
postdependent individuals.
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