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Long-term environmental enrichment (EE) elicits enduring effects on the adult brain,
including altered synaptic plasticity. Synaptic plasticity may underlie memory formation
and includes robust (>24h) and weak (<2h) forms of long-term potentiation (LTP)
and long-term depression (LTD). Most studies of the effect of EE on synaptic efficacy
have examined the consequences of very prolonged EE-exposure. It is unclear whether
brief exposure to EE can alter synaptic plasticity. Clarifying this issue could help
develop strategies to address cognitive deficits arising from neglect in children or
adults. We assessed whether short-term EE elicits alterations in hippocampal synaptic
plasticity and if social context may play a role. Adult mice were exposed to EE for 14
consecutive days. We found that robust late-LTP (>24 h) and short-term depression (<2 h)
at Schaffercollateral-CA1 synapses in freely behaving mice were unaltered, whereas
early-LTP (E-LTR <2h) was significantly enhanced by EE. Effects were transient: E-LTP
returned to control levels 1 week after cessation of EE. Six weeks later, animals were
re-exposed to EE for 14 days. Under these conditions, E-LTP was facilitated into L-LTP
(>24h), suggesting that metaplasticity was induced during the first EE experience and that
EE-mediated modifications are cumulative. Effects were absent in mice that underwent
solitary enrichment or were group-housed without EE. These data suggest that EE in naive
animals strengthens E-LTP and also promotes L-LTP in animals that underwent EE in the
past. This indicates that brief exposure to EE, particularly under social conditions can elicit
lasting positive effects on synaptic strength that may have beneficial consequences for

cognition that depends on synaptic plasticity.
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INTRODUCTION

In rodents, environmental enrichment (EE) mimics the circum-
stances of a stimulating and interesting living environment that
is conducive to learning and cognition. During EE, toys, nesting
material, tubes, huts, and running wheels provide sensory, cogni-
tive and motor stimulation for rodents that are normally not part
of standard animal housing (Rampon and Tsien, 2000; Van Praag
et al., 2000; Nithianantharajah and Hannan, 2006). Throughout
the whole brain, structural (Turner et al., 2003; Leggio et al., 2005;
Bose et al., 2010; Rasin et al., 2011) and molecular (Rampon
et al., 2000a; Nithianantharajah et al., 2004; Angelucci et al., 2009;
Mainardi et al., 2010) changes occur after EE that are accom-
panied by increased brain weight (Collins, 1970). Particularly
the hippocampus shows a variety of alterations after EE. These
are mirrored in improvement of performance of hippocampus-
dependent tasks, such as the water maze (Kempermann et al,,
1997), contextual fear conditioning (Tang et al., 2001), and radial
arm maze (Huang et al., 2006). However, EE does not only
affect hippocampus-dependent learning behavior. In addition,
hippocampal neurons show increased complexity and spine den-
sity after EE (Rampon et al., 2000b; Bindu et al., 2007; Fréchette
et al., 2009; Beauquis et al., 2010). Neurogenesis and survival of
newborn neurons in the dentate gyrus (DG) are enhanced after

exposure to EE that includes a running wheel (Kempermann
et al., 1997; Bruel-Jungerman et al., 2005; Segovia et al., 2006).
On the molecular level, the expression of plasticity-related fac-
tors is altered after EE. These include postsynaptic density pro-
tein 95 (PSD95), synaptophysin (Nithianantharajah et al., 2004),
Ca?*/calmodulin-dependent kinase I (CaMKII), cyclic adeno-
sine monophosphate response element-binding protein (CREB)
(Huang et al., 2006), the GluAl subunit of alpha-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid-receptor (AMPAR),
and the N-methyl-D-aspartate-receptor (NMDAR) subunits
GluN2A and GluN2B (Tang et al., 2001). Moreover, bidirectional
synaptic plasticity in the hippocampus, which relates to learning
and memory (Morris, 1989; Bear and Malenka, 1994; Braunewell
and Manahan-Vaughan, 2001; Kemp and Manahan-Vaughan,
2007), is altered after EE. In vivo studies show that synaptic
plasticity, including long-term potentiation (LTP) (Gruart et al.,
2006) and long-term depression (LTD) (Goh and Manahan-
Vaughan, 2012) in the murine CAl-area, is closely related to
learning. Numerous in vitro studies show strengthened CA1l-
LTP (Dufty et al., 2001; Artola et al., 2006; Huang et al., 2006)
and -LTD (Artola et al., 2006) in rodents after EE.

All of the abovementioned studies on EE used paradigms
that exposed the animals to EE for prolonged periods. These
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important studies laid the groundwork for our understanding of
the role of adequate sensory and cognitive stimuli for improved
behavioral learning, hippocampal structure, and synaptic plastic-
ity, but none of these studies examined this phenomenon in vivo.
Our goal was to examine if much briefer periods of EE can
elicit positive effects on hippocampal synaptic plasticity, and if
effects can be sustained. Focus was made on synaptic plastic-
ity in the freely behaving mouse. Clarification of these aspects is
of importance given current discussions as to effective strategies
to address cognitive deprivation and/or the effects of neglect on
children and elderly adults. A recent study indicated that activ-
ities such as dancing in a social environment can have marked
effects on cognitive abilities in elderly humans (Kattenstroth et al.,
2010). This also provokes the question as to the necessity and
importance of social contact in such strategies. In this study we
therefore investigated the impact of a relatively short period of 14
days of consecutive EE on synaptic plasticity in the hippocampal
CAL region. We then explored whether re-exposure to EE after
a period of 6 weeks had similar or different effects on plastic-
ity. Furthermore, we assessed the role of social environment in
these effects. Finally, we investigated the influence of repeated EE,
and dissociated inanimate from social stimulation. We found that
short-term EE transiently strengthens weak synaptic potentiation
in vivo, but re-exposure to EE facilitates the expression of robust
LTP that lasts for over 24 h. Effects are only evident in animals
that undergo EE in a social environment. These data suggest that
brief EE under social conditions can have potently positive effects
on synaptic plasticity.

METHODS

ANIMALS

The present study was carried out in accordance with the
European Communities Council Directive of September 22nd,
2010 (2010/63/EU) for care of laboratory animals and after
approval of the local ethics committee (Bezirksamt Arnsberg,
Germany). All efforts were made to minimize animal suffer-
ing and to reduce the number of animals. Male C57/BL6 mice
(Charles River, Germany) were used in all of the experiments. All
mice attained the minimum weight of 22 g before being subjected
to surgical electrode implantation. The mice were housed individ-
ually in a temperature- and humidity-controlled vivarium with a
constant 12-h light-dark cycle (lights on from 6 a.m. to 6 p.m.)
where they had access to food and water ad libitum. All surgical
procedures and experiments were conducted during the day.

SURGERY AND IMPLANTATION OF ELECTRODES

The implantation of chronic electrodes into the Schaffer collat-
eral (SC)-CAL1 pathway of adult mice was carried out as described
before (Buschler et al., 2012; Goh and Manahan-Vaughan, 2012).
Briefly, at the age of 7—-8 weeks, mice were anaesthetized (sodium
pentobarbital, 60 mg/kg) and underwent stereotactic surgery.
According to coordinates obtained from a mouse brain atlas
(Paxinos and Watson, 2007) a bipolar stimulation electrode was
placed in the SC pathway of the right dorsal hippocampus
[anterior—posterior (AP): —2.0 mm, mediolateral (ML): 2.0 mm,
and dorsoventral (DV): ca. —1.4mm from the brain surface]
and a monopolar recording electrode was placed into the

ipsilateral CAl stratum radiatum (AP: —1.9, ML: 1.4, and DV:
ca. —1.2mm from the brain surface). Electrodes (polyurethane-
coated stainless steel wire, 100 um diameter; Giindel, BioMedical
Instruments, Germany) were inserted through a single trephine
hole (ca. 1.4mm). Ground and reference electrodes (stainless
steel, A-M Systems, USA) were attached to contralateral anchor
screws that were fixed in two additional holes. During the surgery,
test-pulse stimulation was used to adjust the depth of stimula-
tion and recording electrodes. After the appropriate response was
identified, all electrodes were assembled to a 6-pin socket (Conrad
Electronic SE, Germany) and fixed with dental acrylic (J. Morita
Europe GmbH, Germany; Heraeus Kulzer GmbH, Germany).
Mice were allowed to recover for 7-10 days before experiments
were conducted. During the post-surgical period animals were
monitored for infection and received analgesic treatment.

MEASUREMENT OF EVOKED POTENTIALS

Twenty-four hours before an electrophysiological experiment,
mice were placed into the recording chamber [20 (L) x 20 (W) x
30 (H) cm] to ensure familiarization to the environment. During
the recordings, mice had full access to food and water. A flexible
cable connected to the animals’ socket and a swivel connec-
tor allowed unhindered movement of the mice. Field excitatory
postsynaptic potentials (fEPSPs) in the CA1 region were evoked
by stimulating the SC pathway using biphasic square pulses of
0.2 ms duration per half-wave, generated by a constant stimu-
lus isolation unit (World Precision Instruments, USA). Evoked
responses were recorded at a test-pulse frequency of 0.025Hz,
amplified via an AC-amplifier (A-M Systems, USA) and digitized
through an AD converter (Cambridge Electronic Design, UK).
Five consecutive test-pulse responses, evoked at 40s intervals,
were averaged and the slope of the initial negative deflection was
taken as representative of synaptic transmission. During a given
experiment, all values were referenced to the mean of the first 6
averaged responses that were recorded in 5min intervals (base-
line = 30 min) and expressed in percentage (4 standard error of
the mean). Typically, high-frequency stimulation (HFS) or low-
frequency stimulation (LFS) was applied after the baseline. Five
minutes after the plasticity-induction protocol, test-pulse stimu-
lation was commenced and continued for 4 h (at 5 min intervals
for 15 min, thereafter at 15 min intervals). On the following day,
responses were recorded roughly 24 h after commencement of the
experiment and were continued for 1 h at 15 min intervals. Prior
to each experiment the maximal evoked response was determined
during an input—output (IO) curve determination (maximal
intensity 125 A). For test-pulse stimulation or HES, the inten-
sity eliciting 40% maximal response was used. IO-properties were
also used to evaluate changes in basal synaptic transmission after
environmental manipulation. Early-LTP (E-LTP) was defined a
potention that lasted for no longer than 2 h, whereas late-LTP was
defined as potentiation that persisted for over 24 h. Short-term
depression was defined as synaptic depression that lasted for less
than 2 h.

To induce synaptic potentiation, patterned 100 Hz stimulation
consisting of a single train of 50 pulses, or 2 x 50 pulses [5min
inter-train interval (ITT)], was used. A single 50 pulse sequence
typically elicits weak potentiation, whereas 2 x 50 pulses induce
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robust L-LTP (Buschler et al., 2012). LFS of 900 pulses at 3 Hz was
applied at 70% of the maximal response intensity. Throughout
the experiments animals were resting. During patterned stimula-
tion all mice were awake and had open eyes, signifying alertness.
Experiments and stimulation were also always conducted at the
same time of day. By this means we could exclude that gen-
eral changes in behavioral state, related to the sleep-wake cycle,
could alter plasticity or general evoked responses (Bramham and
Srebro, 1989; Leung et al., 2003). All animals were first tested
in a “baseline” experiment without any patterned simulation to
ensure that the recordings were stable (data not shown).

Throughout the experiments the electroencephalogram (EEG)
of each animal was monitored continuously for seizure activity. At
the end of the study, the mouse brains were removed and histolog-
ical verification of electrode localization was carried out (Buschler
et al., 2012). Frozen brain sections (30 um) were stained accord-
ing to the Nissl method using 1% toluidine blue (Bock, 1989),
and then examined using a light microscope. Individuals in which
incorrect electrode localizations or hippocampal malformations
were found were excluded from the data analysis.

HOUSING CONDITIONS

Under standard conditions (cage size: 267 x 207 x 140 mm, floor
area: 370cm?) mice were reared solitarily after the surgery.
During EE, mice were continuously reared in groups of 5-6
age-matched animals, or were housed solitarily, in an enrich-
ment cage (cage size: 595 x 380x 200 mm, floor area: 1820 cm?)
for 14 consecutive days. During EE all groups/individuals were
exposed to the same number of objects. Three pieces of tun-
nel, one house, nesting material, hanging climbing-structure of
four plastic-mesh-balls, two movable balls, climbing rings, and
a running wheel were added to the cage. All objects, except the
running wheel were rearranged every 3rd day. Re-exposure to
EE took place 6 weeks after cessation of initial EE. The 2nd
EE-period also was conducted for 14 consecutive days using sim-
ilar EE-objects. Social rearing in the absence of additional envi-
ronmental stimuli was carried out by group housing (cage size:
425 x 266 x 185 mm, floor area: 800 cm?) of six age-matched
mice. Synaptic plasticity was tested before the respective rearing
paradigm and directly after cessation. To analyze the longevity of
changes, synaptic plasticity was re-assessed 1 week after cessation
of EE.

The following cohorts were used during this study: four groups
of mice were used to assess the influence of group-EE on synaptic
plasticity. A cohort of six mice underwent HFS to induce robust
L-LTP (100Hz, 2 x 50 pulses), and two additional cohorts of
five mice underwent HFS to induce E-LTP (100 Hz, 50 pulses).
One of these E-LTP-cohorts (five mice) was re-exposed to EE.
Another group of six mice was tested for STD, using LFS (3 Hz,
300 pulses). Six individually housed mice experienced solitary-
EE and an additional cohort of six mice was reared socially for
2 weeks.

STATISTICAL ANALYSIS

Analysis of variance (ANOVA) with repeated measures followed
by post-hoc Fisher LSD test and student’s ¢-test was used to eval-
uate the changes of synaptic strength between the groups. The

analysis was applied on the data points after patterned stimula-
tion until the end of the experiment. In some cases the first 3 data
points after HES were additionally analyzed. The significance level
was set to p < 0.05.

RESULTS

SYNAPTIC POTENTIATION FOLLOWING ENVIRONMENTAL
ENRICHMENT IN GROUPS

Our first question was whether a brief period of EE can mod-
ify synaptic plasticity, given reports that long period of EE are
effective. For this purpose, mice underwent continuous EE for 14
consecutive days.

The same animals were tested for magnitude and longevity of
synaptic potentiation prior to commencement of EE. Here, HFS
of 2 x 50 pulses at 100 Hz induced robust L-LTP that lasted for
over 24 h, as reported previously (Buschler et al., 2012). Strikingly,
14 days of EE did not alter the profile of L-LTP [Figure 1A, n = 6,
ANOVA: F(q, 10) = 0.28, p > 0.6 compared to controls, n = 6].

One possibility was that the L-LTP evoked was already so
robust that little improvement could be achieved. In fact, previ-
ous results indicate that HFS using the abovementioned protocol
evokes saturated LTP at the murine SC-CA1 pathway in vivo, since
increasing the stimulation strength does not enable increases in
LTP (Buschler et al., 2012). For this reason we explored whether
the same EE paradigm would affect weaker potentiation.

HFS of 1 x 50 pulses at 100 Hz elicited E-LTP that lasted
for ca. 2h in animals prior to EE exposure (Figure1B).
Interestingly, EE for 14 days significantly increased the mag-
nitude of potentiation during the initial 120 min after HFS
[Figures 1B, 3, n = 10, ANOVA: F(;, 13) = 5.49, p > 0.031]. No
change in the duration of LTP occurred, however, and 1 week
after cessation of EE, application of HFS resulted in E-LTP that
was equivalent to controls [Figure 1C, n = 10, ANOVA: F(;, 15) =
0.68, p > 0.42].

To assess whether repeated exposure to EE has different effects
on LTP, one group of animals was re-exposed to 2 weeks of EE
exactly 6 weeks after conclusion of the first 14 day EE expo-
sure (n=>5). Under these conditions, E-LTP was prolonged
into L-LTP(>24 h) [Figures 2A, 3,n = 5, ANOVA: F(y g) = 7.72,
p < 0.024]. Effects were not persistent: 1 week after once more
returning to standard housing, HFS elicited E-LTP that was
equivalent to controls [Figure 2B, n = 5, ANOVA: F(;, g) = 1.22,
p > 0.3]. These observations suggest that re-exposure to EE (fol-
lowing a 6 week interim of no EE) elicits more potent effects on
synaptic potentiation compared to naive exposure to EE.

SYNAPTIC DEPRESSION FOLLOWING ENVIRONMENTAL ENRICHMENT

Most studies that address effects of EE in mice have examined
LTP (Duffy et al., 2001; Huang et al., 2006; Li et al., 2006; Arai
et al., 2009). To clarify if synaptic depression is also affected by
EE we used LFS of 900 pulses at 3 Hz, which has been shown
to reliably induce STD in freely behaving mice (Buschler et al,,
2012). LFS given prior to commencement of EE for 14 days,
elicited STD (<2h) (Figure 4A). EE for 14 days had no effect on
the profile of STD obtained [Figure 4A, n = 5, ANOVA: F(;, g) =
0.22, p > 0.64]. Similarly, 1 week after cessation of EE responses
were equivalent to controls [Figure 4B, ANOVA: F(; g = 0.16,
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p > 0.69]. These results indicate that STD is not altered after
short-term EE.

SOLITARY ENRICHMENT AND SOCIAL HOUSING

Social factors can strongly influence the responsiveness of human
subjects to enriching behavior (Kattenstroth et al., 2010). We
therefore explored whether it was the social housing or the EE
itself that drove the synaptic changes we observed. We compared
HFS-induced synaptic potentiation in animals that were exposed
to EE in solitary conditions or in groups. HFS given to animals

that underwent solitary EE elicited STP that was not different to
controls [Figure5A, n = 6, ANOVA: F(; 19y = 0.16, p > 0.73].
Thus, group EE (Figure 1A) and not solitary EE (Figure 5A) led
to facilitation of E-LTP into L-LTP. We next assessed whether
group housing alone could also facilitate synaptic plasticity by
examining the influence of prolonged group housing in the
absence of EE. Compared to controls, 2 weeks of group hous-
ing did not alter STP [Figure 5B, n = 6, ANOVA: F(; 1) = 0.33,
p > 0.57]. These results indicate that it is a combination of social
contact and EE that facilitates synaptic plasticity.
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BASAL SYNAPTIC TRANSMISSION FOLLOWING ENRICHMENT AND
SOCIAL HOUSING

One possibility is that the effects of EE that we observed are
related to changes in synaptic excitability rather than to plasticity
per se. To examine this, we assessed 1O properties in animals that
were housed under standard conditions (control), experienced
EE in group housing, EE in solitary conditions, social rearing
without EE, or in animals tested 1 week after conclusion of EE.
We observed that IO properties remained stable between con-
trol animals, EE animals (group conditions) and animals 1 week
post-EE (Figure 6A, Control x EE: p > 0.90, Control x 1 week
after EE: p > 0.39, EE x 1 week after EE: p > 0.46). Furthermore,
IO properties were equivalent after solitary-EE and social rearing
without EE (Figure 6B, solitary-control x solitary-EE: p > 0.35,
social-control x social: p > 0.09). This supports the conclusion
that changes in excitability do not underlie the facilitation of LTP
observed following EE.

DISCUSSION

This study demonstrates that brief EE potently strengthens hip-
pocampal synaptic plasticity. Effects are prolonged: whereas first
exposure to EE for 14 days enhances the magnitude of E-LTP,

re-exposure to EE 6 weeks after conclusion of the first spell results
in a significant facilitation of E-LTP into L-LTP that lasts for
well over 24 h. In contrast, synaptic depression at the CA3-CA1
synapse was not affected significantly by 2 weeks of EE. In con-
trast, rats that were enriched for 5 weeks exhibited significantly
stronger LTD after EE (Artola et al., 2006). Prolonged access to EE
conditions in the Artola study may explain the different results.
However, an important point is that in general, mice are more
resistant than rats to expressing LTD following afferent stimu-
lation to the hippocampus (Manahan-Vaughan, 2000; Buschler
et al., 2012; Goh and Manahan-Vaughan, 2012). Thus, the lack
of effect of EE on LTD may relate to the general behavioral and
physiological conditions needed to elicit synaptic depression in
this rodent species.

The effects of EE on LTP were only evident if EE occurred
under social conditions: EE experienced in solitary housing did
not facilitate LTP. These findings are in line with the early enrich-
ment experiments of Rosenzweig et al. (1978) that revealed that
social stimulation alone was insufficient to explain the alteration
in cortical RNA-expression and acetylcholinesterase activity that
occurred after 30 days of EE in rats. In contrast, the water-maze
performance of solitarily-enriched and group-enriched rats was
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time indicated by the numbers. Horizontal bar: 10 ms, vertical bar:
2mV.
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FIGURE 5 | Environmental enrichment under solitary conditions, or
social housing in absence of enrichment, has no impact on synaptic
potentiation. (A) Assessment of E-LTP after housing under enriched
conditions without social interaction revealed no alteration compared to
control E-LTP before environmental enrichment (EE). (B) Furthermore, group
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housing in the absence of EE had no effect on E-LTP. Time-point of high
frequency stimulation (HFS) is marked with a filled arrow. Insets: Analog
examples of field potentials (averages of five consecutive sweeps) from
typical experiments at the time indicated by the numbers. Horizontal bar:
10 ms, vertical bar: 2mV.
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FIGURE 6 | Input-output analysis of evoked responses reveals no
significant changes in excitability as a result of environmental
enrichment. (A) Input/output (I0) properties remained stable between
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control, environmental enrichment (EE) and 1 week (w) post-EE. (B) After
solitary-EE and social rearing without EE, IO curves were not significantly
different compared to controls.
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enhanced to a similar extent after 9 weeks of exposure to a run-
ning wheel (Schrijver et al., 2002). This may rather reflect the
specific effect of exercise on neurogenesis and synaptic viability,
however, (Van Praag et al., 1999a,b; Stranahan et al., 2006; Kobilo
etal., 2011).

Both social recognition memory (Kogan et al., 2000) and
L-LTP (Barco et al., 2002; Nguyen and Woo, 2003) require the
activation of CREB in murine CAl. Hippocampus-dependent
social recognition memory (of rodent identity and conspecifics)
is sustained for periods of up to 7 days in mice, but is disrupted by
long periods of isolation (Kogan et al., 2000). This finding offers
interesting parallels to our own and may reflect the social nature
of rodents. Our data suggest that EE alone is not sufficient to facil-
itate LTP, rather the enrichment must occur in social groups of
animals. These findings have interesting implications, and offer
functional insights into observations in studies with humans that
show that cognitive benefits of enriched living conditions occur if
conducted under social conditions (Kattenstroth et al., 2010).

Since IO-properties did not shift after EE, the facilitation of
LTP we observed is unlikely to occur due to altered basal synap-
tic transmission and/or excitability. Rather, effects appear to be
directly related to a modulation of LTP. Facilitation of synaptic
strength due to learning-related experience in rodents has been
previously reported (Manahan-Vaughan and Braunewell, 1999;
Kemp and Manahan-Vaughan, 2004) and a delayed rise of fEPSP
responses has been described in mice after reconsolidation of
object-recognition memory (Clarke et al., 2010), suggesting that
learning experience affects hippocampal field responses. Indeed,
novel spatial learning experience potently facilitates synaptic plas-
ticity in mice in vivo (Goh and Manahan-Vaughan, 2012).

The stimulation paradigm we used induces N-methyl-D-
aspartate receptor (NMDAR)-dependent potentiation (Buschler
et al, 2012) and NMDARs are crucial for hippocampus-
dependent learning and synaptic plasticity (Davis et al., 1992).
Strikingly, robust L-LTP was not affected by EE, however. This
is not surprising given the fact that it is likely that this form
of LTP was already close to saturation levels (Buschler et al.,
2012). LTP may reflect information storage that underlies spe-
cific forms of hippocampus-dependent learning (Kemp and
Manahan-Vaughan, 2007). The observation that E-LTP can be
reinforced by brief EE, and that a repeated exposure to EE later
results in persistent LTP (L-LTP) provokes the tantalizing possi-
bility that EE can reinforce cognition that underlies memory. This
is the first study that suggests that brief EE can have such bene-
ficial effects. Other studies, where EE was conducted for longer
periods than used here, also reported enhanced LTP (Dulffy et al,,
2001; Artola et al., 2006; Huang et al., 2006). A question which
remains unanswered is what could underlie this long-term effect
of brief EE on a mechanistic level. One possibility is that meta-
plastic changes are elicited by EE that endure long after the ini-
tial effects on E-LTP can be detected. Metaplasticity (Deisseroth
et al., 1995; Abraham and Bear, 1996; Tsien et al., 1996) can
strongly influence the direction of change in synaptic strength
(Kemp and Manahan-Vaughan, 2005; Zhang et al., 2005). It com-
prises mechanistic changes that alter the ability of a synapse to
respond to a subsequent attempt to induce synaptic plasticity.
Factors such as priming of NMDARs (Mockett et al., 2002), of

the metabotropic glutamate receptors (Manahan-Vaughan et al.,
1996) or the behavioral state of the animal (Manahan-Vaughan
and Braunewell, 1999) all can underlie metaplasticity. Thus, the
brief periods of EE may have triggered metaplastic changes in
the synapse. Effects appear to be cumulative: the initial EE may
have initiated changes in the mechanistic profile of LTP that were
added to by the second EE exposure. Nonetheless, the question
remains as to what could bring about such potent changes.

EE offers stimulating and interesting living conditions that are
likely to activate neuromodulatory systems such as the dopamin-
ergic system that responds to reward, or the noradrenergic system
that is stimulated by novelty. Both the dopaminergic (Kulla and
Manahan-Vaughan, 2000; Lemon and Manahan-Vaughan, 2006,
2011; Lemon et al., 2009) and the noradrenergic system (Kemp
and Manahan-Vaughan, 2008; Hagena and Manahan-Vaughan,
2012) exert a potent neuromodulatory regulation of synaptic
plasticity, that is also evident during learning conditions. On the
molecular level, one possible substrate for EE is the transcription
factor egr-1/zif268. Mice, suffering from egr-1 deficiency display
impairment of L-LTP, memory consolidation and reconsolidation
(Bozon et al., 2002). On the other hand, egr-1/zif268 becomes
upregulated after EE in rats (Koh et al., 2005). Transcription
of plasticity-related proteins has also been reported after EE
(Nithianantharajah et al., 2004) including key proteins such as
CREB (Huang et al, 2006) and glutamate receptor subunits
(Tang et al., 2001). These changes, if prolonged, could support
enhanced LTP.

Another consideration is that because the second exposure to
EE occurred 6 weeks after the conclusion of the first exposure, the
more potent effects of the 2nd exposure may have more to do with
the increased age of the mice than to do with the re-exposure to
EE This seems unlikely, given the relatively young age of the mice,
but it is worth mentioning that long-term EE elicits an improve-
ment of both synaptic plasticity and learning performance in both
adult and aged rodents (Huang et al., 2006; Bouet et al., 2011;
Freret et al., 2012).

Behavioral state can potently affect the outcome of an attempt
to induce synaptic plasticity (Bramham and Srebro, 1989; Leung
et al.,, 2003; Tsanov and Manahan-Vaughan, 2007a,b). This can
relate to motion (Leung et al., 2003), the sleep-wake cycle
(Bramham and Srebro, 1989; Tsanov and Manahan-Vaughan,
2007a), or circadian phase (Tsanov and Manahan-Vaughan,
2007b). For this reason, we went to lengths to ensure that our
animals were in equivalent behavioral states during attempts to
induce plasticity: experiments were always commenced at the
same time of day, plasticity stimulation was always given before
noon, the animals were awake, motionless and resting, but had
open eyes during plasticity-inducing stimulation. By this means
we can assume that the role of behavioral state under our com-
parative conditions was negligible. One cannot exclude, however,
that solitary mice are less active than group-reared mice, and that
effects due to differences in exercise levels (Titterness et al., 2011)
may have played a role in the outcome of EE under social and
non-social conditions.

In conclusion, our data support that short-term EE has sig-
nificant effects on synaptic potentiation, but a repeat of EE
several weeks later has potent effects on the longevity of LTP.
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Given the relationship between LTP and hippocampus-dependent
learning (Kemp and Manahan-Vaughan, 2004, 2007; Whitlock
et al, 2006) this suggests that EE given once or repeatedly
may have beneficial effects on hippocampus-dependent cogni-
tion. Effects are only apparent if EE is conducted under social
conditions. To wit: “use it, or lose it, but don’t do it alone.”
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