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The ability to maintain appropriate gaps to objects in one’s environment is important
when navigating through a three-dimensional world. Previous research has shown that the
visual angle subtended by a lead/approaching object and its rate of change are important
variables for timing interceptions, collision avoidance, continuous regulation of braking,
and manual control of headway. However, investigations of headway maintenance have
required participants to maintain a fixed distance headway and have not investigated
how information about own-speed is taken into account. In the following experiment, we
asked participants to use a joystick to follow computer-simulated lead objects. The results
showed that ground texture, following speed, and the size of the lead object had significant
effects on both mean following distances and following distance variance. Furthermore,
models of the participants’ joystick responses provided better fits when it was assumed
that the desired visual extent of the lead object would vary over time. Taken together,
the results indicate that while information about own-speed is used by controllers to set
the desired headway to a lead object, the continuous regulation of headway is influenced
primarily by the visual angle of the lead object and its rate of change. The reliance on
visual angle, its rate of change, and/or own-speed information also varied depending on
the control dynamics of the system. Such findings are consistent with an optimal control
criterion that reflects a differential weighting on different sources of information depending
on the plant dynamics. As in other judgements of motion in depth, the information used
for controlling headway to other objects in the environment varies depending on the
constraints of the task and different strategies of control.
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1. INTRODUCTION
The ability to maintain appropriate gaps to objects in one’s envi-
ronment is important when navigating through a three dimen-
sional world. Indeed, when performing high speed tasks, such as
driving vehicles or piloting aircraft, successful gap maintenance
and collision avoidance is critical. We aimed to determine the
visual cues that people use to regulate gaps between themselves
and other objects. In particular, we were interested in the visual
cues that are used by operators to control and maintain headway.
The experiment that follows investigated two candidate visual
cues that may provide information for the control of headway,
namely: (1) the retinal image size of the lead object (and its rate of
change); and (2) the global optic flow rate (GOFR) available from
the projection of ground texture on the retina as one traverses in
three-dimensional space.

Previous studies of the visual cues used for the regulation of
headway have primarily been carried out in the context of driv-
ing and pedestrian behavior. Of these, car following behavior
(i.e., the adjustment of driving speed in response to an accel-
erating/decelerating lead vehicle) has been the focus of exten-
sive research and modeling [for a recent review see Andersen
and Sauer (2007)]. Many of the traditional car-following con-
trol inputs used to model traffic flow have assumed that head-
way maintenance is based on physical variables such as relative

distance, relative velocity, or relative acceleration [see (Brackstone
and McDonald, 1999)]. However, when modeling human con-
trollers, it is important to take into account that information
about distance and speed is derived from optical variables (e.g.,
Fajen, 2005). On this basis, it has been proposed that the visual
information used for the regulation of headway is primarily based
on the visual angle (θ) subtended by the lead object and/or its rate
of change (θ̇).

Lee (1976) proposed that visual information for car following
and braking to avoid collision could be derived from the ratio of
θ to θ̇ (i.e., what Lee termed tau, τ) and its time derivative (τ̇). He
demonstrated that, in principle, different types of collision and
recession courses that occur when following a vehicle (and hence
the required deceleration or acceleration that the driver should
perform) are specified by different criterion values of τ and τ̇. It
has been suggested that τ̇ is used as information for the initiation
and continuous control of braking (Yilmaz and Warren, 1995),
and as a variable for maintaining constant time-headway based on
time-to-collision (van Winsum and Heino, 1996). However, while
a large body of research has been devoted to test Lee’s hypoth-
esis that τ is used for interceptions [see (Hecht and Salvelsbergh,
2004)] and collision avoidance (e.g., Yilmaz and Warren, 1995), to
our knowledge there has not been any research on whether drivers
actually use τ and τ̇ as visual cues for controlling headway.
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Lee’s (1976) model of car following is problematic for a
number of reasons (e.g., see Kaiser and Phatak, 1993; Wann,
1996; Treslian, 1999; Kaiser and Johnson, 2004). Firstly, there are
instances during following events where τ and/or τ̇ either can not
be calculated or are required to be held at infinity (e.g., when
θ̇ = 0 or when θ̈ = 0). Secondly, it is questionable whether par-
ticipants are sensitive to optic acceleration as is assumed in the τ̇

approach (e.g., see Calderone and Kaiser, 1989; Werkhoven et al.,
1992; Dubrowski and Carnahan, 2002). Thirdly, the assumptions
constraining the τ approach restrict its utility in natural environ-
ments that do not conform to such constraints (e.g., Treslian,
1999). Finally, there is mounting evidence that judgements of
motion in depth are based on multiple sources of information
depending on the constraints of the task and/or the control
strategies being used (e.g., DeLucia et al., 2003; Flach et al., 2011).

An alternative model has assumed that regulation of head-
way is based solely on the θ̇ of the lead object. According to
this approach, actors attempt to match their speed to that of a
lead object by maintaining θ̇ = 0 (e.g., Lee and Jones, 1967; van
Winsum, 1999). For example, Rio and Warren (2011) found that
when pedestrians were asked to walk behind an moving object
in a virtual environment, they changed their walking speed on
the basis of θ̇, and were not influenced by manipulations of the
binocular disparity of the lead object. Lee and Jones (1967) found
that the accelerations and decelerations of drivers in naturalis-
tic traffic conditions could be modeled on the same control law.
However, Andersen and Sauer (2007) have noted that matching
speed to a lead object is not sufficient for car following, partic-
ularly when one is following closely behind a lead vehicle that
brakes suddenly. They extended the θ̇ model of car following
to also take into account the distance of the lead object on the
basis of the θ it subtends (θ is inversely proportional to the dis-
tance of a lead object). It was proposed that drivers’ change in
speed (i.e., acceleration, ẍ) is the result of the weighted com-
bination of the difference between the θ of the lead object and
a desired θ (θ′; which reflects the ideal following distance that
a driver attempts to maintain), and the θ̇ of the lead object,
such that

ẍ = j

(
1

θ
− 1

θ′

)
+ kθ̇. (1)

Andersen and Sauer (2007) validated their car-following model
by measuring drivers’ following behavior in both a driving-
simulator experiment and in an instrumented-vehicle study.
During the simulation trials, the speed of a lead vehicle was
continuously varied, and drivers were required to follow at a
constant distance. The results of their study found that the optic-
based model described in Equation 1 was a better predictor of
car-following behavior than an alternative model based on the
physical variables of distance and/or speed. The data from natu-
ralistic driving conditions confirmed these results. Other attempts
to model operators’ control functions when following a lead vehi-
cle with sinusoidal changes (disturbances) to velocity have found
that greater following distances led to less control effort and
more variation in time headway (Mulder et al., 2005). Mulder
et al. (2005) concluded that this was due to a decreased ability to

perceive changes in the speed of the lead vehicle at greater viewing
distances, presumably because θ̇ was less salient.

Given that participants in the car-following studies described
above were required to maintain a constant following distance
(and hence a constant θ), the question remains whether follow-
ing behavior without such constraints could be modeled similarly.
Claims that drivers might base their headway on attempts to
maintain a constant time headway rather than distance (e.g.,
Lee, 1976), suggests that a desired θ would vary as a function
of following speed (Andersen and Sauer, 2007). Andersen and
Sauer (2007) addressed this by proposing that the constant θ′ in
Equation 1 could be redefined as one that varies as a function of
the size (s) of the lead vehicle, the desired time headway (T), and
the speed of the follower (V):

θ′ = 2 · atan
( s

TV

)
(2)

However, to our knowledge, this extension of Andersen and
Sauer’s model has not been empirically tested.

How might one determine an appropriate time headway?
Gibson and Crooks (1938) proposed that both the perceived
speed of the follower and the dynamical properties of the system
(e.g., braking ability) are taken into account when performing a
following task. Indeed, research on manual control has shown
that control dynamics are a strong determinant of human per-
formance (e.g., McRuer and Jex, 1967). For example, Stanard
et al. (1996) used a collision-avoidance task to show that human
performance will adapt to the demands associated with chang-
ing dynamics. When participants in their study were required
to use an acceleration-control system, collision-avoidance actions
were initiated at a constant time-to-contact. However, when the
control response was proportional to position, participants initi-
ated avoidance actions at a constant distance-to-contact. It seems
plausible that the information used to control headway would be
similarly influenced by response dynamics, in particular as to how
these dynamics affect the acceleration capability of the system.

Information about own-speed is, in principle, available in the
optic array from both edge rate and GOFR (e.g., Denton, 1980;
Larish and Flach, 1990; Andersen et al., 1999; Fajen, 2005; Rock
and Harris, 2006; Flach et al., 2011). Edge rate is defined as the
number of edges or discontinuities that pass a reference point
per unit time (Andersen et al., 1999). For most driving situa-
tions, ground surface texture dominates the optical field. GOFR
is the rate of optical motion of texture elements in a given visual
direction, and it is proportional to ground speed and inversely
proportional to eye-height, such that:

GOFR = V

h
, (3)

where h is height above the ground measured in eye-heights.
Andersen et al. (1999) measured participants’ estimates of
whether a collision would occur when watching simulations of
decelerating self-motion toward a stationary lead object. They
found that participants’ were more likely to respond that a col-
lision would have occurred for trials that had higher texture
densities and therefore greater edge rates. Similarly, Rock and
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Harris (2006) found that both the presence of a ground plane and
denser ground-plane textures resulted in shorter braking reac-
tion times, more accurate estimation of initial braking forces, and
fewer crashes with the target. Fajen (2005) compared the effects
of edge rate and GOFR on participants’ ability to stop at a sta-
tionary lead object and found that GOFR had a larger influence
on participants’ braking performance than edge rate.

The control model resulting from incorporating Equation 2
is also dependent on participants having knowledge about the
size of the lead object. It is therefore possible that the selec-
tion of time headway is influenced by the actual size of the lead
object such that, if actual size is not known (or specified), smaller
objects could be followed at closer headways than larger objects.
Indeed, both time-to-collision judgements and active braking for
approaching objects of ambiguous sizes have been shown to be
underestimated for smaller objects relative to larger ones (e.g.,
DeLucia, 1991, 2008; Andersen et al., 1999; Smith et al., 2001;
Hosking and Crassini, 2011). Moreover, López-Moliner et al.
(2007) have shown that the initiation of interceptive actions is
critically dependent on prior knowledge regarding the size of
the approaching object. Hosking and Crassini found that prior
knowledge is important when judging the actual time-to-collision
of a single approaching objects (Hosking and Crassini, 2010), but
not when the judging relative TTC of two objects (Hosking and
Crassini, 2011). We were interested to see if a similar effect of size
occurred for headway selection such that smaller lead objects are
followed more closely than larger lead objects.

In summary, research has shown that θ and θ̇ are important
variables for timing interceptions, collision avoidance, braking,
and the regulation of headway. However, previous investigations
of headway maintenance have required participants to maintain
a fixed following distance and have assumed that participants
attempt to maintain the position of the lead object such that it
subtends a fixed visual angle. As discussed above, other visual cues
may be important for headway maintenance, particularly when
participants are not required to hold a constant θ, but rather are
allowed to vary their following distance over time. Furthermore,
none of the previous research on headway maintenance has inves-
tigated the influence of ground texture, and given the importance
of GOFR for judging speed and braking to avoid collision, it
seems likely that ground texture might also influence headway
maintenance.

In the following experiment, we asked participants to use a joy-
stick to follow a computer simulated lead object. On each trial,
the size of the lead object, its average velocity, and the presence
of ground texture were manipulated. Participants were allowed
to follow the lead object at any distance within a broadly defined
minimum and maximum. It was hypothesized that (1) smaller
objects will be followed at shorter following distances than larger
objects, and (2) longer following distances will occur in the
faster following speed conditions, particularly when ground speed
information is saliently specified by the presence of a textured
ground plane.

In addition to determining how the mean and standard devi-
ation of following distances might vary as a function of object
size, ground texture, and speed, we also modeled the joystick-
controlled acceleration and velocity responses throughout each

trial. Time-series analyzes were carried out in order to deter-
mine the control variables necessary for continuous adjustment
of headway. In essence, we were comparing two alternate explana-
tions for how humans maintain headway relative to lead objects,
each derived from the simple relationship between following
distance (D), following speed (V) and time headway (T); that is:

D = T · V (4)

In one model, it is assumed that D is kept constant (by maintain-
ing a constant θ) and that T is allowed to vary (Equation 1). We
compared this with an alternative model that assumes that peo-
ple attempt to hold a constant T, and that D (i.e., the θ of the
lead object) is free to vary as a function of V (see Equation 2).
If T is an important determinant of user control when following
lead objects, then Equation 2 shows that it would be necessary
for participants to have access to information about own-speed.
Therefore, Equation 2 should provide a better fit to the data when
ground texture (and therefore GOFR) is available in the displays.

2. MATERIALS AND METHODS
2.1. PARTICIPANTS
Participants were 12 volunteers recruited from a NASA Ames par-
ticipant database and students from San Jose University. There
were a total of seven females and five males with a mean age of
27.3 years (SD = 8.8). Participants were required to have held a
drivers licence for a minimum of two years. All had normal or
corrected-to-normal visual acuity.

2.2. APPARATUS AND STIMULI
Data collection took place in a quiet, dimly lit laboratory at
the Human Systems Integration Division, NASA Ames. The
main source of ambient light came from the computer moni-
tor. Participants viewed computer generated displays with their
head positioned in a forehead and chin rest located 83.4 cm from
the computer monitor. At this viewing distance, the monitor
subtended a visual angle of 29.5◦ vertically and 52.2◦ horizon-
tally. During data collection, participants viewed the displays
monocularly with an eye patch covering their non-dominant
eye. Displays were generated, display presentation was controlled,
and participants’ responses were collected, using a Colfax FX700
workstation with a NVIDIA Quadro 4000 graphics card. The
workstation drove a 60 cm Acer monitor with a resolution of
1980 pixels (vertically) by 1080 (horizontally), and a refresh rate
of 120 Hz.

Displays consisted of a green-colored ground and a blue-
colored sky, with a spherical object that traveled away from the
participants’ viewpoint at a fixed elevation and azimuth that cor-
responded to the center of the computer monitor screen. The
smaller object had a diameter of 120 cm and was textured with
a green-and-white checker pattern; the larger object had a diam-
eter of 240 cm and was textured with a red-and-white checker
pattern (see Figure 1). The objects were displayed in two differ-
ent ground texture conditions. In the no-texture condition, the
ground plane appeared as a uniform green with no surface tex-
ture. In the texture condition, a green textured image was mapped
onto the ground plane.
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FIGURE 1 | Screen shots taken from the first frame in the displays at the beginning of a trial. The left hand panel shows the smaller-sized (green-and-white
checkered) lead object with no ground texture; the right hand panel shows the larger-sized (red-and-white checkered) lead object with ground texture.

The speed at which the lead object traveled was determined
by the sum of a constant, undisturbed speed and a pertur-
bation speed, as defined below. In both texture conditions, a
single (smaller or larger) object appeared to travel away from
the participants’ viewing point in one of two speed conditions.
In the faster speed condition, the undisturbed speed of the lead
object was 18 eye-heights/s (28.8 m/s−1); in the slower speed
condition the undisturbed speed of the lead object was 9 eye-
heights/s (14.4 m/s−1). An eye-height was defined as 1.6 m above
the ground.

The speed of the lead object was perturbed by the sum of
12 harmonically independent sinusoids. The input perturbation
(I) to the speed of the lead object was defined as:

I(t) = D
12∑

i = 1

aiωi cos(ωit + ρi),

where ωi = 2πki
60 rad/s. Table 1 shows the 12 values of a and k used

to calculate ω. D was set to 0.7 m and the phase offset of each sine
component (ρi) was randomly varied from −π to π.

The perturbation on the speed of the lead object made
it appear that it was randomly accelerating and decelerating
throughout the trial (see Figure 2). Participants used a joystick
(B&G systems, F3) to follow the lead object by controlling either
(1) the speed with which their view point (camera) translated in
the median plane (i.e., velocity-control), or (2) the acceleration
of their viewpoint (i.e., acceleration-control). The position of the
joystick was sampled at 120 Hz.

2.3. PROCEDURE AND EXPERIMENTAL DESIGN
Each trial began with the lead object stationary at a distance of
six eye-heights (9.6 m) from participants’ view point. When the
participant initiated a trial by pulling the trigger on the joystick,
the lead object began translating away from the view point. The
magnitude of the velocity of the lead object was ramped up over
the first 10 s of a trial by linearly scaling up the two speed compo-
nents (i.e., speed condition and input perturbation) of that trial.
Each trial lasted a total of 70 s. Participants were instructed to fol-
low the lead object at what they determined to be a safe headway,
with the constraints that they were not permitted to be so close to
the lead object that its screen size was larger than the size of the
monitor (i.e., a collision), nor so far away that headway exceeded
25 eye-heights (i.e., 40 m, whereupon another object would cut
across the participant’s path and occlude the participant’s view of

Table 1 | Magnitudes and frequencies used for the input

perturbations to the speed of the lead object.

i ai ki ωi rad/s

1 1.0 5 0.52

2 1.0 9 0.94

3 1.0 13 1.36

4 1.0 19 1.99

5 1.0 27 2.83

6 1.0 41 4.29

7 0.1 53 5.55

8 0.1 73 7.64

9 0.1 103 10.79

10 0.1 115 12.04

11 0.1 139 14.56

12 0.1 157 16.44

the lead-object). If a trial was terminated due to constraint viola-
tion, then it was repeated later in the experiment. Such constraint
violations were only found to occur in the practice/familiarisation
sessions, which are described below.

The experiment used a 2 (object size) × 2 (lead object
speed) × 2 (ground texture) × 2 (control dynamics) within-
subjects factorial design. There was one familiarisation/practice
session and one experimental session for each of the control con-
ditions (velocity and acceleration). The familiarization and prac-
tice sessions were used to ensure that participants were familiar
with the task and the joystick dynamics. Participants in the famil-
iarity session were encouraged to explore various headways and
calibrate themselves to those headways that were either too close
or too far from the lead object. Participants were then required to
complete each trial of the practice session within the constraints
of the task (see above) in order to proceed to the next trial. There
was a 30 s break between trials. At the end of the practice session,
participants had a short break and then completed the experi-
mental session. The practice and experimental sessions were then
repeated for the other control condition. Each participant was
randomly assigned to complete either the velocity-control con-
dition first followed by acceleration-control, or vice versa. All
together the experiment took approximately 2.0 h to complete.

2.4. DATA ANALYSES
Time series of the speed perturbation to the lead object, joy-
stick control output, and distance headway, were recorded at
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FIGURE 2 | Example of the perturbed speed of the lead-object as a function of time.

120 Hz for each trial and for each participant. We analysed the
data beginning 10 s after the start of the trial to ensure that
any initial transient responses were skipped, and to exclude the
initial period of lead-object acceleration. Two performance met-
rics were calculated from the remaining time-series data: (1)
mean distance headway; and (2) the standard deviation (root
mean squared) of distance headway. In order to examine partic-
ipants’ continuous control responses, we performed time-series
analyses to determine how well the participants’ accelerations
could be modeled over time. The time series analyses were ini-
tially carried out by fitting the two alternate models to the data;
that is:

1. An adaptation of Andersen and Sauer’s (2007) Equation 1
where the θ′ of the lead object was assumed to be based on
a constant θ, which we defined as the mean θ recorded over
each trial (hereafter referred to as the θDμ model); and

2. An adaptation of Andersen and Sauer’s model that included
Equation 2 to take into account the possibility that the θ′ of the
lead object was assumed to be based on a constant time head-
way, which we defined as the average time headway recorded
over each trial (hereafter referred to as the θTμ

model).

3. RESULTS
3.1. PERFORMANCE METRICS
Separate three-way repeated-measures ANOVAs were performed
on the velocity (1st order) and acceleration (2nd order) control
data for each of the performance metrics described above.

3.1.1. Analyses of velocity-control data
A repeated-measures ANOVA of mean distance headways in the
velocity-control conditions revealed significant main effects for
object size [F(1,11) = 70.71, p < 0.0001] and lead object aver-
age speed [F(1,11) = 15.27, p < 0.01]. There were also significant
two-way interactions between object size and ground texture
[F(1,11) = 5.99, p < 0.05] and between ground texture and lead
object average speed [F(1,11) = 5.31, p < 0.05]. Figure 3A shows
that when ground texture was not present in the displays, mean

distance headways were not significantly different for faster or
slower lead object speeds. However, when the ground plane
was textured, distance headways were significantly longer when
the lead object was translating at a faster mean speed. As can
be seen in Figure 3B, the larger lead objects were followed at
longer distance headways than the smaller objects. Furthermore,
there was a significant increase in distance headways for the
larger lead object when ground texture was present in the dis-
plays. This latter effect did not occur when following the smaller
object.

Root mean squared (RMS) data were calculated from the devi-
ation of each distance headway data point (sampled at 120 Hz)
from the mean distance headway in each of the experimen-
tal conditions. An ANOVA of RMS headway in the velocity-
control conditions found significant main effects for object
size [F(1,11) = 21.33, p < 0.001] and lead object average speed
[F(1,11) = 5.21, p < 0.05]. The interactions between object size
and the average speed of the lead object [F(1,11) = 8.9, p < 0.05]
and between the lead object average speed and the presence
of ground texture [F(1,11) = 5.23, p < 0.05] were also signifi-
cant. Figure 4A shows that when a textured ground plane was
present in the displays, RMS distance headways were significantly
increased when the lead object had a faster average speed rel-
ative to when the lead object was translating at slower mean
speeds. Figure 4B shows that RMS distance headways when fol-
lowing smaller objects were reduced in the slower speed con-
ditions. Furthermore, a significant reduction in RMS distance
headways for the smaller object relative to the larger object
only occurred when the lead object was translating at slower
mean speeds.

3.1.2. Analyses of acceleration-control data
A repeated-measures ANOVA of mean distance headways in the
acceleration-control conditions revealed significant main effects
for object size [F(1,11) = 72.64, p < 0.0001] and lead object aver-
age speed [F(1,11) = 9.41, p < 0.01]. There were also significant
two-way interactions between the size of the lead object and
its average speed [F(1,11) = 6.02, p < 0.05] and between ground
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FIGURE 3 | (A) Mean distance headways in the velocity-control condition
as a function of the speed of the lead object and the presence of
ground texture. (B) Mean distance headways in the velocity-control
condition as a function of the size of the lead object and the presence
of ground texture. (C) Mean distance headways in the

acceleration-control condition as a function of the speed of the lead
object and the presence of ground texture. (D) Mean distance
headways in the acceleration-control condition as a function of the size
of the lead object and lead object speed. Error bars indicate one
standard error of the mean.

texture and lead object average speed [F(1,11) = 16.34, p <

0.01]. Consistent with the analyses of the velocity-control data,
Figure 3C shows that when the ground plane was textured, mean
distance headways were significantly longer when the lead object
was traveling at faster speeds. Furthermore, Figure 3D shows that
the larger lead objects were followed at longer distance headways
than the smaller objects, and that there was a significant increase
in distance headways when following the larger lead object at
faster speeds.

An ANOVA of RMS distance headways in the acceleration-
control conditions found significant main effects for object
size [F(1,11) = 8.25, p < 0.01] and lead object average speed
[F(1,11) = 6.59, p < 0.05]. There was also a significant interac-
tion between object size and ground texture [F(1,11) = 6.51, p <

0.05]. Figure 4C shows that mean RMS distance headways were
significantly reduced for smaller objects relative to larger objects
in the textured ground plane condition. Furthermore, RMS dis-
tance headways for smaller objects decreased when ground tex-
ture was present, whereas RMS distance headways for larger
objects did not vary significantly.

3.2. TIME SERIES MODELING
Initial modeling was used to fit least squares regressions to the
time-series data for each trial and for each participant. The
regressions were used to determine the coefficients for each

predictor variable of each of the θDμ and θTμ
models described

in Equations 1, 2 respectively, and also to determine the over-
all proportion of variance explained by each model. Regressions
were carried out for both grouped data (i.e., data averaged
over the 12 participants) and for each individual. For all anal-
yses, the errors in each model were checked for normality and
found to be Gaussian. In order to account for lag in user
responses and the potential for different lags for each of the
predictor variables, we first calculated the optimal lag between
the predictor variables and the joystick response for each trial.
Using cross-correlations between the predictor variables and the
response, lags between 0 and 3 s were tested and the optimum
lag for each predictor variable was then used in the model
fitting.

To measure the predictive value of each model in describing
participants’ joystick control data, the variance of the statistically
independent standardized prediction and error components of
the model were calculated. The proportion of variance explained
by each model (R2) for the group data are shown in Table 2.
In order to compare models, we calculated Bayes Information
Criterion (BIC) Scores (see Table 3) and Bayes factors (B) (see
Table 4) for each model. BIC scores were calculated using reduced
degrees of freedom to account for dependent samples (see Davey
et al., 2013), resulting in more conservative estimates. The Bayes
factor provided two measures of model performance: First, it
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FIGURE 4 | (A) Mean RMS of distance headways in the velocity-control
condition as a function of the presence of ground texture and the
speed of the lead object. (B) Mean RMS of distance headways in the
velocity-control condition as a function of the size of the lead object

and its speed. (C) Mean RMS of distance headways in the
acceleration-control condition as a function of the size of the lead
object and the presence of ground texture. Error bars show one
standard error of the mean.

Table 2 | Model fits (R2) for the θDμ
, θTμ

, θDMA
, and θTMA

models for both the acceleration-control and velocity-control conditions as a function

of the size of the lead object, its speed, and the presence of ground texture.

Joystick control Model Small Large

Slow Fast Slow Fast

No texture Texture No texture Texture No texture Texture No texture Texture

Acceleration j
(

1
θ

− 1
θDμ

)
+ k θ̇ 0.70 0.75 0.72 0.71 0.66 0.63 0.64 0.69

s
(

1
θ

− 1
θTμ

)
+ tθ̇ 0.66 0.66 0.66 0.64 0.66 0.60 0.58 0.65

m
(
θ − θDMA

) + nθ̇ 0.88 0.87 0.88 0.88 0.89 0.86 0.81 0.89

f
(
θ − θTMA

) + gθ̇ 0.77 0.83 0.79 0.82 0.78 0.79 0.72 0.80

m
(
θ − θDMA

) + nθ̇ + pV 0.89 0.88 0.89 0.89 0.90 0.87 0.82 0.90

f
(
θ − θTMA

) + gθ̇ + qV 0.83 0.85 0.83 0.86 0.83 0.82 0.79 0.85

Velocity j
(

1
θ

− 1
θDμ

)
+ k θ̇ 0.58 0.58 0.56 0.49 0.60 0.51 0.49 0.46

s
(

1
θ

− 1
θTμ

)
+ tθ̇ 0.50 0.50 0.55 0.49 0.51 0.42 0.44 0.45

m
(
θ − θDMA

) + nθ̇ 0.62 0.62 0.65 0.56 0.60 0.51 0.53 0.49

f
(
θ − θTMA

) + gθ̇ 0.52 0.52 0.55 0.49 0.57 0.48 0.45 0.45

Also included are the R2 values obtained when own-velocity (V ) was added as an additional parameter to the moving average models for the acceleration-control

conditions only (see text for details).
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Table 3 | BIC values1 for the θDμ
, θTμ

, θDMA
, and θTMA

models for both the acceleration-control and velocity-control conditions as a function of

the size of the lead object, its speed, and the presence of ground texture.

Joystick control Model Small Large

Slow Fast Slow Fast

No texture Texture No texture Texture No texture Texture No texture Texture

Acceleration j
(

1
θ

− 1
θDμ

)
+ k θ̇ −0.5656 −0.6531 −0.5987 −0.5818 −0.5055 −0.4649 −0.4780 −0.5498

s
(

1
θ

− 1
θTμ

)
+ tθ̇ −0.5055 −0.5055 −0.5055 −0.4780 −0.5055 −0.4275 −0.4041 −0.4916

m
(
θ − θDMA

) + nθ̇ −1.0054 −0.9670 −1.0054 −1.0054 −1.0471 −0.9314 −0.7848 −1.0471

f
(
θ − θTMA

) + gθ̇ −0.6931 −0.8382 −0.7368 −0.8108 −0.7144 −0.7368 −0.5987 −0.7602

m
(
θ − θDMA

) + nθ̇ + pV −1.0410 −0.9992 −1.0410 −1.0410 −1.0867 −0.9608 −0.8046 −1.0867

f
(
θ − θTMA

) + gθ̇ + qV −0.8320 −0.8921 −0.8320 −0.9252 −0.8348 −0.8046 −0.7306 −0.8921

Velocity j
(

1
θ

− 1
θDμ

)
+ k θ̇ −0.4041 −0.4041 −0.3817 −0.3109 −0.4275 −0.3301 −0.3109 −0.2834

s
(

1
θ

− 1
θTμ

)
+ tθ̇ −0.3204 −0.3204 −0.3709 −0.3109 −0.3301 −0.2491 −0.2660 −0.2746

m
(
θ − θDMA

) + nθ̇ −0.4521 −0.4521 −0.4916 −0.3817 −0.4275 −0.3301 −0.3501 −0.3109

f
(
θ − θTMA

) + gθ̇ −0.3400 −0.3400 −0.3709 −0.3109 −0.3928 −0.3015 −0.2746 −0.2746

1Note: BIC values are 1.0e + 03.

Also included are the BIC values obtained when own-velocity (V ) was added as an additional parameter to the moving average models for the acceleration-control

conditions only (see text for details).

Table 4 | Bayes Factor scores (B) for the θDμ
, θTμ

, θDMA
, and θTMA

models for both the acceleration-control and velocity-control conditions as a

function of the size of the lead object, its speed, and the presence of ground texture.

Joystick control Model Small Large

Slow Fast Slow Fast

No texture Texture No texture Texture No texture Texture No texture Texture

Acceleration j
(

1
θ

− 1
θDμ

)
+ k θ̇ 1.28 1.85 1.47 1.54 1.00 1.17 1.36 1.27

s
(

1
θ

− 1
θTμ

)
+ tθ̇ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

m
(
θ − θDMA

) + nθ̇ 8.03 6.84 8.03 9.00 9.55 8.16 4.89 10,12

f
(
θ − θTMA

) + gθ̇ 2.19 4.00 2.62 4.00 2.39 3.63 2.25 3.06

m
(
θ − θDMA

) + nθ̇ 3.67 1.71 3.06 2.25 4.00 2.25 2.17 3.30

f
(
θ − θTMA

) + gθ̇ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

m
(
θ − θDMA

) + nθ̇ + pV 1.15 1.14 1.16 1.16 1.18 1.13 1.09 1.18

f
(
θ − θTMA

) + gθ̇ + qV 1.78 1.25 1.49 1.61 1.65 1.33 1.73 1.73

Velocity j
(

1
θ

− 1
θDμ

)
+ k θ̇ 1.19 1.19 1.02 1.00 1.23 1.18 1.10 1.02

s
(

1
θ

− 1
θTμ

)
+ tθ̇ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

m
(
θ − θDMA

) + nθ̇ 1.32 1.32 1.29 1.16 1.23 1.18 1.19 1.08

f
(
θ − θTMA

) + gθ̇ 1.04 1.04 1.00 1.00 1.14 1.12 1.02 1.00

m
(
θ − θDMA

) + nθ̇ 1.26 1.26 1.29 1.16 1.08 1.06 1.17 1.07

f
(
θ − θTMA

) + gθ̇ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Note: Bayes factors have been produced by comparing each model against the model with the lowest BIC score (i.e., the worst performing model). Therefore, the

model with a B = 1 is the model being compared against.

Also included are the B values obtained when own-velocity (V ) was added as an additional parameter to the moving average models for the acceleration-control

conditions only (see text for details).

provides a measure of which model is the best predictor of
the data. Second, it provides a measure of the strength of evi-
dence for a model relative to other models (see Lewandowsky
and Farrell, 2011); a Bayes factor in the range of 3–10 provides

moderate support for a model, whereas a Bayes factor greater
than 10 indicates strong evidence for that model.

Sample fits of two of the models to group acceleration data
are shown in Figure 5A. The results of the initial model fitting
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FIGURE 5 | Example model fit to group averaged acceleration data for a single trial. (A) Initial model fitting comparing θDμ
and θTμ

models. (B) Model fits
for comparison of optimized θDMA and θTMA models.

(see Table 2) found that the θDμ model explained 63–75% of the
variance in acceleration-control data, and 46-60% of the vari-
ance in the velocity-control data. For the θTμ

model, 58–66 % of
the variance in the acceleration-control data and 42-55% of the
variance in the velocity-control data was accounted for. However,
while the R2 values (Table 2) and the BIC scores (see Table 3)
both show an increase in the predictive power of the θDμ model
relative to the θTμ

model, the Bayes Factor Scores revealed that
there was only weak evidence that the θDμ model provided a
better fit.

A potential limitation to the results thus far is that compar-
isons between models from which θ′ is derived (i.e., from either
a constant D or a constant T) are problematic because of the dif-
fering statistical attributes of each derivation. That is, when θ′ is
derived from a constant T, it includes all frequencies in the user
control data. However, when θ′ is derived from a constant D,

it contains no such frequencies at all. When participants are
attempting to maintain headway, it seems likely that there would
be some error in their ability to maintain θ′. Such error in their
θ′ would result in θ′ having temporal dynamics within each trial
that are independent of whether participants were relying on a
constant D or constant T. Moreover, such variations in θ′ due to
observer error may bias the model in favour of one that assumes
that θ′ varies over time (i.e., one in which θ′ is based on a constant
T). In order to control for this issue, we calculated θ′ from a mov-
ing average of either D or T. The moving average was essentially
a low-pass filter which we calculated by determining an opti-
mal window size such that θ′ contained the optimal frequencies
when based on either a constant D or a constant T, thus ensuring
that results of the time-series analyses were not biased towards
a particular model. Using a brute force approach, the optimum
window sizes were found to be 0.25 s for constant T and 3.5 s for
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constant D. Such window sizes provide some evidence that the
participants were attempting to hold θ constant over a relatively
long period of time and therefore indicate some support for them
basing θ′ on a constant D. However, further analysis is warranted
and we next compared the optimised models based on moving
averages of either θDμ or θTμ

(hereafter referred to as the θDMA and
θTMA models, respectively) to the original θDμ and θTμ

models.
Inspection of Table 2 shows both of the optimized models

based on moving averages had larger R2 values than their origi-
nal counter-part. The θDMA model accounted for 81–89% of the
variance in acceleration-control data; the θTMA model accounted
for 72–83% of the variance. Example fits of two of the models
to group acceleration data are shown in Figure 5B. A compar-
ison of all models in the acceleration-control condition, using
the BIC scores and Bayes Factor scores shown in Tables 3 and 4
respectively, show that the θDMA model was the best perform-
ing of the four, with Bayes Factor scores in many conditions
approaching 10 (and in one case exceeding 10). Table 4 shows
that the θTMA model also performed significantly better than
the base model, with moderate evidence for the strength of this
model when a textured ground plane was present in the dis-
play. Table 4 also shows that when the θDMA and θTMA models
are directly compared, the former provided a significantly bet-
ter fit to the data when there was no texture available in the
display. When texture was present, there was no significant differ-
ence between the two models. For the velocity-control conditions,
Table 2 shows that 49–65% of the variance could be explained by
the θDMA model, and 45–57% the variance could be explained
by the θTMA model. Inspection of Tables 3 and 4 both show
that calculating θ′ from the moving averages of either D or TH
did not significantly improve their fit to the velocity data over
and above that already shown for the original models. Bayes
Factors derived from a direct comparison between the θDMA and
θTMA models showed no significant difference in their fit to the
velocity-control data.

In order to complete a final test of the role of GOFR, we
compared the θDMA and θTMA models when the participants’ own-
speed (V) was included as an additional parameter in the model;
that is,

ẍ = a(θ − θ′) + bθ̇ + cV . (5)

This comparison was made only for the acceleration-control data
because the perfect correlation between V and velocity-control
excluded it from further analysis. If perception of velocity is
an important determinant of headway maintenance, it was pre-
dicted that the presence of ground texture, and hence GOFR,
would improve this model as a predictor of following behavior.
If this is the case, then the possible cost of including an addi-
tional degree of freedom in the model described in Equation 5
may be offset by its ability to better predict following behavior.
The BIC method provides a weighted punishment for increas-
ing model complexity and therefore has a greater preference for
the simpler model. Because of this punishment term, the mod-
els with the extra parameter will be treated more conservatively
in terms of their likelihood calculations. As would be expected,
the inclusion of V as an additional parameter resulted in slightly

better fits to the acceleration-control data (see the R2 values in
Table 2), in particular for the θTMA model. However, as can be
seen in Table 4, there was little evidence that the addition of the
V parameter significantly improved the fit of either the θDMA or
θTMA models.

We also fit these models to individual data in both the
acceleration-control and velocity-control conditions. A represen-
tative example of the model fitting in the acceleration-control
conditions is shown in Figures 6A,B. As can be seen in Figure 6,
individual response data were noisier than the group averaged
data. However, while the individual data did not explain as much
of the variance as that found for the group data, Table 5 shows
that the pattern of results for individual data were similar to
those found for the group data in both the velocity-control and
acceleration-control conditions.

The time-series data were standardized to allow for compar-
isons of the obtained coefficients for each of the parameters
in the θDMA and θTMA models. The mean standardized coeffi-
cients are shown in Table 6 collapsed across all conditions. As
can be seen in Table 6, the weightings on control variables var-
ied considerably as a function of the control dynamic of the
task. For velocity-control, both the θDMA and θTMA models had
larger weightings on θ̇ and smaller weightings on θ − θ′. For
acceleration-control, the θTMA model had an relatively even dis-
tribution of weightings on θ̇ and θ − θ′. In contrast, the θDMA

model had a larger weighting on θ − θ′, and a smaller weighting
on θ̇.

4. DISCUSSION
Taken together, the results of the performance metrics analyses
indicate that participants’ choice of headway can be influenced by
the size of the lead object, its speed, and the presence of ground
texture. Given that GOFR influences passive braking judgements
(Andersen et al., 1999) and active collision avoidance (Fajen,
2005; Rock and Harris, 2006), it is sensible that the presence of
ground texture resulted in longer mean distance headways when
traveling at faster speeds in our study. This effect of ground tex-
ture on mean following distances was significant in both the
velocity-control and acceleration-control conditions. The find-
ing that the presence of ground texture affected participants’
choice of headway suggests that in addition to the contribution
of θ and its derivatives, GOFR is an important source of infor-
mation for headway maintenance. Ground texture also had an
effect on the variance of participants’ distance headways. In the
velocity-control conditions, there was a significant difference in
headway variance between faster and slower following speeds
only when ground texture was present. Similarly, there was less
variance in following distance for smaller lead objects than for
larger objects in acceleration-control conditions when ground
texture was present. The increase in following distance variance
in the textured ground plane conditions suggests that partici-
pants were using GOFR as an additional source of information
for controlling the relative distance between themselves and the
lead object. GOFR would have allowed participants to distinguish
whether the changing θ of a lead object was due to changing
own-speed or changing lead-object speed. It is therefore possi-
ble that when GOFR is available participants are able to use a less
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FIGURE 6 | Example model fit to individual acceleration-control data for a single trial. (A) Initial model fitting comparing θDμ
and θTμ

models. (B) Model
fits for comparison of optimized θDMA and θTMA models.

Table 5 | Proportion of variance explained (R2) by each model for individual response data in the velocity-control and acceleration-control

conditions.

Joystick control Model s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 x̄

Acceleration m
(
θ − θDMA

) + nθ̇ 0.72 0.66 0.64 0.60 0.59 0.74 0.80 0.66 0.70 0.70 0.80 0.67 0.70

f
(
θ − θTMA

) + gθ̇ 0.66 0.62 0.61 0.49 0.56 0.68 0.72 0.60 0.66 0.63 0.73 0.60 0.63

Velocity m
(
θ − θDMA

) + nθ̇ 0.33 0.37 0.32 0.34 0.30 0.36 0.26 0.30 0.36 0.37 0.45 0.34 0.34

f
(
θ − θTMA

) + gθ̇ 0.37 0.37 0.37 0.33 0.30 0.36 0.24 0.20 0.24 0.28 0.34 0.32 0.31

Note: sn = participant number; x̄ = R2 averaged across participants.

conservative threshold for responding to changes in θ, and there-
fore ignore some changes in θ that presumably would not result
in a collision.

With respect to the time-series modeling, the addition of
information about own-speed via a textured ground plane
in the acceleration-control conditions resulted in significant

improvements to the predictive power of the θTMA model. This
latter finding was expected given that the time-headway model
is dependent on V . For the better fitting θDMA model, we found
that the presence of ground texture did not result in any improve-
ments to the amount of variance explained in either acceleration-
control or velocity-control conditions, even when own-speed
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was included as an additional parameter. Overall, the negligible
changes to the predictive power of the models on the basis of the
availability of own-speed information demonstrates that partici-
pants’ following behavior can be modeled more parsimoniously
on the basis of visual angles alone or in combination with GOFR.
Furthermore, when considering the combined results of the per-
formance measures and the time-series modeling, it seems that
if these models are reliably describing human perceptual-action
systems then they capture nicely the proposal that the control
variables used for controlling one’s actions vary depending on
the information available (e.g., see DeLucia et al., 2003; DeLucia,
2008).

Consistent with previous reports of an effect of size when judg-
ing motion in depth (e.g., Andersen et al., 1999; Smith et al., 2001;

Table 6 | Standardized coefficients for predictor variables of models

for group performance as a function of ground texture.

Joystick control Model Parameters

θ − θ′ θ̇

Acceleration m
(
θ − θDMA

) + nθ̇ −0.77 −0.20

f
(
θ − θTMA

) + gθ̇ −0.42 −0.57

Velocity m
(
θ − θDMA

) + nθ̇ −0.22 −0.92

f
(
θ − θTMA

) + gθ̇ 0.16 −0.86

DeLucia, 2008; Hosking and Crassini, 2011), a strong and consis-
tent finding in this study was that participants followed smaller
lead objects at a closer distance than larger lead objects. The
results also found that following distances increased when trav-
elling at faster speeds only for the larger objects and only when
ground texture was present, further demonstrating that smaller
lead objects may be responded to inappropriately. One possible
explanation for these size-dependent biases can be derived from
inspection of Figure 7. Figure 7A shows the average visual angles
of the smaller and larger objects in both the velocity-control and
acceleration-control conditions. These visual angles were calcu-
lated as a function of the average distance headway of the smaller
and larger lead objects collapsed across all trials, and show that
the mean θ of the larger object was 2–3◦ larger than that of the
smaller object. However, inspection of Figure 7B shows that at
the average distance headways found for the smaller and larger
lead objects, the θ̇ of the lead objects were approximately equal in
the acceleration control condition, and larger for the small object
in the velocity-control conditions. This means that for an equiv-
alent decrease in distance headway, relatively larger increases in
the rates of change of θ̇ occurred for the smaller object. Given the
importance of θ̇ for timed interceptions and collision avoidance
(e.g., Smith et al., 2001; Hosking and Crassini, 2011), it seems
plausible that increased salience of θ̇ for the smaller objects may
have resulted in θ̇ begin given greater weighting than the GOFR
in this case.

0

0
5

10
15

20

Distance (m)

V
is

ua
l a

ng
le

 (d
eg

)

0 10              20              30              4010              20              30              40

0.
0

0.
5

1.
0

1.
5

Distance (m)

V
is

ua
l a

ng
le

 ra
te

 (d
eg

/m
)

A B

FIGURE 7 | (A) Visual angle (in degrees) of the smaller (solid line) and
larger (dashed line) lead objects as a function of their distance from
the viewpoint. (B) Rate of change of visual angle (in degrees/m) of the
same smaller and larger lead objects as a function of their distance

from the viewpoint. Mean visual angles (and visual angle rates) of the
smaller and larger objects are shown for the velocity-control condition
(filled circles) and acceleration-control condition (filled diamonds). See
text for details.
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In line with the previous findings that acceleration-control is a
more difficult task than velocity-control (McRuer and Jex, 1967),
the magnitude of the variance in distance headway was larger
for acceleration-control than for velocity-control. Furthermore,
there were instances where some main effects and interactions
noted in the velocity control conditions were not present in the
acceleration-control conditions, and vice-versa. It is possible that
these inconsistencies were due to the differences in the level of
difficulty for the two types of control dynamics. Alternatively,
it may be that participants use different sources of information,
or apply different weightings to control variables, depending on
the control dynamic. This latter explanation is supported in the
time-series modelling, which showed that acceleration-control
had relatively large weightings on θ′, whereas velocity-control
seemed to put more weight on θ̇,.

An intriguing finding was the significant improvements to
the model fits when an optimised moving-average was used. We
propose that because there were no cues available in the dis-
plays (such as a reference size icon in a heads-up style display)
providing a reference for θ′, participants’ desired θ is subject to
fluctuations over time. This is in contrast to previous models that
have assumed that participants use a consistent desired θ, or a
varying desired θ based on a constant-time headway. Our pro-
posal is supported by the results which suggest that variations in
participants’ following distance are not due to them attempting
to maintain a constant time-headway, but rather, are the result
of their desired θ continuously changing, or drifting, from its
original state according to what has been the average θ over a
short period of time. It would be premature, however, to dis-
count time-headway models of following behavior on the basis of
the current results. This is because our displays did not provide
any information that could have allowed participants to deter-
mine the actual sizes of the objects. Given that knowledge of
object size is a variable of importance when determining headway

(from Equation 2), the use of ambiguously sized objects in our
experiments was likely to reduce the likelihood that the θT model
would provide the best prediction of following behavior. It would
be worth conducting a similar experiment in which participants
were allowed to learn the actual sizes of the lead objects via either
passive or active exploration of objects with the same sizes as those
being simulated.

Perhaps most importantly, we were able to report good fits
to participants’ acceleration-control data, and reasonable fits to
the velocity-control data even though participants were free to
chose any headway at any time during the trial. These results are
important because the time-series modeling suggests that when
operators’ headway is allowed to vary, they are best described
as attempting to match the magnitude of θ to value that is
not constant, but rather, varies over time. We also showed that
participants tended to vary their mean headway depending on
the speed that they were traveling. Taken together, these results
demonstrate that while information about own-speed is used
by controllers to set the desired headway to a lead object, the
continuous regulation of headway is primarily influenced by
the visual angle of the lead object and/or its rate of change,
depending on the control dynamics of the system. Such a find-
ing is consistent with previous reports that flexible strategies
are used for selection of θ and/or θ̇ as information for inter-
cepting objects (Lopez-Moliner and Keil, 2012), and reflects an
optimal control criterion (Jagacinski and Flach, 2003) such that
differential weightings are applied to different sources of infor-
mation depending on the plant dynamics. In conclusion, our
ability to navigate through a three dimensional world is a com-
plex task relying on multiple sources of information. As in other
judgements of motion in depth, the information used for con-
trolling headway to other objects in the environment seems to be
dependent on the constraints of the task and different strategies
of control.
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