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Interception requires precise estimation of time-to-contact (TTC) information.
A long-standing view posits that all relevant information for extracting TTC is available in
the angular variables, which result from the projection of distal objects onto the retina.
The different timing models rooted in this tradition have consequently relied on combining
visual angle and its rate of expansion in different ways with tau being the most well-known
solution for TTC. The generalization of these models to timing parabolic trajectories is not
straightforward. For example, these different combinations rely on isotropic expansion and
usually assume first-order information only, neglecting acceleration. As a consequence
no optical formulations have been put forward so far to specify TTC of parabolic targets
with enough accuracy. It is only recently that context-dependent physical variables have
been shown to play an important role in TTC estimation. Known physical size and gravity
can adequately explain observed data of linear and free-falling trajectories, respectively.
Yet, a full timing model for specifying parabolic TTC has remained elusive. We here derive
two formulations that specify TTC for parabolic ball trajectories. The first specification
extends previous models in which known size is combined with thresholding visual angle
or its rate of expansion to the case of fly balls. To efficiently use this model, observers
need to recover the 3D radial velocity component of the trajectory which conveys the
isotropic expansion. The second one uses knowledge of size and gravity combined
with ball visual angle and elevation angle. Taking into account the noise due to sensory
measurements, we simulate the expected performance of these models in terms of
accuracy and precision. While the model that combines expansion information and size
knowledge is more efficient during the late trajectory, the second one is shown to be
efficient along all the flight.
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INTRODUCTION
The time remaining before a moving target arrives at some point
of interest is known as the time-to-contact (TTC) with that
place. An accurate estimate of this quantity could be used to
control an interceptive or evasive action directed at that target.
How people and animals perceive TTC has been the primary
motivation of a large number of studies mainly inspired by the
Ecological Psychology framework (e.g., Lee, 1976; Gibson, 1979;
Bootsma and Oudejans, 1993; Peper et al., 1994). Nevertheless,
the adopted stance to tackle this general problem has often
neglected deliberately to recover 3D information and has rather
focused on extracting invariants from optical or angular vari-
ables. The most successful model within this tradition has been
the τ model (Lee, 1976) which specifies that TTC can be esti-
mated as the ratio between visual angle θ and its rate of expansion
θ̇. Despite its known restrictions (e.g., it neglects acceleration
and fails for large visual angles) τ has been essential to TTC
research for a long time. At the neurophysiological level, neu-
rons that respond to TTC in a τ-like way (i.e., independently
of size and velocity) have been also reported (Sun and Frost,

1998) and recently τ has even inspired the development of
more elaborated and biologically plausible computational imple-
mentations of TTC estimation (Keil and López-Moliner, 2012).
Behaviorally speaking, however, a bulk of recent evidence casts
doubts on the use of τ as a general model for TTC estimation.
Deviations from τ predictions have been reported depending on
the type of task (Lugtigheid and Welchman, 2011), the dura-
tion of the trajectory (Hosking and Crassini, 2011), illusory or
contextual effects (Smeets et al., 1996; DeLucia et al., 2000), tex-
ture (Jacobs and Diaz, 2010) or reliability of physical information
relevant for catching like ball size (López-Moliner et al., 2007b;
López-Moliner and Keil, 2012) or shape (López-Moliner et al.,
2007a).

Accumulation of evidence against τ has, partly, been stim-
ulated by the necessity of recovering three-dimensional (3D)
contextual information. For example, Wann (1996) already pro-
posed an alternative to τ based on the use of traveled physical
distance. The strategy that he proposed gained further validity
in López-Moliner and Keil (2012), where the action of catch-
ing was initiated at a constant distance when physical size was
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known. It seems then that some assumptions about 3D infor-
mation, physical size in this case, make subjects switch to using
simpler computations for TTC estimation without the need to
combine different angular variables. Interception often implies
the interaction with solid objects moving in the 3D external
space. Not only do we then need to update the position in
the 3D space continuously but also require 3D knowledge of
the object to be caught (e.g., shape and size) so as to control
our hand movements. It is only recently that 3D information
is regarded as being relevant in the context of TTC estimation,
once attention has been somehow shifted from pure TTC percep-
tion to interceptive control mechanisms in interception studies
(Tresilian, 2004).

The recovery of 3D structure or 3D motion from the opti-
cal 2D ambiguous images generated by objects on the retina is
a long-standing problem that is the essence of the constructivist
inferential approach to perception. This probably explains the
minor role of 3D information in TTC studies. The process of 3D
recovery is complex and sometimes is misleadingly illustrated by
the potentially infinite solutions consistent with a single retinal
image. The ecological theory, however, circumvents this prob-
lem and instead exploits useful relations and constraints that are
present in the optic array, but at the cost of being unable to pro-
pose valid TTC specifications for parabolic trajectories. Parabolic
balls are ubiquitous in ball games and in many daily-life situations
as well. Nevertheless, an accurate specification of TTC for fly balls
has been missing thus far.

In this paper we put forward two TTC specifications and
show that one of them is viable as a general model for catch-
ing fly balls in terms of accuracy and precision. Both models
make use of context-specific information in addition to optical
information. One extends previous models which make use of
known size to compute TTC (López-Moliner et al., 2007b; López-
Moliner and Keil, 2012) to fly balls. This model relies on knowing
physical size to recover 3D speed components of the parabolic
trajectory. After showing that this first model is unable to deal
with high parabolae or provide useful predictive information in
case of early occlusion, we introduce a second model that relies
on physical size and gravity. A hallmark of this model is that
it does not need rate of expansion which makes it very robust
to noise, even in the early part of the trajectory. This model,
as a consequence, encapsulates reliable predictive information
allowing the use of predictive and online control mechanism in
interception.

TIMING PARABOLIC BALLS FROM PHYSICAL INFORMATION
Unlike the case of linear trajectories, the specification of visual
information that is useful for timing a parabolic catch has been
much less studied. Nevertheless parabolic trajectories have been
objects of attention in several studies that have examined how
catching performance depends on vision of different parts of the
parabolic path (e.g., Sharp and Whiting, 1974, 1975; Whiting and
Sharp, 1974; Dessing et al., 2009; López-Moliner et al., 2010) or
which visual information in fly balls is used to predict the land-
ing point (outfielder problem, Chapman, 1968; Oudejans et al.,
1997; McLeod et al., 2003; Brouwer et al., 2006; Fink et al., 2009).
However, putting forward a computational model that specifies

FIGURE 1 | An example of a parabolic path of a ball of size s with

initial vertical velocity v0y and horizontal velocity vx. v is the tangential
velocity with respect to the trajectory, vr is the radial component and vt is
tangential velocity component with respect to the point of observation
(normal to vr ). The path reaches its maximum height ym when it has
covered an horizontal distance of xm and will return to its initial height after
covering an horizontal distance of 2xm. The picture shows the different
velocity components for an elevation angle γ at a distance d to the point of
observation at which time the ball subtends an angle θ. (inset) Illustration of
the relation between size s, the angle θ and distance d as defined in
Appendix A (Equation A.1).

how humans can time the parabolic catch has remained elusive.
One possible reason could be that we can only derive tempo-
ral measures for fly balls by using physical information that is
neither optically nor perceptually available. Figure 1 shows an
example of a parabolic path and its decomposition in differ-
ent velocity vectors. Certainly, if we ignore air resistance (we
address this point later on) and assuming that the ball starts
moving at eye height, the time that the ball remains above eye
height is:

T = 2v0y

g
(1)

where v0y is the initial vertical velocity (see Figure 1) and g is
the acceleration caused by gravity. However, and despite hav-
ing an expression that physically determines a time quantity
that could provide an approximation of initial TTC, the use
of Equation (1) to time a catch encounters different problems.
The main one possibly is the need for an accurate estimate of
v0y , that is the velocity at movement onset assuming the fly
starts around eye height. Estimating the initial vertical velocity
is difficult because of two problems. First, unlike the horizon-
tal velocity (vx), the vertical velocity is not constant but rather
decelerates first and accelerates after reaching the maximum
height while it is the initial value which is the relevant one.
The perception of velocity changes takes some integration time
(Werkhoven et al., 1992) which could compromise successful
catching when time is in short supply. Secondly, there is the prob-
lem of how to estimate v0y. One possibility is to use angular
correlates like the rate of change of the elevation angle γ̇ scaled
with distance (e.g., Brouwer et al., 2006; Zago et al., 2009), how-
ever, it is not clear how the error from a depth estimate would
affect TTC through the vertical velocity. We comment on this
point again later when introducing the model that incorporates
gravity.
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Therefore it is not clear how people can estimate the initial
value of the vertical velocity accurately enough. In the follow-
ing we outline the two potential mechanisms that could be used
to estimate TTC in parabolic trajectories. The first one is an
extension of previous models that combine prior knowledge of
size and optical thresholds. In this case, distance is not neces-
sary and 3D motion can be estimated from optical variables by
assuming size knowledge. After showing that this first model
has limited application, we introduce a more general model
which includes gravity and show that it is viable for accurate
catching.

OPTICAL THRESHOLDS AND KNOWN SIZE (KS MODEL)
It is very likely that, with extensive practice, we quickly acquire
information on steady-state attributes of the objects (e.g., physical
size) that we have to catch. Within a given context, the visual sys-
tem could therefore exploit lawful relations between physical and
optical variables. For example, for linearly approaching objects
moving at constant velocity, one such a law (López-Moliner et al.,
2007b) that holds between size (s), physical velocity (v) and the
resulting optical variables (θ and θ̇) is:

v = sθ̇

θ2
(2)

Although Equation (2) does not directly signal TTC, the accu-
rate time can, in principle, be estimated once velocity is recovered
for a known size object in two different ways:

TTC ≈ 1

θth

s

v
(3)

or

TTC ≈ 1√
θ̇th

√
s

v
(4)

where θth and θ̇th are visual angle and rate of expansion thresh-
olds. Once these thresholds are reached there is some known time
left until contact for a given size and velocity. Therefore, once
size and velocity are known, accurate timing can be obtained by
thresholding action initiation on the visual angle (θ) or its rate
of expansion (θ̇), respectively for Equations (3) and (4). It has
been recently shown (López-Moliner and Keil, 2012) that both
expressions define a continuum in which subjects can dynam-
ically put more weight on either optical variable depending on
the temporal constraints of the task once physical size is known.
In this sense, when there is little time for the action to unfold
(very short TTC) people favor θ̇ to reduce the temporal error
at the time of initiation, otherwise a θ threshold (θth) is used to
initiate the movement. However, the use of Equations (3) and
(4) depends on people recovering physical velocity which is even
less straightforward for parabolic trajectories. In addition, we
have different velocity components along the movement of a fly
ball (i.e., tangential, vertical, horizontal, and radial; see Figure 1)
with the horizontal velocity (vx) being the only component that
remains constant along the flight. Although approximations of

both the vertical (initial) and horizontal velocities have been
previously proposed (Brouwer et al., 2006) to solve the out-
fielder problem (i.e., to differentiate between balls landing behind
and those landing in front of the catchers), neither compo-
nent by itself generates an isotropic expansion to allow people
to use Equations (3) and (4) after accurately recovering veloc-
ity. The radial velocity (vr) component (see Figure 1), albeit
unperceivable, does indeed carry the isotropic expansion of the
projected image on the retina. If vr can be estimated then we
could countenance the use of previous models to some parabolic
cases.

Just as it is known that thresholding θ and θ̇ can be encapsu-
lated in a unified expression for linear trajectories (López-Moliner
and Keil, 2012), here we show so for the parabolic case (see
Appendix A for a full mathematical derivation). As a result, it
can be shown that the following expression signals TTC and
includes the strategies based on θ and θ̇ thresholds introduced
above:

TTC = s

vrθ + sγ̇ tan γ
(5)

As can be noted Equation (5) includes physical terms (i.e.,
ball size s and radial velocity vr) as well as optical terms (i.e.,
the elevation angle γ, its time derivative, γ̇ and, visual angle θ).
Note that it is very straightforward to show that when the
rate of change of the elevation angle γ̇ is very small or zero
(i.e., horizontal motion) Equation (5) becomes Equation (3). In
Appendix A we show that Equation (5) also includes Equation
(4). Leaving aside how to estimate vr , the estimation of TTC
from Equation (5) does not depend on the rate of change of
the visual angle which is the noisiest optical measurement (dis-
crimination thresholds of about 10% Regan and Hamstra, 1993)
especially when the visual angle is very small and does depend
on angular or optical measurements that are less noisy. For
example, Weber fractions of about 5% have been reported for
judgments of γ̇ for values between 0.03 and 1.2 rad/s (McKee,
1981) and even smaller for judgments of the visual angle θ

(McKee and Welch, 1992). In the same vein, humans can detect
values of γ̇ as small as 0.0003 rad/s (McKee, 1981; Regan,
1997). As to optical measurements, therefore, these error val-
ues render the model described in equation 5 worthy of further
testing.

In Figure 2 (top panels) we show the TTC predictions derived
from Equation (5). The predictions correspond to parabolic tra-
jectories of a tennis ball (6.6 cm of diameter) that resulted from
combining eight initial values of vertical velocities v0y (2, 3.86,
5.71, 7.57, 9.43, 11.29, 13.14, and 15 m/s) with eight horizon-
tal velocities vx (5, 11.43, 17.86, 24.29 30.7, 37.14, 43.57, and
50 m/s). These values were chosen from simulated trajectories
that are likely to happen in a tennis game. The trajectories are
simulated to start at eye height and the initial TTC is set to the
time that the ball remains above the initial height (i.e., contact
at observer’s eyes). As can be seen, expression 5 signals TTC
accurately especially for high horizontal velocities or when the
initial vertical velocity is small. For example, for v0y = 2 m/s the
prediction of the remaining TTC is very accurate for all hor-
izontals velocities (all lines are very close to the dashed line
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FIGURE 2 | Time-to-contact estimates across time obtained from the

model described in Equation (5) (two top rows). Different panels
correspond to the different eight initial vertical velocities v0y . In each panel
the predictions for the different eight horizontal velocities vx are color-coded.

In the two bottom rows we plot the same TTC estimates obtained from
simplifying Equation (5) by nullifying γ̇ which renders Equation (5) equivalent
to Equation (3). The dashed (unity) line denotes the remaining actual TTC.
Axes have different scales from one panel to another to increase readability.

which denotes the remaining time above eye height). Therefore,
Equation (5) in principle signals TTC accurately if vx >> v0y,
e.g., a football ball that is kicked at a shallow angle and will
not go very high. This is not surprising as Equation (5) general-
izes previous models outlined for linear (horizontal) trajectories.
Actually, the TTC estimations for the simplified version of the
model represented by Equation (5), that is, γ̇ = 0 are shown
in the bottom panels. It can be actually seen that the deviation

from the dashed line is less pronounced for the slower horizon-
tal velocities (i.e., higher parabolae). Hereafter we will use the
simplified version of Equation (5), that is we will set γ̇ = 0 in the
KS model.

ESTIMATION OF 3D RADIAL VELOCITY FROM KNOWN SIZE
The feasibility of using the KS model relies on recovering the
radial velocity vr which conveys the pure isotropic expansion.
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Whether or not people can perceive accurately the velocity of an
object in the 3D environment has been a long-standing matter
of debate and there is no clear answer yet. For example, McKee
and Welch (1989) reported that judgments of 3D lateral speed
were biased toward retinal speed undermining velocity constancy.
A review of other studies in Howard and Rogers (2001) shows,
however, that improvements of 3D speed judgments are possible
with richer stimulation. More recently Rushton and Duke (2009)
concluded that subjects cannot judge the 3D speed of approach-
ing objects and reported weber fractions between 0.16 and 0.23
for size-varying objects. While this precision is indeed useless for
real catching, it is also the case that size was randomized (up to
±20%) in this study to prevent subjects from using θ̇ as a cue to
velocity. However, this large variability of size could have discour-
aged subjects from exploiting lawful relations (e.g., Equation 2) to
estimate 3D speed. It is worth at least exploring, therefore, to what
extent people could recover radial speed from the known size and
optical variables.

Equation (2) specifies one possible way in which velocity can
be estimated and this relation could also hold for vr . Figure 3
shows the time course of radial velocity (solid lines) for the same
trajectories used previously. It can be seen that, on average, the
radial speed grows and deviates from the corresponding horizon-
tal velocities vx (horizontal black dotted lines) as v0y gets higher
(different panels). Leaving aside for the moment, the effects of
noise in optical measures, Equation (2) underestimates the radial

velocity (dotted lines in Figure 3) and only provides good pre-
dictions for slow values of v0y (e.g., 2.0 m/s) but even then the
estimation falls short as the ball contact approaches. For exam-
ple, when v0y is 5.71 (third panel, first row in Figure 3), vr is
underestimated by about 45% 150 ms before contact (v̂r = 6.01,
vr = 10.97 m/s) for the slowest horizontal velocity vx (5 m/s). At
the same time before contact, the underestimation is about 8%
for the fastest horizontal speed (50 m/s). Taken all together, vr can
only be recovered accurately using Equation (2) in very shallow
trajectories.

Alternatively, López-Moliner et al. (2007b) showed that 3D
approaching velocity can also be obtained in linear trajectories
by comparing successive samples of θ̇ within a time window �t:

v =
s
(√

1
θ̇1

−
√

1
θ̇2

)2

�t2
(6)

In practical terms Equation (6) implies ascertaining a change
of rate of expansion (second order information). Luckily, the θ̇

signal grows in an exponential way and two temporally separated
values of this variable before collision (but leaving time for a
motor action) are sufficiently different (i.e., well above discrim-
ination threshold) so that this difference can be reliably used with
Equation (6).
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FIGURE 3 | The time course of radial velocity (solid lines) and its

estimation from known size and optical variables by using Equation (2)

(color dotted lines) and using Equation (6) (dashed lines). Different initial
vertical velocities v0y are plotted in separate panels. The eight horizontal
dotted black lines denote the different horizontal velocities vx and, a vertical
dotted line is placed in each panel at the TTC value at the start of the

trajectory which depend on the initial vertical velocity (e.g., the shorter initial
TTC is 0.407 s and corresponds to a v0y of 2 m · s−1). The estimation from
Equation (6) was computed by comparing two samples of θ̇ and then using
Equation (6). The time interval (�t = t2 − t1) between the two consecutive θ̇

samples was 96 ms. Color codes different horizontal velocities. See text for
details.
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velocity v0y. Color codes different horizontal velocities. The
underestimation is plot for Equations (2) and (6). For the sake of
comparison, a reference horizontal line is added at the level of 10% of
underestimation.

The dashed lines in Figure 3 show the estimation of the radial
velocity that is obtained from Equation (6). In order to estimate
vr we slid Equation (6) along all the trajectory with different val-
ues of �t. We scrutinized �t from 0.016 to 0.320 s with steps
of 0.016 s. For each value of �t we computed the squared dif-
ference between the actual radial velocity for the 64 trajectories
(eight vx × eight vv) and the estimate. The minimum squared
error was obtained with �t = 0.096 s. This is the value used in the
simulations shown in Figure 3. Although both methods underes-
timate the radial velocity, the procedure based on Equation (6)
performs better. For the sake of comparison, Figure 4 shows the
proportion of underestimation of vr for the two methods. This
proportion is computed about 0.2 s before contact. The estimates
from Equation (6) are, consequently, better than those obtained
by using Equation (2). For example, the level of underestima-
tion for the fastest horizontal velocity (50 m/s) is always below
the 10% of underestimation. Despite this improvement, how-
ever, radial velocity can only be recovered accurately for relatively
fast horizontal velocities vx. Interestingly the better performance
points to an optimal time window (�t) around 100 ms which is
consistent with the time window of 100–140 ms of the low-pass
filter proposed as a first stage to detect acceleration from speed
changes (Werkhoven et al., 1992). Note that Equation (6) involves
detecting a change of rate of expansion that is a second order
change.

So far, we have left aside the effects of noise when computing
the predictions for TTC based on the KS model, including the
estimation of vr . Next we explore the behavior of the model taking
into account this noise.

SIMULATION OF THE KS MODEL
Figures 2, 3 do not take into account the error introduced by the
sensory system in estimating optical variables, that is the predic-
tions shown so far are noise-free. However, behavioral and neural
responses to optical variables θ and θ̇ in the initial part of the
trajectory are very noisy signals (Keil and López-Moliner, 2012).

They fluctuate due to the discrete structure of the retinal array
and its limited spatial resolution. Because the signal-to-noise
ratio improves as collision approaches, we would expect a dif-
ferential effect of noise along the trajectory. In order to test
the robustness of the KS model to sensory noise, we simulated
Equations (6) and (5) (with γ̇ = 0) for the different trajec-
tories after adding Gaussian noise to θ and θ̇. Note that we
need θ̇ to compute vr (Equation 6). Similarly as in Keil and
López-Moliner (2012), we start with adding Gaussian noise ξ

with mean zero and standard deviation one to both angular
variables:

θt = θt + aθ · ξ
θ̇t = θ̇t + aθ̇ · ξ (7)

We simulated 10,000 runs of Equation (7) for each trajectory
and the value of a was chosen so that the Weber fraction of θ

(�θ/θ) and θ̇ (�θ̇/θ̇) decreased with time according to reported
values in the literature. For example, θ̇ converged to a Weber frac-
tion of 10% (Regan and Hamstra, 1993) after 150 ms (Wurfel
et al., 2005). In our case we used the value of one standard devia-
tion across the runs for �θ and �θ̇ to compute the corresponding
Weber fractions. To our knowledge, discrimination thresholds of
θ have only been reported in static conditions and are about 4%
(e.g., McKee and Welch, 1992), so we added the noise consis-
tently with this discrimination threshold. For each trial we then
computed vr from Equation (6) (with a value of �t = 0.09 that
provided the best estimate of vr in Figure 3) and using the noisy
versions of the optical variables θ and θ̇ and size s (Weber frac-
tion for size: 4%). We low-pass filtered the output of Equation (6)
to smooth velocity by using a 1st order low-pass filter (moving
average) as in Keil and López-Moliner (2012) and finally applied
Equation (5), the KS model with γ̇ = 0.

Figure 5 (upper panels) shows the simulated accuracy of the
TTC for, at most, the last second of the trajectory. We show the
data in a log–log space to increase the resolution at the moment
of interest. As expected, the prediction is noisier as v0y increases
(one panel for each v0y). However, the accuracy is quite accept-
able for all trajectories when it remains 0.2 s until contact (gray
vertical line). Before this time, only for very low values of v0y the
prediction is reliable enough to be useful. As an indication of the
precision, the standard deviation of the simulations are shown
in the bottom panels of Figure 5. Again the expected variability
only reaches useful values for interception (close to 20 ms denoted
by the horizontal line) (Brenner and Smeets, 2009) at a useful
time (e.g., between 200 and 100 ms before contact) for low val-
ues of v0y . In sum, these results render the KS model valid for
catching a limited set of fly balls, namely, shallow trajectories in
which the horizontal velocity is relatively higher than the initial
vertical one.

One might wonder whether there is some chance for using τ

directly in parabolic trajectories. Like the KS model, τ is a first-
order approximation to TTC and is simply formulated as the ratio
between visual angle and rate of expansion: θ/θ̇. Recall that hor-
izontal velocity vx is constant along the trajectory and, therefore,
when the initial vertical velocity is very small relative to the hor-
izontal speed vx, the resultant trajectory is closer to a horizontal
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FIGURE 5 | Results of the simulation of the KS model Equation (5) with

γ̇ = 0. (top panels) Predicted time error as a function of the remaining TTC in
log–log coordinates. Different horizontal velocities Vx are color-coded and
different V0y are plotted in different panels. (bottom panels) Precision of the

prediction (log–log coordinates). The horizontal line denotes an error of
20 ms. The gray vertical lines denotes a remaining time of 0.2 s. See text for
simulation details. Axes have different scales from one panel to another to
increase readability.

one. In addition, by using τ we circumvent the estimation of vr .
To address this question we used the noisy versions of θ and θ̇

and computed the τ signal. No low-pass filter was applied to τ.
In Figure 6 we plot (in log–log coordinates) the prediction error
against the remaining TTC.

It can be seen that there is not much difference with the pre-
dicted error obtained with the previous simulations. Actually, τ

can always accurately predict TTC about 200 ms before contact.

For higher parabolae θ̇ is very low (e.g., closer to detection
threshold values) for about half the flight time so that its
measurement by the visual system is noisier resulting in a
lower signal-to-noise ratio. This explains the large amount of
noise, for example, when v0y = 15 (last panel in Figure 6),
especially when the horizontal speed is slow (red lines). The
obtained precision (not shown) makes the viability of τ very
unlikely.
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20 ms time error limit. The vertical gray line is placed at 0.2 s before contact,
a useful time to have a good estimate in order to perform a catching action.
Axes have different scales from one panel to another to increase readability.

A MODEL THAT INCLUDES SIZE AND GRAVITY (GS) TO
ESTIMATE TTC
In the last section we have shown that previous models based on
thresholding optical variables, be physical size known or not, have
limited applicability to timing fly balls. Basically the limitation
arises because these models rely on first-order visual information
(e.g., recovering vr) and fail to provide an accurate and precise
TTC when initial vertical velocity is high. Higher initial vertical
velocities do indeed imply more visual contribution of the verti-
cal component and consequently the use of θ̇ or vr to obtain a first
order approximation of TTC is seriously undermined. Despite
the different kinds of visual information previously considered, it
seems then that additional information would be needed to com-
pensate for the acceleration/deceleration due to gravity. Accurate
estimates of TTC, therefore, cannot be obtained from known size
combined with optical variables or tau when the initial verti-
cal velocity is much larger than the horizontal one (v0y >> vx).
Gravity’s effects are ubiquitous. It is then logical to think that
people can learn or adapt after long-life exposure to these effects.
Some experiments have reported adaptation of motor responses
to the effects of gravity (Lacquaniti and Maioli, 1987, 1989a,b)
and more recently, a series of different studies have interpreted the
ability to successfully intercept free falling objects when the fall
was consistent with 1g as evidence for an internal model of grav-
ity [e.g., Indovina et al., 2005; Senot et al., 2005, but see Baurès
et al. (2007) for a critical appraisal and also the corresponding
rebuttal by Zago et al. (2008)].

The behavioral evidence of good performance under grav-
ity conditions has not, however, gone hand in hand with a
feasible timing model that explains the level of performance.

Lacquaniti and Maioli (1989b) proposed an algorithm for free-
falling objects which relies on the online updating of the vertical
speed:

TTC =
√

2y0

g
− ẏ

g
(8)

In addition, the model needs input on the initial height, but
this limitation is absent in other models (e.g., McIntyre et al.,
2001; Zago et al., 2004) which only need a running estimate of the
height y and its first temporal derivative ẏ. Apart from the prob-
lem of how g is represented, subjects would need to estimate the
vertical speed in 3D space for these models to be useful. Correlates
of this speed are certainly available from the optical or angular
velocity γ̇ in free falling balls if the distance between the line of
fall and the observer’s eyes can be estimated somehow (Zago et al.,
2009).

However, the timing of parabolic trajectories which are prob-
ably the most frequent paths being affected by gravity remains to
be solved. A previous attempt to obtain TTC in parabolic trajecto-
ries was made by Brouwer et al. (2006). In this study subjects did
use γ̇ to solve the outfielder problem task and the use of this vari-
able is consistent with the model that it will be introduced later
on. Unlike in the case of linear trajectories, the models consid-
ered so far for free-falling have made no explicit use of known
size. We will next show that it is by considering both types of
context-dependent variable (g and known size) that it is possi-
ble to formulate a relatively simple model for catching parabolic
balls. In Appendix B we show that it is relatively straightforward
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to prove that an accurate estimation of TTC can be obtained using
the following expression:

TTC = 2

g

sγ̇

θ cos γ
(9)

The TTC signal therefore would depend on two context-
dependent variables (size s and gravity g), optical size θ, the
elevation angle γ and its time derivative γ̇. Note that expansion-
like variables (i.e., θ̇ and vr) are not in Equation (9), which a priori
makes this model more robust to noise because θ̇ is one of the
noisiest optical measurements.

Next we will show that this model not only provides an accu-
rate estimation of TTC but also high precision in this estimation.
In addition, in Appendix B it is shown that only in very few
parabolic cases (ones that are unlikely) is the model not viable.

SIMULATION OF THE GS MODEL
Using the same procedure as before we ran 10,000 simulations for
each trajectory to test the noise suppression capacity of the GS
model. We then added Gaussian noise to angular variables θ, γ

and γ̇:

θt = θt + aθ · ξ

γt = γt + aγ · ξ (10)

γ̇t = γ̇t + aγ̇ · ξ

For θ we proceed in the same way as with the simulation of
the KS model, and so we noisified physical size. For γ and γ̇ we
set a so that both converged to a Weber fraction of 5%. We did
not add any noise to g. The results of the simulations are shown
in Figure 7. Accuracy of the GS model in predicting TTC is very
high from the very beginning of the trajectory (see Figure 7 left).
The differences between different horizontal velocities vx (color
coded) and the level of noise are unnoticeable. Therefore, the

GS model is very robust to noise along all the trajectory. Note
that, unlike θ, the signal-to-noise ratio is very high at the begin-
ning and decreases with time, so that the noisiest measurements
of γ̇ do not occur at the same time as those for θ. More inter-
estingly, the precision of the TTC estimation is quite high (SD
near 20 ms) about 200 ms before contact (Figure 7 right). One
second before contact (for longer TTC) the level of precision is
around 100 ms, which could be enough to enable start anticipa-
tory movements that can be further refined. These figures place
the GS model in a good position to be further explored in the con-
text of interceptive timing. The reported accuracy and precision
values were obtained with simulating trajectories that are likely to
happen in ball games (e.g., tennis, cricket) and would enable both
prospective and on-line strategies. We will revisit this point in the
discussion. However, we have so far neglected air drag in the GS
model and it might well be an important matter. We touch on this
issue in the next section.

EFFECT OF AIR DRAG ON THE GS MODEL
If we omit air drag the ball acceleration for the horizontal and ver-
tical components are, respectively ax = 0 and ay = −g, so that the
horizontal velocity vx remains constant while the vertical veloc-
ity changes due to gravity: first decelerates and then accelerates
again. If we consider air drag, then the air drag force f is approx-
imately proportional to the square of the ball’s tangential speed
(v in Figure 1) (Timmerman and van der Weele, 1999):

f ≈ Dv2

where D is a constant that can be further decomposed in several
parts:

D = 1

2
ρ · C · A

with A being the sectional area of the ball (A = π · radius2);
ρ is the density of the air and C is a dimensionless constant
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FIGURE 7 | Results of the simulation of model GS. Left: Simulated
TTC accuracy of model GS as a function of elapsed time. Vertical
dotted lines denote the TTC for the different v0y . Right: Simulated
temporal SD (reciprocal of precision) of the model. As before, different
initial vertical velocities are plotted in different panels and horizontal

black lines and vertical gray lines denote 20 ms. of precision error and
0.2 s. before contact. See text for details on the computation of the
temporal precision. Color codes different horizontal velocities vx as in
Figure 6. Axes have different scales from one panel to another to
increase readability.
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called drag coefficient and it depends on the shape of the object.
For spherical objects like tennis balls C is about 0.4–0.5 at sea
level (Timmerman and van der Weele, 1999). The acceleration
components including air drag then become:

ax = − D

m
v · vx

ay = −g − D

m
v · vy (11)

where m is the mass of the ball. Once we have the starting veloc-
ities (vx and vy) and positions (x and y) we can proceed with
updating these variables taking into account air drag:

vx + �vx = vx + ax�t; vy + �vy = vy + ay�t (12)

x + �x = x + vx�t + 1

2
ax(�t)2;

y + �y = y + vy�t + 1

2
ay(�t)2 (13)

Therefore with a sufficiently small value of �t we can numer-
ically simulate the parabolic trajectories considering air drag and
update the optical variables of Equation (9) according to the new
kinematics. We did so for the 64 trajectories and could compute
the temporal error resulting from applying the GS model. We sim-
ulated the situation of a tennis ball (mass of 0.057 Kg) with ρ =
1.2 and C = 0.5 which are proper values for a sea level. Figure 8

shows the temporal error, that is the difference between the pre-
diction from the GS model and the actual arrival time. The error
is shown for the last 70% of the trajectory. As can be noted, the
model does not predict the exact remaining time any longer (the
error would be zero and constant along the trajectory). However,
the error remains very small and within an acceptable range dur-
ing the most relevant parts of the trajectory. The two horizontal
lines denote the range of a time window of 20 ms. For the smaller
initial vertical velocity (v0y = 2 m/s), for example, the predicted
error is very small up to the very last frames of the trajectory. In
any case, the error is always within acceptable limits about 0.2 s
before contact rendering the GS model valid in order to account
for real-life performance. Interestingly, we did not change the
value of g, therefore how the brain represents (e.g., integrated
versus fragmented) the forces that affect vertical velocity (i.e.,
through gravity and air drag) would be an interesting problem
for future research.

DISCUSSION
We have here advanced two possible models that are capable
of estimating TTC for fly balls using monocular variables only.
Catching a ball in real-life not only implies getting the timing
right, but also to be at the correct position. One important caveat
to bear in mind, therefore, is that the reported predictions, both
theoretically-derived and simulated, assume an optic flow consis-
tent with a direct approach, or, put another way, the fly ball was in
a direct collision path with the observer’s eyes. Despite this being,
of course, a simplification which has often been made in the TTC
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literature, it allowed for the first time to characterize useful mod-
els for obtaining TTC estimates with fly balls. In this sense, solving
the outfielder problem [see Fink et al. (2009) for a recent crit-
ical test] could be regarded as a complementary previous step
where the catcher runs to the correct place (spatial problem) to
be able to efficiently use optical flow to solve the timing side of
catching.

The two models that we have introduced are a priori reli-
able candidates to deal with this timing. The Known-Size (KS)
model extends previous solutions that have been derived else-
where (López-Moliner et al., 2007b; López-Moliner and Keil,
2012) to estimate TTC for linear trajectories. Nevertheless, the
model has limited applicability to parabolic trajectories and,
except for shallower parabolae, its use is not feasible as a gen-
eral model for catching in ball games, for example. Because this
model directly relies on θ and indirectly on θ̇ to estimate vr , the
signal-to-noise ratio is very low in the early part of the trajectory.
The poor capacity of noise suppression during the early approach
has also been reported for τ in Keil and López-Moliner (2012).
This aspect makes all these models that are based on first-order
estimation only useful in the late part of the ball flight. Given
that enough time is available to perform a catching actions (e.g.,
200 ms), this model therefore cannot be rule out and may be well
applied when horizontal velocity is higher than the vertical one
(e.g., v0y < 5 in our simulations). The KS model can, however,
gain further support in the context of control models of inter-
ception. Predictive versus on-line control strategies are the two
contrasting views in the literature. The former type of control can
sometimes be arguably associated with using some internal model

[e.g., visual representation of gravity (Indovina et al., 2005)] that
can make a temporal prediction and thereby circumvent neural
delays. A priori, therefore, little role is expected for the KS model
from this perspective, as it only signals reliably TTC in the last
part of the fly. However, leaving enough room to respond, the sys-
tem could rely on this first-order model until the very last possible
moment Lacquaniti and Maioli (1989b). The very low predictive
potential of the KS model makes it difficult to be reliable to ini-
tiate pre-programmed movements at critical times (Tresilian and
Houseman, 2005) because subjects could hardly use the model to
estimate the moment of interest in advance.

Unlike the KS model, the GS does signal correct TTC with
relatively high precision well in advance (σ ≈ 100 ms 1 s before
contact). So one of the main benefits of the GS model over the
KS one is the predictive potential. The use of the GS model could
then be tested by showing incremental parts of the parabolic tra-
jectory and see whether the response precision in initiating the
action evolves as predicted (see Figure 7 right). A priori it would
be difficult to favor either model by looking at predicted preci-
sion or accuracy when only late information is shown. However,
we do not consider different sources of information for TTC as
being mutually exclusive, but rather likely to be integrated. In this
regard, optimal combination provides a nice framework to test
whether subjects would reduce their variability following maxi-
mum likelihood when late parts of the trajectory are shown. If so
the resulting variability will be less than the minimum variability
predicted from using the GS model. Figure 9 shows the predicted
precision if both models were combined optimally. Note that
there is a clear benefit (compared with Figure 7 right) specially
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FIGURE 9 | Predicted SD (variable error) if the two models KS and GS

were integrated in an optimal fashion. The resulting variance is
time-wise computed as follows: (σ2

ks × σ2
gs)/(σ

2
ks + σ2

gs) Different panels
show different v0y . A local Gaussian smoothing has been applied to the

predictions. The horizontal black line and the vertical gray line denote a
precision of 20 ms and 0.2 s before contact, respectively. Color codes
different vx as in Figures 6, 7. Axes have different scales from one panel
to another to increase readability.
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for high v0y and slow vx (red color) where the precision 2 s before
contact is increased by 50 ms.

Finally, there is the issue of how prior knowledge, which is
required in the GS model, is implemented. As in López-Moliner
et al. (2007b) or Zago et al. (2008) neither are size or gravity,
respectively considered as being higher-level cognitive represen-
tations, but rather a place-holder for variables in optical space.
Let us illustrate this idea by using the GS model. Figure 10 (left)
shows the optical output of the model for two different sizes. Note
that the resulting optical output decreases linearly with time for
both sizes, but the actual values are meaningless as to TTC. On
Earth these values are experienced by an observer sensory system
and associated with a physical ball size in a given context through
learning. Importantly, note that different vx collapse so that the
time course of the optical output is independent of different hori-
zontal velocities. The normalization across different vx is achieved
through the term cos γ. Both a fixed physical size and constant g
calibrate or normalize the optical values so that they are prop-
erly interpreted by the system to signal TTC. As a consequence,
the use of prior values of size or gravity by the GS model could
be tested in a similar fashion as in López-Moliner et al. (2007b)
and López-Moliner and Keil (2012). Physical size helps the sys-
tem to interpret the optic flow and obtain a useful threshold as an
indicator to start the action. In the GS model, then, physical size
(s) would provide the metrics for interpreting (or calibrating) θ.
Suppose one person has learnt to start acting at a corresponding
threshold (θt ) when you throw her a tennis ball. Later she is sud-
denly presented with a football ball whose projected retinal image
matches the smaller geometry of the tennis ball. The prior infor-
mation triggered by familiarity cues (denoting a football ball)

would set the new threshold to a larger value so that the remain-
ing time at action onset is invariant within the task. Since the
image will grow at a lower rate than expected the new thresh-
old is reached at a later time than it would the real image of a
football ball. This leads to the overestimation of the TTC in this
sort of situation and this very same pattern has been reported for
this type of manipulation in Hosking and Crassini (2010) when
displaying parabolic trajectories. Although the optical geometry
that was used in this study was not exactly the same as in our
simulations, our proposal would then be consistent with their
results.

In this calibration process, multisensory feedback about our
success in catching might play a relevant role. Knowledge of
physical size is necessary to modulate the closing of the hand
when catching a ball. The knowledge of size that we obtain from
the haptic feedback in catching is much more robust than that
obtained from the visual system. Just as the haptic system has
been proposed to educate the visual system as to size perception
(Gori et al., 2008, 2011), a similar calibration process might be
happening for TTC relevant optical variables.

ACKNOWLEDGMENTS
This work was supported by Grants MTM2011-28800-C02-01
and PSI2010-15867 from the Ministry of Science and Innovation
of the Spanish government and Grants 2009SGR00308 and
2009SGR01387 from the Catalan Government. The second
author (Joan López-Moliner) was also supported by an ICREA
Academia Distinguished Professorship award. We also thank
Matthias S. Keil and Brendan Cameron for their comments and
suggestions.

Frontiers in Behavioral Neuroscience www.frontiersin.org May 2013 | Volume 7 | Article 46 | 12

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Gómez and López-Moliner Catching parabolic balls

REFERENCES
Baurès, R., Benguigui, N., Amorim,

M.-A., and Siegler, I. A. (2007).
Intercepting free falling objects: bet-
ter use Occam’s razor than inter-
nalize Newton’s law. Vis. Res. 47,
2982–2991.

Bootsma, R., and Oudejans, R. (1993).
Visual information about time-
to-collision between two objects.
J. Exp. Psychol. Hum. Percept.
Perform. 19, 1041–1052.

Brenner, E., and Smeets, J. B. J. (2009).
Sources of variability in intercep-
tive movements. Exp. Brain Res. 195,
117–133.

Brouwer, A. M., López-Moliner,
J., Brenner, E., and Smeets, J. B. J.
(2006). Determining whether a ball
will land behind or in front of you:
not just a combination of expansion
and angular velocity. Vis. Res. 46,
382–391.

Chapman, S. (1968). Catching a base-
ball. Am. J. Phys. 36, 868–870.

DeLucia, P. R., Tresilian, J. R., and
Meyer, L. E. (2000). Geometrical
illusions can affect time-to-contact
estimation and mimed prehen-
sion. J. Exp. Psychol. Hum. Percept.
Perform. 26, 552–567.

Dessing, J. C., Oostwoud Wijdenes,
L., Peper, C. E., and Beek, P. J.
(2009). Visuomotor transformation
for interception: catching while fix-
ating. Exp. Brain Res. 196, 511–527.

Fink, P. W., Foo, P. S., and Warren,
W. H. (2009). Catching fly balls in
virtual reality: a critical test of the
outfielder problem. J. Vis. 9, 14.1–
14.8.

Gibson, J. J. (1979). The Ecological
Approach to Visual Perception.
Boston, MA: Houghton Mifflin.

Gori, M., Del Viva, M., Sandini, G., and
Burr, D. C. (2008). Young children
do not integrate visual and hap-
tic form information. Curr. Biol. 18,
694–698.

Gori, M., Sciutti, A., Burr, D., and
Sandini, G. (2011). Direct and indi-
rect haptic calibration of visual size
judgments. PLoS ONE 6:e25599.
doi: 10.1371/journal.pone.0025599

Hosking, S. G., and Crassini, B. (2010).
The effects of familiar size and
object trajectories on time-to-
contact judgements. Exp. Brain
Res. 203, 541–552.

Hosking, S. G., and Crassini, B. (2011).
The influence of optic expansion
rates when judging the relative time
to contact of familiar objects. J.
Vis. 11, 1–13.

Howard, I., and Rogers, B. J. (2001).
Seeing in Depth. Toronto, ON: I
Porteous Publishing.

Indovina, I., Maffei, V., Bosco, G., Zago,
M., Macaluso, E., and Lacquaniti,
F. (2005). Representation of visual
gravitational motion in the human
vestibular cortex. Science 308, 416–
419.

Jacobs, D. M., and Diaz, A. (2010).
Judgements of time to contact are
affected by rate of appearance of
visible texture. Q. J. Exp. Psychol.
(Colchester) 63, 1–8.

Keil, M. S., and López-Moliner,
J. (2012). Unifying time to con-
tact estimation and collision
avoidance across species. PLoS
Comput. Biol. 8:e1002625. doi:
10.1371/journal.pcbi.1002625

Lacquaniti, F., and Maioli, C. (1987).
Anticipatory and reflex coactivation
of antagonist muscles in catching.
Brain Res. 406, 373–378.

Lacquaniti, F., and Maioli, C. (1989a).
Adaptation to suppression of visual
information during catching. J.
Neurosci. 9, 149–159.

Lacquaniti, F., and Maioli, C. (1989b).
The role of preparation in tuning
anticipatory and reflex responses
during catching. J. Neurosci. 9, 134–
148.

Lee, D. N. (1976). A theory of visual
control of braking based on infor-
mation about time-to-collision.
Perception 5, 437–459.

López-Moliner, J., and Bonnet,
C. (2002). Speed of response
initiation in a time-to-contact
discrimination task reflects the use
of η. Vis. Res. 42, 2419–2430.

López-Moliner, J., Brenner, E., Louw,
S., and Smeets, J. B. J. (2010).
Catching a gently thrown ball. Exp.
Brain Res. 206, 409–417.

López-Moliner, J., Brenner, E., and
Smeets, J. B. J. (2007a). Effects
of texture and shape on per-
ceived time to passage: knowing
“what” influences judging
“when”. Percept. Psychophys. 69,
887–894.

López-Moliner, J., Field, D. T., and
Wann, J. P. (2007b). Interceptive
timing: Prior knowledge matters. J.
Vis. 7, 11.1–11.8.

López-Moliner, J., and Keil, M. (2012).
People favour imperfect catching
by assuming a stable world. PLoS
ONE 7:e35705. doi: 10.1371/jour-
nal.pone.0035705

Lugtigheid, A. J., and Welchman, A. E.
(2011). Evaluating methods to mea-
sure time-to-contact. Vis. Res. 51,
2234–2241.

McIntyre, J., Zago, M., Berthoz, A., and
Lacquaniti, F. (2001). Does the
brain model newton’s laws? Nat.
Neurosci. 4, 693–694.

McKee, S. P. (1981). A local mecha-
nism for different velocity discrim-
ination. Vis. Res. 21, 491–500.

McKee, S. P., and Welch, L. (1989). Is
there a constancy for velocity? Vis.
Res. 29, 553–561.

McKee, S. P., and Welch, L. (1992).
The precision of size constancy. Vis.
Res. 32, 1447–1460.

McLeod, P., Reed, N., and Dienes,
Z. (2003). Psychophysics: how field-
ers arrive in time to catch the ball.
Nature 426, 244–245.

Oudejans, R. R., Michaels, C. F., and
Bakker, F. C. (1997). The effects of
baseball experience on movement
initiation in catching fly balls. J.
Sports Sci. 15, 587–595.

Peper, L., Bootsma, R., Mestre, D. R.,
and Bakker, F. C. (1994). Catching
balls: how to get the hand to the
right place at the right time. J. Exp.
Psychol. Hum. Percept. Perform. 20,
591–612.

Regan, D. (1997). Visual factors in hit-
ting and catching. J. Sports Sci. 15,
533–558.

Regan, D., and Hamstra, S. J. (1993).
Dissociation of discrimination
thresholds for time to contact and
for rate of angular expansion. Vis.
Res. 33, 447–462.

Rushton, S., and Duke, P. (2009).
Observers cannot accurately esti-
mate the speed of an approaching
object in flight. Vis. Res. 49, 1919–
1928.

Senot, P., Zago, M., Lacquaniti, F., and
McIntyre, J. (2005). Anticipating the
effects of gravity when intercepting
moving objects: differentiating up
and down based on nonvisual cues.
J. Neurophysiol. 94, 4471–4480.

Sharp, R., and Whiting, H. (1974).
Exposure and occluded duration
effects in a ball-catching skill. J. Mot.
Behav. 6, 139–147.

Sharp, R., and Whiting, H. (1975).
Information-processing and eye
movement behaviour in a ball
catching skill. J. Hum. Mov. Stud. 1,
124–131.

Smeets, J. B. J., Brenner, E., Trébuchet,
S., and Mestre, D. (1996). Is time-to-
collision perception based on tau?
Perception 25, 583–590.

Sun, H., and Frost, B. J. (1998).
Computation of different optical
variables of looming objects in
pigeon nucleus rotundus neurons.
Nat. Neurosci. 1, 296–303.

Timmerman, P., and van der Weele, J. P.
(1999). On the rise and fall of a ball
with linear or quadratic drag. Am. J.
Phys. 67, 538–546.

Tresilian, J. R. (2004). Interceptive
action: what’s time-to-contact got to

do with it? Adv. Psychol. 135, 109–
140.

Tresilian, J. R., and Houseman, J. H.
(2005). Systematic variation in per-
formance of an interceptive action
with changes in the temporal con-
straints. Q. J. Exp. Psychol. 58A, 447–
466.

Wann, J. (1996). Anticipating arrival:
is the tau-margin a specious the-
ory? J. Exp. Psychol. Hum. Percept.
Perform. 22, 1031–1048.

Werkhoven, P., Snippe, H., and Toet,
A. (1992). Visual processing of optic
acceleration. Vis. Res. 32, 2313–
2329.

Whiting, H., and Sharp, R. (1974).
Visual occlusion factors in a discrete
ball-catching task. J. Mot. Behav. 6,
11–16.

Wurfel, J. D., Barraza, J. F., and
Grzywacz, N. M. (2005).
Measurement of rate of expan-
sion in the perception of radial
motion. Vis. Res. 45, 2740–2751.

Zago, M., Bosco, G., Maffei, V., Iosa,
M., Ivanenko, Y. P., and Lacquaniti,
F. (2004). Internal models of tar-
get motion: expected dynamics
overrides measured kinematics in
timing manual interceptions. J.
Neurophysiol. 91, 1620–1634.

Zago, M., McIntyre, J., Senot, P., and
Lacquaniti, F. (2008). Internal mod-
els and prediction of visual gravi-
tational motion. Vis. Res. 48, 1532–
1538.

Zago, M., McIntyre, J., Senot, P., and
Lacquaniti, F. (2009). Visuo-motor
coordination and internal models
for object interception. Exp. Brain
Res. 192, 571–604.

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 17 October 2012; accepted: 29
April 2013; published online: 16 May
2013.
Citation: Gómez J and López-Moliner
J (2013) Synergies between optical
and physical variables in intercepting
parabolic targets. Front. Behav. Neurosci.
7:46. doi: 10.3389/fnbeh.2013.00046
Copyright © 2013 Gómez and López-
Moliner. This is an open-access arti-
cle distributed under the terms of the
Creative Commons Attribution License,
which permits use, distribution and
reproduction in other forums, provided
the original authors and source are cred-
ited and subject to any copyright notices
concerning any third-party graphics etc.

Frontiers in Behavioral Neuroscience www.frontiersin.org May 2013 | Volume 7 | Article 46 | 13

http://dx.doi.org/10.3389/fnbeh.2013.00046
http://dx.doi.org/10.3389/fnbeh.2013.00046
http://dx.doi.org/10.3389/fnbeh.2013.00046
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Gómez and López-Moliner Catching parabolic balls

APPENDIX A
MATHEMATICAL DERIVATION OF THE MODEL KS
In this appendix we derive the equation for the model KS
which extends prior models of TTC for horizontal movements
to parabolic ones. In order to do so, it is necessary to obtain
vx in terms of visual parameters that can be estimated by the
catcher. Therefore we will express vx in terms of vr and vt . In order
to do so, we first define the components of a generic parabolic
movement as illustrated in Figure 1:

• (x(t), y(t)) = (x, y) is the position of the object at time t.
• ym is the maximum height of the object along the trajectory.
• xm is the corresponding horizontal value (abscise) when the

object reaches the maximum height ym.
• v0y is the initial vertical component of velocity.
• vy is the vertical component of velocity.
• vx is the horizontal component of velocity.
• v is the velocity of the ball which is tangent to the parabola.
• vr is the radial component of velocity.
• vt is the tangential component of velocity with respect to the

point of observation.
• d is the distance between the object and the catcher’s eyes.

Note that we set time t = 0 when the ball is at the origin of
coordinates [point (0,0)]. We denote by tm = v0y/g the time the
object takes to rise from y = 0 to y = ym or to descend from
y = ym to y = 0. With these definitions we can easily derive the
following equations for the parabolic movement:

x(tm) = xm = vxv0y

g

y(tm) = ym = v2
0y

2g

x(2tm) = 2xm = Xm = 2vxv0y

g

y(2tm) = 0

x(t) = vxt

y(t) = v0yt − gt2

2
vy = v0y − gt

In addition, by applying trigonometry to isolate vr and vt in
Figure 1 we have:

vr = (Xm − x)vx − yvy

d
= (Xm − x)vx − yvy√

(Xm − x)2 + y2

and

vt = (Xm − x)vy + yvx

d
= (Xm − x)vy + yvx√

(Xm − x)2 + y2

Next, we need to introduce the size of the object s, visual angle
θ, and rate of expansion θ̇.

Let us consider that the ball has diameter s, and is at dis-
tance d of the catcher (see Figure 1). It verifies that tan(θ) = s/d.
However, if the object is spheric, it can be proved that the relation
between θ, s and d is (see inset of Figure 1):

sin(θ/2) = s/2

d
(A.1)

For the sake of simplicity, however, and given that s/d is small,
the following equality is often used without a significant loss of
precision:

d ≈ s

θ
(A.2)

Next, we are going to extent two models to estimate TTC for
horizontal movement. First, if a threshold of θ is used, the follow-
ing expression can be used to compute TTC (Sun and Frost, 1998;
López-Moliner and Bonnet, 2002):

TTC = s

vxθ
(A.3)

Equation (A.3) for horizontal movements can be easily derived
by combining Equation (A.2) and Tc = (Xm − x)/vx = d/vx

Let us generalize Equation (A.3) to parabolic movements.
According to Figure 1 we have

vx = vr cos γ + vt sin γ ≈ vr cos γ + γ̇
s

θ
sin γ

where we have used that vt = γ̇d ≈ γ̇s/θ. Therefore:

TTC = Xm − x

vx
= s cos(γ)/θ

vr cos γ + γ̇s sin(γ)/θ
= s

vrθ + sγ̇ tan γ

(A.4)

Observe that when tan γ = 0 Equation (A.4) becomes
Equation (A.3). Let us see that Equation (A.4) also contains the
estimation of TTC based on a θ̇ threshold. If we derive Equation
(A.2) with respect to time we have −vr = −sθ̇/θ2. In addition, for
any horizontal movement we have that vr = vx and vr/d = 1/Tc.

If we combine these expressions with Equation (A.4) we then
have for horizontal movements:

Tc = s

vr θ̇Tc
(A.5)

The positive solution of Equation (A.5) is:

TTC =
√

s

vr θ̇
(A.6)

which turns out to be the model that specifies TTC for linear tra-
jectories based on a θ̇ threshold, given that size and velocity are
known (López-Moliner et al., 2007b).
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APPENDIX B
MATHEMATICAL DERIVATION OF THE MODEL INCLUDING PHYSICAL
SIZE AND GRAVITY GS
We here derive the model represented in Equation (9). According
to Figure 1 we can express the elevation angle γ as follows:

γ = arctan

⎛
⎝v0yt − gt2

2

Xm − vxt

⎞
⎠ = arctan

⎛
⎝ g

2vx

t2 − 2v0y

g t

t − Xm
vx

⎞
⎠

= arctan

(
g

2vx
t

)
(B.1)

where we have used that

2v0y

g
= Xm

vx

and t �= Xm
vx

. That is, the ball is not at the catcher place: (Xm, 0).
Then, using the derivative of the arctan function:

d arctan at

dt
= a

1 + (at)2

we obtain the following expression for γ̇:

γ̇ = g
2vx

(2vx)2 + (gt)2
= g

2vx

(2vx)2 + (v0y − vy)2
(B.2)

Moreover, isolating gt from Equation (B.1) we have:

gt = 2vx tan γ (B.3)

When gt of Equation (B.3) is substituted into Equation (B.2),
we have:

γ̇ = g

2vx

1

1 + tan2 γ
= g

2vx
cos2 γ

Then,

vx = g

2γ̇
cos2 γ (B.4)

In addition, using Equation (A.1) we have:

Xm − x =
√

(Xm − x)2 + y2 cos γ ≈ s

θ
cos γ (B.5)

Then, combining Equations (B.4) and (B.5) we have that the
time to contact TTC is:

TTC = Xm − x

vx
= s

θ
cos γ

2γ̇

g cos2 γ
= 2

g

sγ̇

θ cos γ
(GS) (B.6)

which denotes the model GS.

Limitations of using the GS model due to the precision of
estimating γ̇

Since the discrimination threshold of γ̇ is about 5% between 0.03
and 1.2 rad/s (McKee, 1981; Regan, 1997), there could be cases in
which the value of γ̇ falls out of this window and could undermine

the use of the model. Here we derive the cases in which the preci-
sion of γ̇ is not warranted. Let us consider the interval at which γ̇

can be estimated with a 5% error is between 0.03 and 1.2 rad s−1,
which we denote by (0.03, 1.2) = (γ̇min, γ̇max).

Let us see now when it is possible to estimate γ̇ with this
precision. According to Equation (B.2), when

γ̇min < g
2vx

(2vx)2 + (gt)2
= g

2vx

4v2
x + (v0y − vy)2

< γ̇max

we can then estimate TTC according to Equation (B.6) with a high
precision.

The time a ball is above its initial heigh is given by:

t = 2v0y

g
(B.7)

Because we assume that the maximum time is the time
denoted by Equation (B.7), when the object is moving t must then
satisfy

0 < t <
2v0y

g
(B.8)

However, when we want to estimate TTC according to
Equation (B.6) without being affected by a loss of precision in
estimating γ̇, after rearranging the inequalities shown just before
B.7, t should also satisfy

1

g

√
2g

γ̇max
vx − 4v2

x < t <
1

g

√
2g

γ̇min
vx − 4v2

x (B.9)

as well.
That is,

2

9.81

√
4.0875vx − v2

x = t1 < t < t2 = 2

9.81

√
163.5vx − v2

x

There is an optimal time interval in which γ̇ will be estimated
with 5% precision. Therefore, these values of t such that also
satisfy inequalities (B.8) and inequalities (B.9) are:

• Case 1: 0 < vx < 4.0875 m/s
In this case, t1 < t < min{t2, 2v0y/g}

• Case 2: 4.0875 m/s < vx ≤ 163.5 m/s
In this case, t < min{t2, 2v0y/g}

Case 1 represents the flights where the initial value of γ̇ will be
larger than 1.2 deg/s (because the horizontal velocity vx is smaller
than 4.08 m/s) and will decrease and eventually be within the
optimal interval at time t so that t > t1. However, two cases are
possible in which t < t1:

• a1: The initial TTC will be large enough (about 600 ms) and it
would be possible to wait until time t to estimate γ̇ accurately.
This will happen when v0y > 2 and the use of the GS model
would become possible.
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• a2: The value of v0y is very small and so is the initial TTC
(400 ms or less). Then it is not possible to wait until the time
t at which γ̇ is below 1.2. This will happen when v0y < 3
which combined with vx < 4.08 results in a very short distance
parabolae (about 30–40 cm).

Case 2 is violated when vx > 163.5 m/s or very near to this
speed. The rate of the elevation angle γ̇ will then always be
below 0.03 deg/s, that is t2 < t. This situation (vx ≈ 163.5 m/s,
about 590 km/h) is rather unusual and indeed impossible in ball
games.
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