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Pavlovian threat (fear) conditioning (PTC) is an experimental paradigm that couples innate
aversive stimuli with neutral cues to elicit learned defensive behavior in response to the
neutral cue. PTC is commonly used as a translational model to study neurobiological
and behavioral aspects of fear and anxiety disorders including Posttraumatic Stress
Disorder (PTSD). Though PTSD is a complex multi-faceted construct that cannot be fully
captured in animals PTC is a conceptually valid model for studying the development and
maintenance of learned threat responses. Thus, it can inform the understanding of PTSD
symptomatology. However, there are significant individual differences in posttraumatic
stress that are not as of yet accounted for in studies of PTC. Individuals exposed to
danger have been shown to follow distinct patterns: some adapt rapidly and completely
(resilience) others adapt slowly (recovery) and others failure to adapt (chronic stress
response). Identifying similar behavioral outcomes in PTC increases the translatability
of this model. In this report we present a flexible methodology for identifying individual
differences in PTC by modeling latent subpopulations or classes characterized by defensive
behavior during training. We provide evidence from a reanalysis of previously examined
PTC learning and extinction data in rats to demonstrate the effectiveness of this
methodology in identifying outcomes analogous to those observed in humans exposed
to threat. By utilizing Latent Class Growth Analysis (LCGA) to test for heterogeneity in
freezing behavior during threat conditioning and extinction learning in adult male outbred
rats (n = 58) three outcomes were identified: rapid extinction (57.3%), slow extinction
(32.3%), and failure to extinguish (10.3%) indicating that heterogeneity analogous to that
in naturalistic human studies is present in experimental animal studies strengthening their
translatability in understanding stress responses in humans.

Keywords: fear extinction learning, heterogeneity, latent growth modeling, PTSD

INTRODUCTION
Behavioral responses to environmental cues that signal impend-
ing danger are biologically programmed, highly conserved func-
tional adaptations that facilitate rapid threat response (LeDoux,
1996; Rosen and Schulkin, 1998). Included are freezing, escape,
potentiated startle, and increased vigilance. The mechanisms
underlying the acquisition and control of threat responses have
been effectively studied in laboratory experiments in rodents
using a procedure called Pavlovian fear conditioning, or more
accurately, Pavlovian threat conditioning (PTC) (LeDoux, 1996,
2000; Fanselow and Poulos, 2005; Maren, 2005). In PTC an emo-
tionally neutral conditioned stimulus (CS), such as a tone, is
paired with an aversive unconditioned stimulus, typically foot-
shock, resulting in the CS acquiring the capacity to elicit behav-
ioral defense responses (freezing) and corresponding changes in
autonomic nervous system activity and stress hormones release.
Repeated presentations of the CS without the aversive stimulus

typically leads to threat (fear) extinction learning whereby the
defense responses are weakened as a result of the loss of the pre-
dictive value of the CS (Morgan et al., 1993; Myers and Davis,
2002; Quirk and Mueller, 2007; Sotres-Bayon et al., 2008).

Extinction learning in particular, may be relevant to PTSD, as
this disorder has been conceptualized as a failure to extinguish
an elevated physiological threat response following significant
danger or harm (Bryant, 2003; Milad et al., 2006; Yehuda and
LeDoux, 2007; Jovanovic and Norrholm, 2011; Norrholm et al.,
2011). Research has capitalized on this conceptualization to make
advances in understanding mechanisms of and treatments for
PTSD. Neurobiological features of extinction learning in both
rodents and humans have been extensively studied to better
understand the development and maintenance of posttraumatic
stress. Further, behavioral approaches meant to encourage extinc-
tion learning including exposure therapy and novel treatments
involving the interference with memory reconsolidation are key
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features of treatments for PTSD and other anxiety disorders
(Monfils et al., 2009; Schiller et al., 2009; Milad and Quirk,
2012).

Despite the relevance of PTC paradigms to the study of
PTSD, there are glaring differences between animal and human
studies that hamper their translatability. PTSD develops in a
small subset of individuals who have an extreme persistent reac-
tion after exposure to stress. Longitudinal studies have shown
that there is clinically relevant heterogeneity in the course
of PTSD symptoms over time (Bonanno, 2004, 2005, 2006;
Bonanno et al., 2011) with distinct populations, include rapid
adaptation with only transient symptoms (resilience), slow remis-
sion (recovery), and failure to remit (chronic PTSD) (Deroon-
Cassini et al., 2010; Galatzer-Levy et al., 2011a; Bonanno et al.,
2012b). By contrast, models of PTC have primarily relied on
the analysis of central tendencies which ignore heterogeneity
(Sotres-Bayon et al., 2008) and assume that the group aver-
age represents individual behavior overall (Judd et al., 2009).
Nonetheless, heterogeneity has been observed in stress-related
behavior in rats exposed to identical experimental conditions
casting doubt on the value of central tendencies for studying PTC
(Cavigelli and McClintock, 2003; Cavigelli et al., 2006; Bush et al.,
2007).

Heterogeneity in animal models is has gained attention
recently (Bush et al., 2007; Duvarci et al., 2009) and is the-
orized to have important repercussions for translational mod-
els of stress response in humans (Bush et al., 2007; McEwen
et al., 2012). However, there has been very little discussion of
methodological considerations regarding identification or exam-
ination of heterogeneity in animal models of PTC. Addressing
this gap is important for fleshing out the theoretical connec-
tion between learned defensive responses and genetic polymor-
phisms, epigenetics, and key molecular circuits that may dif-
ferentiate clinically relevant outcomes such as posttraumatic
stress and resilience (Martin et al., 2010; Holmes and Singewald,
2013).

Attempts have been made to identify heterogeneous behav-
ioral phenotypes among animals exposed to threat by first
determining the mean response and then identifying popula-
tions of animals whose behavior deviates from that mean by
one or two standard deviations (Bush et al., 2007; Krishnan
et al., 2007). However, in animals, highly non-normal distri-
butions have been observed in defensive behaviors (Cavigelli
and McClintock, 2003; Bush et al., 2007; Sotres-Bayon et al.,
2008; McEwen et al., 2012), making both the mean and standard
deviation considerably less informative. Similarly non-normal
distributions in symptoms of PTSD and general distress follow-
ing exposure in humans have been observed and found to be
indicative of behavioral heterogeneity. Heterogeneous patterns
have been identified using modeling techniques that reveal latent
sub-populations, or “classes,” within finite distributions in lon-
gitudinal behavioral measures (Galatzer-Levy et al., 2011a, 2012,
2013).

A relatively new set of modeling techniques, termed Latent
Growth Modeling (LGM), is specifically suited to identify
parameters of heterogeneous trajectories in longitudinal data
by identifying such finite distributions (Muthen, 2004). This

approach provides a method to empirically examine heteroge-
neous latent classes that are distinguished by their pattern of
change over time. Importantly, LGM provides statistical meth-
ods for determining the number of classes that best fit the data
and a framework for statistically testing hypotheses related to that
heterogeneity (Del Boca et al., 2004).

The LGM approach has been utilized to identify and explore
heterogeneity in situations where it may not be parsimonious
to assume one common behavioral pattern, including drink-
ing behavior among college students (Greenbaum et al., 2005),
childhood aggression (Schaeffer et al., 2003), and developmen-
tal learning trajectories (Boscardin et al., 2008). More recently,
an LGM approach has been utilized to identify common pat-
terns of symptom and distress response to potentially traumatic
life events, including trajectories of depression and anxiety symp-
toms following traumatic spinal cord injury (Bonanno et al.,
2012a) and distress and posttraumatic stress symptoms follow-
ing trauma exposure (Galatzer-Levy et al., 2011c, 2013; Bonanno
et al., 2012b; Galatzer-Levy and Bonanno, 2013).

Given that extinction learning following PTC is widely con-
sidered a strong translational model of behavioral responses
to traumatic stress (Milad et al., 2009; Milad and Quirk,
2012), we hypothesize that similar trajectories of behavioral
response would be identifiable in rodent extinction as in humans
responding to traumatic stress. In the current investigation,
we therefore tested the hypothesis that freezing behavior dur-
ing extinction of PTC in rodents would be characterized better
by discrete heterogeneous trajectories of growth in freezing
behavior than by measures of central tendency. Specifically, we
hypothesized that distinct patterns of rapid extinction, slow
extinction, and failure to extinguish threat learning would
be identifiable, consistent with observations of the heteroge-
neous course of stress pathology and resilience in humans. To
achieve this aim, we reanalyzed data used in a previous study
of individual differences in rat freezing behavior in response
to this learning paradigm to examine individual differences
patterns using LGM-based modeling techniques (Bush et al.,
2007).

MATERIALS AND METHODS
PARTICIPANTS
The current investigation examined n = 58 adult male outbred
Sprague-Dawley strain rats previously reported on Bush et al.
(2007). Seven rodents who had been excluded as outliers in the
previous analysis were included in this study. The rats weighed
275–325 g upon arrival (Hilltop Lab Animals, Inc., Scottsdale,
PA) and were individually housed in transparent plastic Nalgene
cages. The animals were maintained throughout the experiment
on a 12/12-h light/dark cycle in a temperature- and humidity-
controlled environment with food and water available ad-libitum.
All procedures were in accordance with the National Institute
of Health Guide for the Care and Use of Experimental Animals
and were approved by the New York University Animal Care
and Use Committee. Data from control rats across previous fear
conditioning and extinction studies were culled for the current
analysis. This data is from vehicle control rats that were exposed
to identical behavioral procedures.
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Habituation, defense conditioning, testing, and extinction
took place in one of four identical chambers constructed of
aluminum and Plexiglas walls and metal stainless steel rod
flooring attached to a shock generator. The chambers were
lit by a single house light except during the dark cycle. Each
chamber was enclosed in a sound-isolation cubicle with an
infrared digital camera mounted on top of each chamber used
to record behavior. An overhead 24-cell, three dimensional
infrared activity sensors continuously monitored all movement
in the chamber and data was recorded on a computer equipped
with Coulbourn Instruments LabLinc Habitest Universal Linc
System at temporal resolution of 20 ms. This computer also con-
trolled the stimulus presentation with Graphic State 2 software
(Coulbourn Instruments). Chambers were thoroughly cleaned
between sessions.

Measures and procedures
Freezing behavior was used as a behavioral measure of defensive
response to the CS. Freezing in this context is defined as the ces-
sation of all movement with the exception of respiration-related
movement and non-awake or rest body posture (McAllister
and McAllister, 1971). An automated scoring method that col-
lects activity/inactivity data with the overhead infrared activ-
ity monitor was used to measure freezing behavior. Data
was converted to quantitative freezing values using custom
MATLAB® (The Math Works, Inc., Natick, MA) code, where
freezing was defined as continuous inactivity lasting at least
2 s. Videotaped behavior was used to monitor behavior dur-
ing extinction to ensure that resting/sleeping was not scored as
freezing.

Conditioning was conducted in groups of four rats at a
time, with all rats first exposed to five habituation trials (CS-
alone presentation). The following day, rats were given auditory
conditioning, beginning 4 min after placement in the chamber.
Conditioning consisted of seven tone presentations (30 s, 5 kHz,
80 dB SPL), each co-terminating with a footshock (1 s, 0.7 mA).
The mean inter-trial interval was 4 min in the 2–6-min range
throughout habitation consistent with other studies of auditory
fear conditioning (Milad and Quirk, 2002). Rats were returned
to their home cages in the colony room immediately following
conditioning. Extinction training commenced one day following
conditioning and consisted of 20 CS-alone presentations given in
the conditioning context.

DATA ANALYSIS
Latent Class Growth Analysis (LCGA) was employed using Mplus
6.12 (Muthen and Muthen, 2006) to identify heterogeneous tra-
jectories by testing for discrete mixture distributions of threat
conditioning and extinction. LCGA is an extension of LGM
that utilizes fixed effects. Fixed effects were employed to reduce
the number of parameters being modeled because of the rela-
tively small sample size. We utilized a piecewise model. Piecewise
models allow one to model separate trajectories for the same par-
ticipants. In this context, a piecewise model was used because
we wanted to examine a trajectory for threat conditioning and
a separate trajectory for threat extinction. The threat condi-
tioning piece included seven time points and the extinction

piece covered 20 time points. The two trajectories were con-
nected by a single intercept placed at the first extinction trial.
We compared competing models with linear slopes only for
conditioning and extinction, as well as linear and quadratic pat-
terns for a progressive number of classes. The best fit in terms
of linear or linear + quadratic was assessed, as well as the
best fitting number of classes based on the information criteria
[Bayesian (BIC), sample-size adjusted Bayesian (SSBIC), Aikaike
Information Criterion (AIC)], and the Bootstrap Likelihood
Ratio Test (BLRT), along with parsimony and interpretability
consistent with recommendations from the literature (Nylund
et al., 2007). Models were compared and the best model was
selected based on lower values for the criterion indices, and a
significant p-value for the BLRT. We also examined entropy to
assess the likelihood that individual rats were conforming to the
modeled trajectories.

RESULTS
First, we identified a univariate single-class growth model to facil-
itate model specification for the LCGA with fixed effects on the
intercept, slope, and quadratic parameters (Figure 1). This model
represents freezing behavior in threat conditioning and extinction
assuming a single distribution consistent with typical models of
central tendencies. Utilizing the methodology discussed to iden-
tify the best fitting model, we found that a 3-class model with
linear and quadratic parameters best fit the data (see Table 1;
Figure 2). This model demonstrated high posterior probability
of correct class specification (entropy = 0.96). The largest class,
Rapid Extinction (57.3%), was characterized by a positive linear
and a negative quadratic slope for conditioning trials (ESTslope =
14.06, SE = 2.72, p < 0.001; ESTquadratic = −4.19, SE = 0.42,
p < 0.001), an intercept that was significantly distinct from
0 indicating threat conditioning had occurred (ESTintercept =
73.46, SE = 3.10, p < 0.001), and a negative slope and positive
quadratic for extinction trials indicating a rapid initial rate of
decrease (ESTslope = −6.36, SE = 0.63, p < 0.001; ESTquadratic =
0.13, SE = 0.03, p < 0.001). The second largest class, Slow
Extinction (32.3%), was characterized by a positive linear and
a negative quadratic slope for conditioning trials (ESTslope =
18.47, SE = 3.49, p < 0.001; ESTquadratic = −4.76, SE = 0.54,
p < 0.001), an intercept that was significantly distinct from
0 indicating threat conditioning had occurred (ESTintercept =
71.13, SE = 3.83, p < 0.001), and a positive slope and negative
quadratic indicating an initial slow decrease followed by a more
rapid rate of decrease during extinction (ESTslope = 2.03 = SE =
0.79, p ≤ 0.01; ESTquadratic = −0.28, SE = 0.03, p < 0.001). The
smallest class, Failure to Extinguish (10.3%), also demonstrated
a positive linear slope and negative quadratic term for condi-
tioning (ESTslope = 21.31, SE = 5.83, p < 0.001; ESTquadratic =
−4.67, SE = 0.91, p < 0.001), and an intercept that was sig-
nificantly distinct from 0 indicating threat conditioning had
occurred (ESTintercept = 53.57, SE = 6.53, p < 0.001). However,
this class was distinguished from the other classes by a non-
significant slope and intercept term for freezing behavior dur-
ing extinction indicating no change over time relative to the
intercept (ESTslope = −0.29, SE = 1.29, p = 0.83; ESTquadratic =
0.02, SE = 0.06, p = 0.72).
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FIGURE 1 | Mean freezing behavior for 7 fear conditioning and 20 fear extinction trails (n = 58).

Table 1 | Fit indices for 1- to 4-class latent class mixture models of

freezing behavior (n = 58).

Fit indices AIC BIC SSBIC BLRT Entropy

LINEAR WEIGHTS

1 Class 15012.96 15074.77 14980.45 – –

2 Class 14745.79 14815.84 14708.94 p < 0.001 0.99

3 Class 14704.81 14783.11 14663.63 p < 0.001 0.96

4 Class 14654.61 14741.15 14609.10 p = 0.67 0.97

LINEAR + QUADRATIC WEIGHTS

1 Class 14957.96 15023.90 14630.28 – –

2 Class 14672.00 14750.30 14630.82 p < 0.001 0.96

3 Class 14529.38 14620.03 14481.69 p < 0.001 0.96

4 Class 14556.27 14659.29 14502.08 p = 0.09 0.98

Information Criteria and model fit indices for best fitting model in bold. AIC,

Akaike Information Criterion; BIC, Bayesian Information Criterion; SSBIC, Sample

Size Adjusted Bayesian Information Criterion; LRT, Lo-Mendell-Rubin Test; BLRT,

Bootstrap Likelihood Ratio Test. 1- to 4-class solutions were tested with linear

and quadratic parameters.

Post-hoc ANALYSES
We next conducted a series of ANOVAs to examine mean level dif-
ferences between the classes at the last time points in conditioning
(Conditioning Time 7) and extinction (Extinction Time 20).
The ANOVA for class differences in conditioning at Time 7 was
non-significant [F(2, 55) = 0.92, p = 0.40], and additional post-
hoc analyses using least squares confirmed that there were no
significant class differences. The ANOVA for class differences
in extinction at time 20 was highly significant [F(2, 55) = 92.11,
p < 0.001]. Post-hoc analyses using least squares indicated signif-
icant class differences for the Failure to Extinguish class versus
the Rapid Extinction class (Mean difference = 49.55, p < 0.001)
and the Failure to Extinguish class versus the Slow Extinction
class (Mean difference = 51.32, p < 0.001), but not for the Rapid
Extinction class (N.S.) versus the Slow Extinction class (N.S.).

These findings indicate that classes did not differ significantly
after conditioning, and that at the end of the extinction trails only
the Failure to Extinguish class differed significantly from the other
two classes.

PARAMETERS FOR THE IDENTIFICATION OF EXTINCTION CLASSES
Based on this analysis, the parameters for freezing scores during
extinction learning for each class were identifiable. These param-
eters can be utilized and further refined by future studies. Once
consistent and accurate parameters are defined in the literature,
these populations will be identifiable without needing to utilize
the complexity of latent modeling approaches. Rats in the Failure
to Extinguish class were distinguishable from the other two classes
based on freezing behavior during the final three extinction train-
ing trials (average of trials 18–20 ≥ 37.08; see Figure 2). Slow
Extinction rats are distinguishable from the other trajectories
based on freezing behavior averaged across the middle trials (aver-
age of trials 10–15 ≥ 34.67) together with freezing behavior
during final trials (average of trials 18–20 ≤ 32.00). The remain-
ing rats are classified as belonging to the Rapid Extinction class.
Based on this algorithm, all cases are correctly classified. These
parameters should be treated as initial findings to be improved
upon with further study.

DISCUSSION
The current study attempted to identify heterogeneity in defen-
sive behavioral responses to learned threatening stimuli. The goal
of this study was to identify clinically meaningful subpopula-
tions in PTC and to demonstrate the efficacy of this approach
so as to better inform translational models of threat response
in humans. By using a PTC paradigm, heterogeneous patterns
of freezing behavior in response to the CS/US pairing (condi-
tioning) followed by the CS presented alone (extinction) were
identified. Based on evidence from the literature on the longitu-
dinal course of stress responses in humans (Bonanno et al., 2008,
2012a,b; Deroon-Cassini et al., 2010; Galatzer-Levy et al., 2010,
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FIGURE 2 | Three class freezing behavior for 7 fear conditioning and 20 fear extinction trails (n = 58).

2011b, 2012; Galatzer-Levy and Bonanno, 2012), along with evi-
dence from the animal literature that rodent freezing behavior is
highly non-normal during extinction learning even when exposed
to identical experimental conditions (Cavigelli and McClintock,
2003; Cavigelli et al., 2006; Sotres-Bayon et al., 2008; McEwen
et al., 2012), we hypothesized that the unexplained variability
in animal models of Pavlovian defensive learning could be cap-
tured by multiple, latent, heterogeneous patterns of response. To
test this hypothesis, a cohort of adult male outbred rats (n = 58)
(Bush et al., 2007) were examined for heterogeneity in threat con-
ditioning and extinction learning using LCGA, a data analytic
approach for the identification of latent heterogeneous longitudi-
nal trajectories (Muthen, 2004). A piecewise model (Flora, 2008)
was used to disentangle differences among classes on both threat
conditioning and threat extinction learning.

A three class solution best fit the data. The majority class,
Rapid Extinction (57.3%), extinguished rapidly and completely as
evidenced by a significant negative quadratic parameter sugges-
tive of a rapid decrease in freezing behavior during extinction.
The second largest class, Slow Extinction (32.3%), also reached
basal levels of freezing behavior through extinction training but
at a slower pace, suggested by a significant positive quadratic
parameter. Finally, we observed a Failure to Extinguish (10.3%)
class of rats. This class failed to acquire extinction learning. The
classes were not significantly different in freezing behavior dur-
ing conditioning, indicating that initial threat-elicited defensive
response is more or less uniform across these groups, and that
differences manifest primarily in the ability to learn that the CS
no longer signals harm. These results suggest that conditioning
and extinction learning are distinct but related learning processes.
This indicates that mechanisms underlying the extinction and not
conditioning may explain patterns of adaptation. These trajecto-
ries differed somewhat from those previously identified with this
data (Bush et al., 2007). However, the model that included the

Failure to Extinguish class demonstrated stronger model fit and is
more ecologically valid.

It is important to acknowledge that a more definitive claim
about common patterns or phenotypic responses in condition-
ing will require replication. The impact of these findings would
be greatly increased if similar patterns and proportions were
observed in an independent population of rodents exposed to the
same conditioning paradigm. Secondly, the data analytic meth-
ods utilized require larger samples then typically used in this kind
of research, making further exploration somewhat prohibitive.
Further, the current study did not attempt to identify mechanisms
and it remains unclear if the observed heterogeneity is due to
genetic, epigenetic, or uoncontrolled environmental conditions.
If the observed heterogeneity is due to environmental conditions,
those conditions are likely subtle, as the experiment was uniform
and closely controlled.

Despite these limitations, the current study has important
implications for the understanding of heterogeneity in responses
to stressors. Evidence for heterogeneous stress responses in exper-
imental Pavlovian defensive learning may be important to the
study of distress- and stress-related psychopathology in humans.
The development of such translational models may lead to impor-
tant discoveries regarding environmental and biological mecha-
nisms and correlates of chronic stress and resilience. To achieve
this goal, it is important to utilize modeling techniques that are
appropriate both for identifying heterogeneity in the course of
behavioral responses and for testing hypotheses related to those
differences.

While the current study focused on defensive learning, there
are other adaptive functions that are achieved by forming asso-
ciations between biologically driven responses and previously
neutral stimuli (Cardinal et al., 2002; LeDoux, 2012). Researchers
are commonly interested in knowing why some adapt well to
novel stimuli while others do poorly. Why do some develop
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significant and prolonged stress reactions following exposure to
a potentially traumatic event while others cope well? Why do
some develop addictions when exposed to a potentially addic-
tive substance while others do not? Why do some eat in excess
leading to obesity when they are given free access to food while
others do not? All of these questions are examined through trans-
lational animal models in an attempt to understand complex

biological processes that explain meaningful differences between
groups that behave distinctly. Elucidation of individual differ-
ences that capture distinct populations is important for identify-
ing individual differences in less easily observable neurobiological
processes. Attending to meaningful heterogeneity can inform the
understanding of any contexts where learned triggers activate
biologically driven behavioral responses.
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