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Autism is a neurodevelopmental condition diagnosed by impaired social interaction,
abnormal communication and, stereotyped behaviors. While post-mortem and imaging
studies have provided good insights into the neurobiological symptomology of autism,
animal models can be used to study the neuroanatomical, neurophysiological and
molecular mediators in more detail and in a more controlled environment. The valproic acid
(VPA) rat model is an environmentally triggered model with strong construct and clinical
validity. It is based on VPA teratogenicity in humans, where mothers who are medicated
with VPA during early pregnancy show an increased risk for giving birth to an autistic
child. In rats, early embryonic exposure, around the time of neural tube closure, leads
to autism-like anatomical and behavioral abnormalities in the offspring. Considering the
increasing use of the VPA rat model, we present our observations of the general health
of Wistar dams treated with a single intraperitoneal injection of 500 or, 600 mg/kg VPA
on embryonic day E12.5, as well as their male and female offspring, in comparison to
saline-exposed controls. We report increased rates of complete fetal reabsorption after
both VPA doses. VPA 500 mg/kg showed no effect on dam body weight during pregnancy
or, on litter size. Offspring exposed to VPA 500 mg/kg showed smaller brain mass on
postnatal days 1 (P1) and 14 (P14), in addition to abnormal nest seeking behavior at P10
in the olfactory discrimination test, relative to controls. We also report increased rates
of physical malformations in the offspring, rare occurrences of chromodacryorrhea and,
developmentally similar body mass gain. Further documentation of developmental health
may guide sub-grouping of individuals in a way to better predict core symptom severity.
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INTRODUCTION
Autism is a severe and pervasive neurodevelopmental disorder,
diagnosed by the age of 3 upon clinical presentation of impaired
social interaction, abnormal communication, and repetitive
behaviors. Autism is highly heritable (Sullivan et al., 2012),
and many gene loci serve as potent risk factors (Bonora et al.
in Moldin and Rubenstein, 2006; Betancur, 2011; Matsunami
et al., 2013). However, the identified susceptibility genes are rare,
incompletely penetrant and, often not specific to autism, and
thus have not served as a direct cause of autism. In addition,
environmental factors seem to play an increasingly important
role, as indicated by prevalence estimates over the last 2 decades
that rose from as low as 7 to as high as 72.6 cases per 10,000
(Fombonne, 2009). Importantly, broadening and improvement
of the diagnostic criteria alone do not explain such an increase
(Weintraub, 2011). In support of the role of the environment in
autism is the accumulated evidence that biochemical insults dur-
ing early embryogenesis increase the risk for autistic symptoms
in the child. Examples include maternal rubella infection (Chess,
1971), ethanol (Nanson, 1992), misoprostol (Bandim et al., 2003),
thalidomide (Stromland et al., 1994), and valproic acid (VPA;

Clayton-Smith and Donnai, 1995; Moore et al., 2000; Ornoy,
2009; Christensen et al., 2013; Roullet et al., 2013). Thus, genetic
and environmental factors seem to interact in biologically com-
plex mechanisms to yield the broad heterogeneity in symptom
severities (Zahir and Brown, 2011).

In order to elucidate the neurobiology underling autism, ani-
mal models have been developed. While an animal model may
not entirely simulate a human disorder, major symptoms may be
captured sufficiently to allow a rigorous study of molecular, pro-
teomic, cellular, circuit, and behavioral alterations in order to bet-
ter understand the underlying pathology. Several animal models
of autism have been presented, including genotype based models
affecting the oxytocin system (Modi and Young, 2012), the Reelin
signaling pathway (Lakatosova and Ostatnikova, 2012; Folsom
and Fatemi, 2013), the Wnt canonical pathway (Kalkman, 2012),
the engrailed genes (Kuemerle et al., 2007), MeCP2 (Gonzales and
LaSalle, 2010) and, neuroligins (Xu et al., 2012). Alternatively,
the most used environmentally triggered model of autism results
from embryonic exposure to VPA in the rat (e.g., VPA-rat model;
Vorhees, 1987; Rodier et al., 1996; for review see Rodier et al.,
1997; Markram et al., 2007), and a VPA-mouse model is also
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available (Chapman and Cutler, 1984; Wagner et al., 2006; Gandal
et al., 2010; Roullet et al., 2010; Kataoka et al., 2013).

In humans, VPA is widely used as an anti-epileptic, and also
prescribed as a mood stabilizer and against migraines, and it is
currently in clinical trial as an anti-cancer agent. However, VPA
is teratogenic (Nau et al., 1982; Ornoy, 2009), where exposure
during gestation increases the risk for various congenital mal-
formations in the child, grouped as Fetal Valproate Syndrome
(FVS; Kozma, 2001; Kini, 2006; Ornoy, 2009). FVS features also
include decreased verbal intelligence and an association between
VPA exposure in utero and autism has been consistently reported
(reviewed in Ornoy, 2009; Roullet et al., 2013). In particular,
Moore and colleagues showed 60% of those diagnosed with FVS
exhibit 2 or more autistic features, and 11% develop full blown
autism (Moore et al., 2000). In the same line, Rasalam and col-
leagues indicated that 8.9% of children exposed to VPA in utero
develop autistic features (Rasalam et al., 2005). Based on the
nature of physical malformations and brainstem morphological
changes in autism, it has become apparent that VPA exposure
in the first trimester of gestation represents the highest risk for
the child to develop autism, in particular after exposure during
the time of neural tube closure and genesis of brainstem cra-
nial nerve nuclei cells (Kemper and Bauman, 1998; Rodier, 2002,
2004; Arndt et al., 2005; Ornoy, 2009).

The idea of early embryogenesis as the critical time for autism
led to development of the VPA rat model (Rodier et al., 1997;
Kemper and Bauman, 1998; Arndt et al., 2005; Kim et al., 2011).
Strong clinical validation of the model is given by observa-
tion that offspring of rats exposed to a single dose of VPA on
embryonic day 12.5, around the time of neural tube closure and
brain stem nuclei formation in rats, present neuroanatomical and
behavioral characteristics similar to human autism. Specifically,
VPA-exposed offspring present (1) a reduced number of motor
cells in cranial nerve motor nuclei in the brain stem (Rodier et al.,
1996; Rodier, 2002); (2) a reduced number of Purkinje cells in
the cerebellum, observed both in VPA-treated offspring (Rodier
et al., 1997; Ingram et al., 2000) and in autism (Kemper and
Bauman, 1998); (3) decreased social interactions, increased repet-
itive behaviors, lower sensitivity to pain, impaired sensorimotor
gating or eye blink conditioning, and increased anxiety described
in VPA-treated offspring (Schneider et al., 2001, 2006, 2007;
Schneider and Przewlocki, 2005; Stanton et al., 2007; Markram
et al., 2008; Bambini-Junior et al., 2011; Kim et al., 2011; Zhang
et al., 2012) and commonly found in the autistic spectrum
(McAlonan et al., 2002; Gaigg and Bowler, 2007; Perry et al.,
2007; Hofvander et al., 2009; MacNeil et al., 2009; van Steensel
et al., 2011). Moreover, rat offspring treated at E12.5 exhibit
strongly amplified conditioned fear memories, which generalize
to non-conditioned stimuli and are resistant to extinction, in par-
allel to increased synaptic plasticity in the amygdala (Markram
et al., 2008; see also Sui and Chen, 2012). Abnormal high anx-
iety, fears and phobias are also commonly reported in autism
(Kanner, 1943; Muris et al., 1998; however, see Bernier et al., 2005;
Evans et al., 2005; Hofvander et al., 2009; Settipani et al., 2012).
Similar results have been obtained by slightly modified VPA treat-
ment protocols in the rat (e.g., Rodier et al., 1996; Chomiak et al.,
2010; Dufour-Rainfray et al., 2010; Narita et al., 2010; Kim et al.,

2011; Tashiro et al., 2011), and in the mouse (e.g., Wagner et al.,
2006; Gandal et al., 2010; Mehta et al., 2011; Roullet and Crawley,
2011; Hara et al., 2012; Kataoka et al., 2013). Taking into account
these striking behavioral and anatomical parallels between the
VPA model and human autism, the VPA rat model is well suited
to study synaptic and circuit alterations in order to elucidate the
potential neuropathology of autism.

The data on the VPA model not only further support a
closer association between neural tube closure and autistic traits,
but provide new insights into the neuropathology of autism.
Studies in our lab demonstrated that the neocortex and amyg-
dala of VPA-treated rat offspring is hyper-reactive and hyper-
plastic due to hyper-connectivity between neurons (Rinaldi et al.,
2007; Markram et al., 2008; Rinaldi et al., 2008a,b; Silva et al.,
2009). These observations indicate excessive processing and stor-
age of information in these nervous systems. They suggest that
hyper-functional microcircuits could underlie autism, and fur-
ther research is warranted.

In view of the increased use of the VPA model to study the
neurobiology of autism, the goal of the present paper is to pro-
vide better practical reference to those who seek to reproduce
the model. First, we describe a VPA dose dependence of off-
spring survival, because there is no consistent data on pregnancy
outcome in the literature. We then present data on the global
developmental health of VPA-treated dams and their offspring
exposed to 500 mg/kg VPA during pregnancy. With this study we
hope to motivate the documentation of such variables as potential
predictors of autistic-like vulnerability.

MATERIALS AND METHODS
ANIMALS AND VPA-MODEL
Outbred Wistar Han rats (Janvier Laboratories, France) were
mated in house or ordered pregnant, and pregnancy was deter-
mined by the presence of a vaginal plug on embryonic day 1 (E1).
To produce experimental rats based on the VPA rat model of
autism (Rodier et al., 1997), we prepared sodium salt of valproic
acid (NaVPA, Sigma-Aldrich) in 0.9% saline (100 mg/ml, pH
7.3). On E12.5, VPA-dams received a single intraperitoneal (i.p.)
injection of NaVPA, either 500 mg/kg, 3.3 ml/kg, or 600 mg/kg,
3.3 ml/kg; control (CTR) dams received a single injection of saline
vehicle (i.p., 0.9%, 3.3 ml/kg). Dams were housed individually
and allowed to raise their own litters until weaning on postnatal
day 23 (P23). Both male and female offspring were included in the
study. The offspring were housed with 2–3 rats in same-sex, same-
treatment cages. Standard plastic laboratory cages were used with
bedding and ad libitum access to food and water, cleaned once a
week. Animals were kept in a 12 h light-dark schedule with lights
on at 6:30 am, in rooms under controlled humidity and tem-
perature. All the procedures were in conformity with the Swiss
National Institutional Guidelines on Animal Experimentation for
the ethical use of animals, and approved by the Swiss Cantonal
Veterinary Office Committee for Animal Experimentation.

DAMS AND PREGNANCY
To determine the toxicity of different doses of VPA, we measured
the complete fetal re-absorption rate (miscarriage), as the percent
of dams from which a vaginal plug had been detected that did not
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give birth to a single pup, in CTR (n = 40), VPA 500 mg/kg (n =
26), and VPA 600 mg/kg (n = 37) dams. Statistical comparisons
between the number of reabsorptions in each VPA treatment
and the control group were done with X2 tests, and statistical
significance is reported at the alpha level of 0.05.

To confirm the lower toxicity of VPA (500 mg/kg) on preg-
nancy, we measured the body mass of dams (CTR n = 9, VPA
n = 15) on E12.5, E14, E21, P1, and, P6, for dams that gave birth
to at least one pup. Analysis was done with a univariate two-
way mixed factorial ANOVA (RM 2-ANOVA), using treatment
(CTR or VPA) as the between subject factor, and time of weighing
(E12.5, E14, E21, P1, P6) as the repeated measures within subjects
factor. Statistical significance is reported at the alpha level of 0.05.

For further investigation of pregnancy outcome, the litter size
was counted 2 days after birth in litters where at least one pup was
born in CTR (n = 29) and VPA (500 mg/kg; n = 33). For analysis
of the effect of VPA treatment on litter size, a two-tailed Student’s
t-test was applied, and statistical significance is reported at the
alpha level of 0.05.

OFFSPRING BODY MASS
Body mass gain of the offspring from dams treated with either
vehicle (CTR) or VPA (500 mg/kg) was measured weekly for
33 postnatal weeks (PW 2–12, 15–25, and 27–38). A total of
six unbalanced cohorts were evaluated (CTR n = 191, VPA n =
191), where measurement time points were inconsistent across
cohorts (e.g., some cohorts measurements were from the first 12
weeks, others for months 1–7, others only for particular weeks).
Thus, standard ANOVA tests were inappropriate, and we used a
mixed effect model to analyse the effects of treatment (CTR or
VPA) and sex (male or female) on offspring body mass over time
(age of animal). The model was built using the lmer() function
from the lme4 package in R (version 2.11.1) and, the interac-
tions of age by sex, age by treatment, and sex by treatment were
taken into account. We report |t-value|>2.5 to be statistically
significant.

OFFSPRING BRAIN MASS
The brain mass of CTR (n = 55) and VPA (500 mg/kg, n = 50)
offspring were measured on P1 and P14. Brains were extracted
excluding the olfactory bulb, and excluding parts of the brainstem
posterior to the cerebellum. A total of two balanced cohorts were
used, one with paraformaldehyde (PFA) fixed and, the other with
fresh brains. For the fixation procedure, animals were sedated
with pentobarbital (i.p. 100 mg/kg, 100 mg/ml) and transcardially
perfused with phosphate buffered saline (PBS), followed by 4%
paraformaldehyde in PBS. The brains were extracted and placed
in 4% PFA in PBS for 24 h, for post-fixation at room temper-
ature, then transferred to a 30% sucrose solution in distilled
water and stored at 4◦C for 2–4 days until density equilibra-
tion. For fresh brain measurements, animals were removed from
their home cage and decapitated, the brains dissected imme-
diately, and placed on the weighing dish. Separate statistical
analyses for P1 and P14 were done to address the effect of
treatment and sex on absolute brain mass, with a univariate
two-way ANOVA (2-ANOVA). Post-hoc analysis of the effect of

treatment was carried out with Bonferroni correction for mul-
tiple comparisons. Complimentary investigation of body mass
as a covariate in brain mass was done with a univariate anal-
ysis of the effect of treatment, sex, age on brain mass with a
3-way mixed model analysis of covariance (3-ANCOVA), using
treatment (CTR or VPA), sex (male or female), and age (P1
and P14), as the between subject factors, and body mass as a
covariate. Statistical significance is reported at the alpha level
of 0.05.

OFFSPRING MALFORMATIONS
We documented any major physical malformation of the off-
spring from dams treated with either vehicle or 500 mg/kg of VPA,
present at any time during the life of the animal. We compared
the rates between the 2 treatment groups with 2-tailed FET, and
report statistical significance at the alpha level of 0.05.

OFFSPRING CHROMODACRYORRHEA
Chromodacryorrhea is a condition found in rats due to porphyrin
over-production by the Harderian glands in the eye. This exu-
date accumulation can form red (blood-looking) crusts around
the eyes, nose, and the neck fur of the animals after grooming.
Chromodacryorrhea can be used as an indicator of general stress.
We documented the sign of any visible red crusts around the eyes
or nose on rats, at any time during the lifetime of the animal,
and compared these rates between the 2 treatment groups with
1-tailed FET. Statistical significance is reported at the alpha level
of 0.05.

OFFSPRING OLFACTORY DISCRIMINATION BEHAVIORAL TEST
This test measures nest-seeking behavior mediated by olfactory
cues present in the home cage bedding (Gregory and Pfaff, 1971).
The apparatus consisted of a clean standard housing cage (trans-
parent polycarbonate, 375 length × 215 width × 20 height cm)
with a line drawn through the center, and with two olfactory
stimuli placed at opposite ends of the cage: one was a plastic
Petri dish (10 cm diameter) filled with home bedding (nest odor),
the other was a dish filled with clean bedding (neutral odor).
On P10, male and female offspring were individually placed in
the center of the cage, on the middle line, and the latency to
reach the first stimulus was measured, determined by when the
pup stepped with both forepaws into one of the dishes. The
cage was cleaned between animals with 5% Ethanol. For clarity,
statistical tests and sample sizes are specified in the results sec-
tion, where statistical significance is reported at the alpha level
of 0.05.

STATISTICAL SOFTWARE
Levene’s tests, Student’s t-tests, Welch’s correction, 2-ANOVA
and Bonferroni correction were run on GraphPad Prism soft-
ware (version 4.00 for Windows, GraphPad Software, San Diego
California, USA). The mixed effect linear model was run on R
Freeware (version 2.11.1, www.r-project.org, ISBN 3-900051-08-
9). Pearson’s Chi-Square tests (X2), FET (used when X2 expected
counts were bellow 5), and 3-ANCOVA were ran on IBM SPSS
software (version 19 for Windows or Mac, Chicago, IL, USA).
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RESULTS
DAMS AND PREGNANCY
The general health of both VPA-treated and control dams was
normal. However, Figure 1 shows the effect of two VPA doses,
500 mg/kg and 600 mg/kg, on fetal reabsorption rates, compared
with CTR. For dams with a detected vaginal plug, while 2.5%
(1/40) of CTR dams showed complete fetal reabsorption, signif-
icantly higher rates were found for both VPA 500 mg/kg (23.1%,
6/26, FETp = 0.013 2-tailed), and VPA 600 mg/kg [54.1%, 20/37,
X2

(1, 77)
= 19.67, p < 0.0001] in comparison with CTR. All fur-

ther studies were carried out with the VPA-treatment dose of
500 mg/kg in order to avoid a very high fetal reabsorption rate.

Figure 2A shows the effect of VPA (500 mg/kg) on pregnancy
body mass compared to CTR, from measurements taken pre-
natally at E12.5, E14, and E21, and postpartum, on P1 and
P6. We observed a significant main effect of day of weighing
[F(4, 97) = 112.3, p < 0.0001], but no main effect of treatment
[F(1, 97) = 2.289, p = 0.1335], and no interaction between treat-
ment and day factors [F(4, 97) = 0.2812, p = 0.8895]. Figure 2B
shows the effect of VPA (500 mg/kg) on litter size (number of
pups born) for pregnancies carried out to term (at least 1 live pup
born) compared with CTR. We observed no statistically signifi-
cant differences between the two treatment groups[t(60) = 1.58,
p = 0.118].

OFFSPRING BODY MASS
As shown in Figure 3, prenatal treatment with VPA 500 mg/kg
had no statistically significant effect on the body mass of offspring
measured from postnatal weeks 2 until 38. A mixed effect model
applied to assess the effect of age, sex and treatment on offspring
body weight showed that the most significant contributing fac-
tor to the variability in body mass was the interaction of age by
sex (age:sexMale, t-value = 34.47) while treatment had no effect
(statusVPA, t-value = 0.20).

OFFSPRING BRAIN MASS
The brain mass of offspring treated with either CTR or VPA
(500 mg/kg) is shown in Table 1, measured as absolute grams and
normalized to body mass. We observed a statistically significant
main effect of treatment on absolute brain mass at P1 [F(1, 16) =
16.45, p = 0.0009], but no main effect of sex [F(1, 16) = 1.49, p =

FIGURE 1 | Fetal reabsorption rates for control (CTR), VPA 500 mg/kg

and, VPA 600 mg/kg. ∗ Indicate VPA doses with higher rates than CTR.
Data shown as percent of pregnancies.

0.241], and no interaction between sex and treatment [F(1, 16) =
0.181, p = 0.676]. Bonferroni corrected post-hoc comparisons
at P1 indicated a significantly smaller absolute brain size in
VPA females (p < 0.05), as well as in VPA males (p < 0.05), in
comparison to same-sex same-age CTR groups. Similar analysis
repeated for P14 indicated a significant main effect of prenatal
treatment [F(1, 81) = 45.13, p < 0.0001], and a main effect of sex
[F(1, 81) = 4.37, p = 0.04], but no interaction between treatment
and sex [F(1, 81) = 0.77, p = 0.384]. Bonferroni corrected post-
hoc comparisons at P14 indicated a significantly smaller absolute
brain size in VPA females (p < 0.001), as well as in VPA males
(p < 0.001), in comparison to same-sex same-age CTR groups.

Since the ratio of brain to body mass is not necessarily con-
stant across age, we do not present any statistical comparisons
on the normalized brain measure (a ratio), but present it for
comparison to other work. We performed instead a 3-ANCOVA,
where absolute brain mass means were statistically corrected for
body weight (covariate). This revealed a significant main effect
of prenatal treatment [F(1, 95) = 12.86, p = 0.001], a significant
main effect of age [F(1, 95) = 170.14, p < 0.0001], but no signifi-
cant main effect of sex [F(1, 95) = 0.87, p = 0.35]. In addition, we
found no interaction between treatment and sex [F(1, 95) = 0.18,
p = 0.67], but a significant interaction between treatment and age
[F(1, 95) = 6.21, p = 0.014] on corrected brain mass. Thus, when
body mass is used as a covariate, the microencephaly effect of VPA
is more prominent at P14 then at P1.

OFFSPRING MALFORMATIONS
In general, the controls as well as VPA-exposed offspring exhib-
ited good health. However, offspring exposed to VPA 500 mg/kg
occasionally exhibited some physical abnormalities including
shorter snouts, multiple toes, or dwarfism (data not shown, the
latter were excluded from experiments). In addition, as shown in
Table 2, VPA-treated offspring presented statistically significant
higher frequency of tail kinks (9% of all animals, FET p < 0.0001
2-tailed; 10% of males, FET p = 0.003 2-tailed; 9% females, FET
p = 0.014 2-tailed), relative to CTR (0% of either sex).

OFFSPRING CHROMODACRYORRHEA
The frequency of occurrences of chromodacryorrhea as sum-
marized in Table 3 represent rare events in the VPA, with a
non-significant trend for a difference between CTR and VPA-
exposed offspring (all animals, FET p = 0.07, 1-tailed; males, FET
p = 0.133, 1-tailed; females, FET p = 0.523, 1-tailed).

OFFSPRING OLFACTORY DISCRIMINATION BEHAVIORAL TEST
We assessed behavioral olfactory discrimination, where CTR and
VPA 500 mg/kg males and females pups aged P10 were given a
choice between nest and clean bedding. We observed no effect
of treatment on the number of pups that reached the nest ver-
sus neutral odors, neither in males [CTR nest n = 18/22, VPA
nest n = 18/25; X2

(1, 47) = 0.63, p = 0.43] nor in females [CTR

nest n = 17/23, VPA nest n = 23/28; X2
(1, 51)

= 0.51, p = 0.48].
Subsequent analysis of the latency (in seconds) to reach the nest
odor when nest was as the first choice (Figure 4A), indicated
that the VPA group had a significantly different variance from
the CTR in males [Levene’s Test F(17, 17) = 9.841, p = 0.004],
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FIGURE 2 | Pregnancy outcome in control (CTR) and VPA 500 mg/kg

treated dams. (A) Dam body mass (grams) during embryonic days 12.5, 14,
21 (prenatal) and postnatal days 1 and 6, suffer no significant effect of

treatment. (B) Litter size (number of pups born) is not different between
treatments. Data shown as mean (M) and standard error of the mean
(S.E.M.).

FIGURE 3 | Offspring body mass from control (CTR) and VPA 500 mg/kg groups, over 33 postnatal weeks. Females are lighter than males but there is no
effect of treatment. Data shown as mean (M) and standard error of the mean (S.E.M.).

Table 1 | Offspring brain mass.

Sample size Brain mass (g) Normal. brain mass (% body g)

CTR VPA CTR VPA CTR VPA

MALE

P1 5 5 0.29 ± 0.01 0.27 ± 0.01* 4.26 ± 0.23 3.99 ± 0.12!

P14 21 22 1.21 ± 0.02 1.08 ± 0.02* 3.93 ± 0.11 3.74 ± 0.14!

FEMALE

P1 5 51 0.27 ± 0.004 0.25 ± 0.003* 4.04 ± 0.26 3.98 ± 0.21!

P14 24 18 1.14 ± 0.41 1.01 ± 0.03* 4.06 ± 0.12 3.74 ± 0.16!

Absolute and normalized brain mass means and S.E.M. of males or females offspring at Postnatal day 1 (P1) or 14 (P14), after embryonic exposure to saline (CTR)

or valproic acid (VPA, 500 mg/kg). *, significantly different from same-sex same-age controls (CTR). 1, sample size of 4 animals for normalized brain mass. !, No

statistical tests were applied on normalized brain mass.

and in females [Levene’s Test F(22, 16) = 15.45, p < 0.0001]. In
addition, we observed a non-significant trend for a difference
between CTR and VPA in the latency to reach the nest odor
in males [Welch’s corrected Student t-tests t(17) = 1.96, p =
0.067], and a significant difference in females [Welch’s corrected

Student t-tests t(25) = 2.46, p = 0.021]. Lastly, Figure 4B shows
the latency to reach the neutral odor when it was the first choice;
we observed no differences between CTR and VPA in males
[t(9) = 1.76, p = 0.11], and no difference in females [t(9) = 0.08,
p = 0.94].
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Table 2 | Offspring tail malformations.

CTR VPA

Rats (count) 162 171

Occurrences (count) 0 16

Occurrences (% of rats) 0 9*

Male Rats (count) 91 93

Occurrences (count) 0 9

Occurrences (% of male) 0 10*

Female Rats (count) 71 78

Occurrences (count) 0 7

Occurrences (% of females) 0 9*

Observations after embryonic exposure to saline (CTR) or valproic acid (VPA,

500 mg/kg).
*significantly different from controls (CTR).

Table 3 | Offspring chromodacryorrhea.

CTR VPA

All Rats (count) 122 131

Occurrences (count) 0 4

Occurrences (% of rats) 0 3

Male Rats (count) 71 75

Occurrences (count) 0 3

Occurrences (% of males) 0 4

Female Rats (count) 51 56

Occurrences (count) 0 1

Occurrences (% of females) 0 2

Observations after embryonic exposure to saline (CTR) or valproic acid (VPA,

500 mg/kg).

FIGURE 4 | Olfactory discrimination behavior at P10 from control (CTR)

and VPA 500 mg/kg offspring. Latencies to reach the odor of 1st choice,
being either from (A) nest bedding, where females show an effect of
treatment, and males show a trend, or from (B) clean bedding, where no
effects were detected. Data shown as mean (M) and standard error of the
mean (S.E.M.).

DISCUSSION
DOSE-DEPENDENT EFFECTS OF VPA ADMINISTRATION ON
PREGNANCY OUTCOME
As recently reviewed by Roullet et al. (2013), clinical validity of
the VPA model in rats and mice has been observed even with
slight variations in the protocol for VPA administration. In utero

exposure to VPA between 350–800 mg/kg around E11–12.5 seems
to be the critical time window for most autistic-like behavioral
and anatomical abnormalities in rats and mice (Ingram et al.,
2000; Schneider et al., 2001; Schneider and Przewlocki, 2005;
Markram et al., 2008; Kim et al., 2011). However, a precise
dose threshold for specific autistic-like and non-autistic features
has not been well established in the model. Interestingly, lower
doses were first used to introduce abnormalities associated with
in utero VPA exposure in the mouse (v.o. 160–100 mg/kg, mul-
tidose; Chapman and Cutler, 1984), and later, to associate in
utero VPA exposure in the rat with autism (i.p. 300 mg/kg, single
dose at E11.5, E12, E12.5; Rodier et al., 1996). For non-explicit
translational reasons, subsequent studies used higher VPA doses,
and demonstrated a significant increase in autistic-like behaviors
in a battery of tests. For comparison, the therapeutic doses in
humans currently in use range from 200 to 3600 mg/day, while the
threshold for increased risks varies from 800 mg to 1400 mg/day,
depending on the morphological or neurodevelopmental mea-
sure (Roullet et al., 2013). For an average female of 65 kg, these
doses are equivalent to 3–55 mg/kg, a range substantially lower
than that used in the current animal models (350–800 mg/kg).
Importantly, species differences in the pharmacokinetics of VPA
must be taken into account when interpreting the relevance of
the model. For instance, VPA bioavailability in humans (70–
100%) is about twice of that in rodents (34–47%;Loscher, 1999,
2002; Haddad et al., 2009; Roullet et al., 2013). Furthermore, in
utero toxicant exposure is also likely to vary across species, but
to date, few studies have focused on the issue (Binkerd et al.,
1988; Hendrickx et al., 1988). As a consequence, it is difficult
today to estimate how the model doses compare to humans.
Nonetheless, the literature today demonstrates that VPA expo-
sure (at presumably very high doses) in rodents at a specific
time in embryonic development (neural tube closure), is suffi-
cient to induce neurodevelopmental and morphological features
that resemble autism in humans. This is an important feature of
the model, because it narrows down the neural systems that are
primary targets for autism vulnerability, and provides experimen-
tally controlled conditions for the study of the genetic interactions
with environmental factors that can lead to specific features. A
clearer translational value of mechanisms identified in the model
can emerge from future studies comparing VPA pharmacokinet-
ics across species, and the levels of VPA required for specific
deficits.

Few attempts have been made to directly compare dose effects
in rodents (Wagner et al., 2006; Frisch et al., 2009). We report
here that VPA administered i.p. at 500 mg/kg on E12.5 is less toxic
than at 600 mg/kg in terms of fetal survival. Then, we observed
no further negative pregnancy outcomes of i.p. 500 mg/kg com-
pared to controls in terms of dam body mass, nor on the number
of pups born, for pregnancies that reached term with live pups.
These results complement previously published data on different
strains with different doses (Binkerd et al., 1988; Stanton et al.,
2007; Kim et al., 2011, 2013), and support VPA dose-dependent
toxicity for fetal survival. These results in the rat-model also com-
pliment observations in humans on dose-dependent effects of
VPA on negative pregnancy outcomes, where epileptic or bipolar
patients in childbearing age are recommended to use the lowest
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possible dose of anti-epileptics, particularly valproate (Roullet
et al., 2013). In parallel, the dose of 600 mg/kg is not a practical
choice for studies of autism in the offspring, due to high rates of
fetal mortality. With this in mind, the scope of the current study
focused on the lower dose for subsequent measures.

OFFSPRING BODY MASS
There was no effect of VPA treatment on offspring body mass
gain from postnatal week 2 well into adulthood (week 38). These
results differ from the reduced body mass gain in VPA previ-
ously reported (Schneider and Przewlocki, 2005). This difference
between the two studies may be explained by the use of 600 mg/kg
males, housed five same sex animals per cage used by Schneider
and Przewlocki, and difference in strain. For instance, the larger
group housing may change social hierarchy and social anxiety
or exercise levels, all of which could affect body weight in the
Schneider and Przewlowski study but not in our case. It remains
unclear if body weight observations in different versions of the
VPA model are directly linked to autism-like symptoms or, if
those effects are independent from autism and specific to a strain
or dosage. Importantly, few studies have examined the body mass
status of autistic patients (Emond et al., 2010), with inconsistent
reports on the relationship with growth or obesity. While feeding
symptoms and restricted diet are consistently reported to differ
from controls, that is not case for energy intake which may (Evans
et al., 2012) or may not (Emond et al., 2010; Kataoka et al., 2013)
differ in ASD (Evans et al., 2012). Therefore, species-specific
metabolic mechanisms and behavioral dietary choice or activity
patters, (not modulated in standard laboratory environments for
rodents, but variable for humans), all make the direct translation
between the rodent model and the human body mass data cur-
rently difficult. Further research is needed on the VPA model on
dietary choice and activity patterns, and their effect on growth
and body mass, which may then help clarify inconsistencies in the
literature.

OFFSPRING BRAIN MASS
We report here a reduced absolute brain mass of VPA exposed
animals in early postnatal life (P1, and P14); when body mass
is controlled for, the effect of VPA treatment is most apparent
at P14. In contrast, absolute microencephaly (on E14 and E18)
followed by macroencephaly (on P2 and P7) has been recently
described in offspring of Sprague Dawley dams injected s.c. with
400 mg/kg VPA on E13 (vaginal plug counted as E1), without
control for body mass (Go et al., 2012). In another variant of
the VPA-model (v.o. 800 mg/kg, on E13 counted from E1 vagi-
nal plug; Mychasiuk et al., 2012) absolute brain mass at around
P100 was shown to be decreased, and there is no reference to body
size. Even though body mass is expected to become less associ-
ated with brain size in adults (no longer growing), the lack of
systematic presentation of absolute brain mass and, its relation-
ship with body mass at younger ages make the effects of VPA
on brain mass debatable; additional difficulty for interpretation
is due to the difference in VPA administration protocols, and the
lack of studies on dose effects. Thorough presentation of brain
and body mass could become an important issue, as the liter-
ature in humans and other animal models suggest that autism

is accompanied by premature or accelerated neuronal growth
early in cortical development, which is followed by normal or
reduced sizes in adolescence and adulthood (Casanova, 2007;
Chomiak et al., 2010; Courchesne et al., 2011; Chomiak and Hu,
2013). Thus, additional studies are needed to determine if altered
brain size and underlying causes, are predictive of more severe
autistic-like abnormalities in the model. This information will
also be useful to further confirm the robustness of the model in
view of different protocols for model generation currently in the
literature.

OFFSPRING PHYSICAL MALFORMATIONS
We observed an increased occurrence of physical malformations
in the tails of VPA-exposed offspring, compared to controls.
These malformations indicate VPA toxicity for neural tube devel-
opment. Similar results have been demonstrated in Wistar male
rats exposed to 600 mg/kg VPA on E12 (Foley et al., 2012)
and Sprague-Dawley male rats exposed to 600mg/kg VPA on
E12 (Binkerd et al., 1988; Kim et al., 2013), further supporting
at least some effects of VPA are independent of strain. These
observations are also congruent with congenital malformations
observed in humans exposed to VPA in utero, where the pattern
of dysmorphic features are indicative of toxicity early in embryo-
genesis, around the time of neural tube closure (Rodier, 2002;
Arndt et al., 2005; Tashiro et al., 2011). Birth defects in children
with FVS include defects in facial features, neural tube associ-
ated, cleft pallet, cardiovascular, limb, and digits malformations,
amongst others (Clayton-Smith and Donnai, 1995). In paral-
lel, researchers have reported co-occurrence of autism and birth
defects. Schendel and colleagues report 6.4% of autistic children
present some form of birth defect, compared to 3.2% of chil-
dren without autism (Schendel et al., 2009). Conversely, 0.43% of
children presenting a birth defect presented autism, as compared
to 0.22% among children without birth defects, which translates
into 1.7 relative risk of presenting autism compared to children
without birth defects. These were mainly isolated, and of central
nervous system/eye, genitourinary, muscoskeletal, or cardiovas-
cular nature; other defects included head/neck, respiratory, oral
cleft, and gastrointestinal. Among the children with autism, male
to female ratio of birth defects was approximately 7:1. Miles and
colleagues report 20% of autistic patients with abnormal mor-
phology, and 29% of these with abnormal brain morphology;
they argue that full clinical morphological examination is highly
sensitive to embryonic developmental insults, and thus has the
power to better delineate patient subgroups (Miles and Hillman,
2000). Based on the congruence between the animal model and
the human, it may be of interest to correlate birth defects with
autism-like symptom severity in the models, as well as to investi-
gate the mechanisms of VPA teratology. This knowledge may help
delineate autism subgroups for clinical and genetic studies, and
thus lead to better understanding of the endophenotypes more
vulnerable to autistic features.

OFFSPRING CHROMODACRYORRHEA
We also report here noticeable, but statistically non-significant,
chromodacryorrhea (“red tears”) in the VPA exposed rats, com-
pared to none observed in controls. It remains possible however,
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that our sample size and analysis do not capture a true effect of
VPA on rare biological contexts, and thus, that measuring chro-
modacryorrhea would remain indicative of vulnerable endophe-
notype. Chromodacryorrhea is observed due to accumulation of
porphyrin after overproduction by the Harderian glands (HD) in
the eye. It has been associated with physical stress (Harkness and
Ridgway, 1980), joint pain (Kerins et al., 2003), bright light (Hugo
et al., 1987), but not to bi-weekly or weekly home cage cleaning
and human handling (Burn et al., 2006). Thus, chromodacryor-
rhea is used by animal caretakers as a non-invasive measure of
general stress response (Burn et al., 2006; Castelhano-Carlos and
Baumans, 2009). To our knowledge, no previous reports on the
VPA rat demonstrated rates of chromodacryorrhea. HG secretion
is related to several factors including hormonal functions, sex-
ual differentiation, circadian rhythm, season, and age (dos Reis
et al., 2005; Monteforte et al., 2009). Importantly, general stress is
increased in human autism (Muris et al., 1998; Evans et al., 2005;
MacNeil et al., 2009). Thus, as for physical malformations, it may
be of interest to correlate the occurrence of chromodacryorrhea
with autistic-like symptom severity in the model. Since stress and
anxiety are frequently reported in humans (Evans et al., 2005),
such studies will aid in the translational value of the VPA model.

OFFSPRING OLFACTORY DISCRIMINATION BEHAVIORAL TEST
We present the VPA (500 mg/kg) olfactory deficit at P10, where
females take longer to reach the nest bedding as compared to
controls, and both males and females show increased variabil-
ity in this latency relative to controls. The observation at P10
may result from a deficit more pronounced at younger ages,
which is then not fully recovered by P10 for some individuals. In
agreement with this idea, Schneider and Przewlocki (Schneider
and Przewlocki, 2005) show pup olfactory discrimination of
nest bedding from clean bedding was delayed in the VPA group
(600 mg/kg), which took longer time than controls to reach nest
bedding at P9, but recovered at P10–11. Furthermore, delayed
nest seeking behavior, recovered by P11, was also observed in
the VPA mouse model (Roullet et al., 2010). These observations
suggest that there is a nest-seeking deficit in the VPA-exposed
animals, which may be partially overcome with age in certain
individuals. These observations could at first be interpreted as
recovery in the older animals from an initial social deficit; how-
ever, considering it has been previously shown that the adult
animals exposed to VPA in utero also present social behavior
deficits (Roullet et al., 2013), it seems unlikely that recovery from
a primary social deficit is taking place. One alternative explana-
tion to a primary social deficit is that VPA animals may suffer
from primary olfactory deficit; in this case, the observed increased
VPA latencies for nest seeking would be caused by weaker or
absent stimulus identification. However, such a sensory deficit
would be expected to reduce the overall number of animals that
reach the nest in the VPA, because more animals would seek the
neutral odor in error, while this is not observed. Alternatively,
VPA could suffer from a primary deficit in motor execution of the
behavior. However, a generalized motor deficit would be expected
to affect the latency to reach any stimulus, and this is not the case,
as we observed no effect of treatment on the latency to reach the
neutral bedding. On the other hand, compensatory mechanisms,

such as the preference for familiar odors, may come into play with
development and then guide the older animals toward the nest.
Taken together, these results support a deficit in the VPA to use
social-odor information to return to their nest and mother, olfac-
tory guided survival behaviors. In addition, they support that in
utero exposure to VPA at 500 mg/kg at E12.5 is sufficient to induce
a core autism-like symptom. Future studies in the animal models
are needed to determine which compensatory mechanisms may
come into play with age to mask social dysfunction in certain
tasks, in certain individuals. Considering social deficit is a pri-
mary symptom for autism diagnosis, such studies will not only
further validate the VPA model but cue into individual differences
in the level of social dysfunction in humans.

As mentioned above, while the embryonic critical time for
autism vulnerability seems to be E11–12.5, there is currently no
indication in the literature on which exact VPA dose produces the
most valid rodent model. Our results indicate that VPA admin-
istered to the mother with a single i.p. injection of 500 mg/kg
on E12.5 (counted from E1vaginal plug detection) is sufficient
to induce autistic like neurodevelopmental effects. We note that
cross-laboratory interpretation must be made with care, due to
inconsistency in reporting how the embryonic days were counted;
it is customary to treat vaginal plug detection as E1 for mice and
E0 for rats, but the latter is less consistent. For instance, work
in rodents that have reported E12.5 as the critical period are
not inconsistent to work reporting E11.5 because only the latter
counted vaginal plug day as E0. None of the reviews attempting at
translating the observation in the model to autism corrected for
these inconsistencies when comparing studies (Markram et al.,
2007; Markram and Markram, 2010; Roullet and Crawley, 2011;
Kaffman and Krystal, 2012; Modi and Young, 2012; Roullet et al.,
2013).

Taking into account the striking behavioral, and anatomical
parallels to human autism, the VPA-rat model allows for system-
atic investigations of the biological events that lead to autism-like
neuropathology, from the molecular to the behavioral level, guid-
ing new and more specific hypothesis in humans (Markram and
Markram, 2010). The first studies in this direction corroborate
with the idea of autism as a minicolumn-pathy (Markram et al.,
2007; Markram and Markram, 2010; Williams and Casanova,
2011). Interestingly, more recent results demonstrate the overlap
between genetically based models and VPA epigenetic mecha-
nisms, supporting a potential common pathophysiological mech-
anism in autism (Kolozsi et al., 2009; Go et al., 2012). We present
here further support of the notion that in addition to sex, the
brain mass, body mass, physical malformations, and reactivity to
general stress may be important covariates in future investigations
of the core autistic features, and to indicate how environmen-
tal factors interact with an individual’s genome to constitute
particularly vulnerable endophenotype for the development of
autism.
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