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The reward-mountain model relates the vigor of reward seeking to the strength and cost
of reward. Application of this model provides information about the stage of processing
at which manipulations such as drug administration, lesions, deprivation states, and
optogenetic interventions act to alter reward seeking. The model has been updated by
incorporation of new information about frequency following in the directly stimulated
neurons responsible for brain stimulation reward and about the function that maps
objective opportunity costs into subjective ones. The behavioral methods for applying the
model have been updated and improved as well. To assess the impact of these changes,
two related predictions of the model that were supported by earlier work have been
retested: (1) altering the duration of rewarding brain stimulation should change the pulse
frequency required to produce a reward of half-maximal intensity, and (2) this manipulation
should not change the opportunity cost at which half-maximal performance is directed
at earning a maximally intense reward. Prediction 1 was supported in all six subjects,
but prediction 2 was supported in only three. The latter finding is interpreted to reflect
recruitment, at some stimulation sites, of a heterogeneous reward substrate comprising
dual, parallel circuits that integrate the stimulation-induced neural signals.
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INTRODUCTION
Intracranial self-stimulation (Olds and Milner, 1954) has played
an indispensable role in the study of the neural circuitry under-
lying valuation and goal selection. This phenomenon captures
many of the features of performance for natural rewards (Green
and Rachlin, 1991; Conover and Shizgal, 1994) while offering
superior experimental control. The subjects do not become sati-
ated from consuming the electrical reward, and they will work
tirelessly when the reward is strong; both the timing of reward
delivery and the strength of the rewarding effect can be adjusted
with precision. The rewarding effect arises from observable neural

Abbreviations: 2D, two-dimensional; 3D, three-dimensional; a, the payoff-
sensitivity exponent (Equation 1); BSR, brain stimulation reward; F, pulse fre-
quency; Fbend, parameter governing the abruptness of the transition between
the rising and flat segments of the frequency-response function (Equation 4);
Fhm, pulse frequency at which reward intensity is half-maximal (Equation 1);
FNearMax, the midpoint of the transitional range of the frequency-response function
(Equation 4); FF, induced frequency of firing in the directly stimulated neurons
(Equations 2, 4); FFhm, induced frequency of firing that produces a reward of half-
maximal intensity (Equation 2); g, reward-growth exponent (Equation 1); P, price
of the stimulation train (cumulative time the lever must be depressed in order to
trigger delivery of a train); Pe, price at which time allocation for a maximally intense
reward falls halfway between TAmax and TAmin (Equation 1); pps, pulse per second;
SP, subjective price of the stimulation train (Equations 2, 3); SPbend, parameter
determining the abruptness of the transition between SPmin and the rising portion
of the subjective-price function (Equation 3); SPe, subjective price at which time
allocation for a maximally intense reward falls halfway between TAmax and TAmin

(Equation 2); SPmin, minimum subjective price (Equation 3); TA, time allocation;
TAmax, maximal time allocation (Equations 1, 2); TAmin, minimal time allocation
(Equations 1, 2); VI, variable interval.

activity induced by the stimulation in the vicinity of the electrode
tip, a valuable feature for tracing brain reward circuitry and
identifying its components.

The selection and pursuit of rewards arise from the interaction
of multiple psychological processes and neural systems (Gallistel,
1983; Robbins and Everitt, 1996; Balleine and Dickinson, 1998;
White and McDonald, 2002; Berridge and Robinson, 2003).
Among these are the processes and systems responsible for extrac-
tion and storage of information about the strength and cost of
rewards. The intracranial self-stimulation paradigm lends itself
particularly well to the isolation and study of these attributes
of rewards, as well as others, such as delay and probability.
However, there has been considerable controversy about how
best to measure the effects of manipulating these attributes and
about the inferences that can be drawn from such behavioral
measurements.

In the initial studies of intracranial self-stimulation, response-
rates were used to measure changes in the effectiveness of
the stimulation in producing reward-seeking behavior (Olds,
1958). However, serious reservations were soon advanced con-
cerning the use of response rate as a measure of reward effi-
cacy (Hodos and Valenstein, 1962). Curve-shift (Edmonds and
Gallistel, 1974, 1977; Miliaressis et al., 1986) and progressive-ratio
(Hodos, 1961) measures were introduced to address these reser-
vations and have been used extensively to quantify the effects
of lesions and pharmacological agents (Keesey and Goldstein,
1968; Edmonds and Gallistel, 1977). The curve-shift method
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entails measurement of operant performance as a function of the
strength of the rewarding stimulation, whereas the progressive-
ratio method entails measurement of operant performance as
a function of reward cost. Although much progress has been
achieved by means of these methods, recent work reveals a
fundamental ambiguity in curve-shift and progressive-ratio mea-
surements (Arvanitogiannis and Shizgal, 2008; Hernandez et al.,
2010). One source of this ambiguity can be removed by applica-
tion of a new method that entails measurement of performance as
a function of both the strength and cost of reward. The resulting
three-dimensional (3D) structure has been dubbed the “reward
mountain” (Arvanitogiannis and Shizgal, 2008; Hernandez et al.,
2010).

A key advantage of the reward-mountain method is that it iso-
lates changes in the sensitivity of brain reward circuitry from a
diverse collection of other variables that also contribute to reward
pursuit. These variables include reward-circuit gain, subjective
effort cost, and the value of activities, such as resting, grooming,
and exploring, that compete with pursuit of the reward offered by
the experimenters. The sensitivity of the neural circuitry under-
lying brain stimulation reward (BSR) is estimated from the pulse
frequency required to produce a rewarding effect of given magni-
tude, whereas the gain of this circuitry determines the maximum
rewarding effect that can be achieved. The ability of the reward-
mountain method to distinguish sensitivity changes from changes
in gain, subjective effort cost, and the value of alternate activ-
ities has been exploited to shed new light on the stage(s) of
processing at which psychomotor stimulants (Hernandez et al.,
2010, 2012), neuroleptics (Trujillo-Pisanty et al., 2012), and
cannabinoids (Trujillo-Pisanty et al., 2011) influence pursuit of
BSR. However, the initial study validating the reward-mountain
method (Arvanitogiannis and Shizgal, 2008) employed somewhat
different procedures than those in force in the subsequent work.
The current study was undertaken to assess the newer variant of
the method and an extension of the most recent version of the
model (Hernandez et al., 2010).

In the initial reward-mountain study (Arvanitogiannis and
Shizgal, 2008), a variable-interval (VI) schedule of reinforcement
was in effect. The 3D structure was built from four two-
dimensional (2D) components, dubbed “sweeps.” Two of these
consisted of response-rate measurements carried out sequentially
at each element of a descending series of pulse frequencies,
with either a short or long VI value. The remaining two sweeps
consisted of response-rate measurements carried out at each
element of an ascending series of VI values, with either a low or
a high pulse frequency. Multiple determinations of a given sweep
type were performed before moving on to the next. In contrast,
in the pharmacological studies carried out using the 3D method
(Hernandez et al., 2010, 2012; Trujillo-Pisanty et al., 2011, 2012),
a “cumulative handling-time” schedule of reinforcement (Breton
et al., 2009b) was in effect. This schedule replaces the VI with
a fixed opportunity cost (time required to harvest a reward,
dubbed the “price” of the reward). This change was introduced
to reduce the subject’s uncertainty about the reinforcement
contingencies and to provide tighter experimental control over
reward cost. Subsequent to the initial study, we found that
repeated testing at a constant price reduced the evaluability of

this reward-cost variable (Breton et al., 2009b). Thus, whenever
feasible in subsequent studies, multiple sweep types have been
intermixed in each test session, or predefined vectors of pulse
frequencies and prices have been sampled randomly. To reduce
the time required to survey the mountain, the number of sweep
types has been reduced from four to three.

An additional procedural modification is the use of
resampling-based methods (Efron and Tibshirani, 1994) to
fit the mountain model to the data. The power and robustness
of these methods increase the sensitivity with which shifts in the
position of the mountain can be detected.

We now report an extension of the reward-mountain model
(derived in the Appendix) that incorporates more realistic
assumptions and recent data concerning: (1) the translation
of objective opportunity costs into their subjective equivalents
(Solomon et al., 2007), and (2) the frequency-following capa-
bilities of the directly stimulated neurons responsible for the
rewarding effect (Simmons and Gallistel, 1994; Solomon et al.,
2010). These extensions helped us retest a key prediction of all
versions of the mountain model: that changing the duration
of the stimulation train should shift the mountain along the
pulse-frequency axis. This prediction arises from the fact that
the rewarding effect grows over the course of a stimulation train
(Gallistel, 1978; Sonnenschein et al., 2003). If the train is of
brief duration, the rewarding effect must grow very quickly in
order to reach a substantial level by the end of the train. A high
stimulation strength is required to achieve this. However, if the
train is of longer duration, the rewarding effect can grow more
gradually and still reach the same final level. Thus, lower stim-
ulation strength can suffice to produce the same final level of
reward intensity at the end of a long-duration train as achieved by
delivering higher-strength stimulation during a shorter-duration
train. This prediction was borne out using the earlier procedures
(Arvanitogiannis and Shizgal, 2008) and was confirmed in the
present study. We also retested a second prediction, one that
depends on the assumption that a unitary circuit is responsible
for the temporal integration of the rewarding effect. Given that
assumption, the reward-mountain should not shift systematically
along the price axis in response to a change in train duration. This
prediction was also borne out in the initial study (Arvanitogiannis
and Shizgal, 2008), but the more sensitive methods employed
here reveal that this prediction holds only at some stimulation
sites. The violation of this prediction may reflect the recruitment,
at other stimulation sites, of heterogeneous reward circuitry in
which parallel components perform temporal integration of the
stimulation-induced reward signal.

METHODS
SURGERY AND TRAINING
Five Long-Evans rats (Charles River, St-Constant, QC) weighing
a minimum of 350 g before surgery, were implanted unilaterally
with an electrode made from a 00 insect pin coated with Formvar
enamel to within 0.5 mm from the tip. Surgery was performed
under isofluorane anesthesia at a 3% concentration. Atropine
sulfate (0.05 mg/kg) was administered prior to surgery, and
buprenorphine (0.05 mg/kg) was administered immediately fol-
lowing surgery as well as 24 and 48 h post-operatively. Electrodes
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were aimed at the left, lateral hypothalamic level of the medial
forebrain bundle, at the following level-skull stereotaxic coordi-
nates: 2.8 mm posterior to bregma, 1.7 mm lateral to the midline,
9 mm ventral to the skull surface.

A fixed, cumulative handling-time schedule of reinforcement
was in effect throughout the experiment. As described in Breton
et al. (2009b), this schedule delivers a reward once the lever
has been held for a cumulative amount of time (the “price” of
the reward). Each downward and upward transition of the lever
during the trial was time-stamped and recorded. The lever was
retracted upon the triggering of the rewarding stimulation and
then re-extended into the test cage following a 2 s “blackout”
delay.

In the current study the price was fixed throughout a trial but
could vary from one trial to the next so as to alter the oppor-
tunity cost of the electrical reward. (An opportunity cost is the
benefit that was forgone by devoting time to pursuit of the elec-
trical reward rather than to alternate activities such as grooming,
resting, or exploring). The strength (pulse frequency) of the stim-
ulation was also held constant during each trial but could vary
from one trial to the next so as to alter the intensity of the reward-
ing effect. The duration of each trial was set so as to allow the
rat to obtain 25 rewards if it held the lever down during the
entire time it was extended into the test cage. Thus, trial duration
covaried with the price of the stimulation.

When the trial duration timed out, the lever was retracted,
the cue light was extinguished, and a 10 s inter-trial interval
began, during which an orange house light flashed. Two seconds
before the end of the inter-trial interval, a single 0.5 s stimula-
tion train was delivered non-contingently. The pulse frequency of
this “priming” train was set to the maximum value to be used
in the experiment and was held constant throughout the exper-
iment. The priming stimulation provided no information about
the pulse frequency that would be in force during the subsequent
trial, but it helped motivate the rat to resume working.

Following screening for electrode efficacy, animals were
trained on descending pulse-frequency sweeps at a 1 s price, and
on ascending price sweeps at the highest frequency that did not
produce disruptive side-effects, such as forced movements. Rats
C17, C26, and Y12 were then presented with a descending pulse-
frequency sweep composed of trial triads. Within a triad, each test
trial was preceded by a leading “bracket” trial on which the pulse
frequency was set to the maximum tolerable value, the train dura-
tion was 0.5 s, and the price was 1 s. The test trial was followed by
a trailing bracket trial on which the pulse frequency was set to a
value too low to support sustained responding, the train duration
was 0.5 s, and the price was 1 s. This bracketed trial structure was
also used in ascending price sweeps obtained at the highest tol-
erable pulse frequency. On test trials in all types of sweeps, the
train duration was 0.5 s. Rats Y13, Y14, and Y15 were not trained
on these “bracketed” sweeps. Instead, they entered the stabiliza-
tion phase described below immediately following training on
“unbracketed” sweeps. In the cases of these three rats, the brack-
eting procedure was introduced at the onset of the stabilization
phase. From that point onward, the same procedures were used
with all subjects.

The bracket trials served two purposes during the experiment.
First, they provided stable reference points for the payoffs on offer

during the test trials. Second, they provided objective evidence of
whether performance remained stable over the duration of the
test sessions.

BEHAVIORAL TESTING
On the basis of preliminary fits of the mountain model to the
data from the initial bracketed sweeps (in the case of rats C17,
C26, and Y12) or training frequency and price sweeps (in the
case of rats Y13, Y14, and Y15), we compiled two sets com-
posed of three lists of pulse frequencies and prices, one set for
each of the train durations (0.25 s and 1 s). These lists specify the
pulse-frequencies and prices for the test trials (the middle trial
of each triad). The values in the lists were chosen so as to survey
the mountain structure efficiently. When viewed in a 2D space
with one logarithmic axis representing the pulse frequency and
the second logarithmic axis representing the price, the values in
each of the lists correspond to nine equally spaced points along
a straight line, dubbed a “pseudo-sweep.” One line (the pulse-
frequency pseudo-sweep) runs parallel to the pulse-frequency
axis, at a low price. A second line (the price pseudo-sweep) runs
parallel to the price axis, at a high frequency. The third line
(the radial pseudo-sweep) runs diagonally downwards from a
high pulse-frequency, low-price value to a low pulse-frequency,
high-price value. The radial pseudo-sweep was positioned so as
to run through the point defined by the two location parame-
ters of the mountain model: Fhm, the pulse frequency at which
the intensity of the reward is half-maximal, and Pe, the price
at which allocation of time to pursuit of a maximal reward is
half-way between its minimal and maximal values. The values
composing the pseudo-sweeps were chosen to maximize the like-
lihood of obtaining 3 points for which performance would be
asymptotically high, 3 points for which it would be asymptoti-
cally low, and 3 points along the rising portion of each set. Due
to the expectation that non-asymptotic performance would be
highly variable, the 5 central price-frequency pairs of each set
were sampled twice as often as those in the upper and lower
extremes.

Following completion of training, the stabilization phase
began. Bracketing was introduced for rats Y13, Y14, and Y15 at
this stage. Otherwise, conditions were identical to those in force
during the preliminary testing, except that the element of the six
pseudo-sweeps in force on a given test trial was chosen randomly,
without replacement, until all values had been sampled. A sin-
gle pass through all six pseudo-sweeps is called a “survey” of the
reward mountains for the short and long train durations. Each
element of a pseudo-sweep specifies a pulse frequency, price, and
train duration. In effect, the elements of all six pseudo-sweeps
were combined in a virtual urn, and a sample was drawn at ran-
dom on each test trial until the urn was empty, thus completing a
survey.

Performance was deemed stable when time allocation was
consistently high on leading bracket trials and consistently low
on trailing bracket trials. When necessary, the pulse-frequency
and price components of the pseudo-sweeps were adjusted so
that time allocation varied as described above: 3 points with
asymptotically high performance, 3 points with asymptotically
low performance, and 5 points (sampled twice as often) within
the dynamic range, for each pseudo-sweep. Typically, five surveys
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were required to achieve stable performance (3 for Y13; 4 for C17;
5 for C26, Y12, and Y14; and 6 for Y15). The main and final phase
of the experiment then commenced.

Daily sessions were restricted to a duration of 4 h, during the
dark phase of the 12/12 h light-dark cycle. Between 3 and 4 test
sessions were required to complete a survey of the reward moun-
tains. During the final phase of the experiment, each rat ran
through 8 complete surveys, during which no further changes
were made to the list of prices and frequencies to be presented
at each train duration.

RESULTS
The dependent measure was time allocation (TA), the proportion
of trial time, excluding the 2 s blackout delay, that the rat spent
working for brain stimulation rewards. The time before the first
reward was delivered was excluded from TA because during that
time, the rat does not yet have information about the strength and
cost of the reward on offer. Work time included both the total time
the lever had been depressed and the sum of the times the lever
was released for less than 1 s. These short interruptions of lever
depression (“taps”) were included because when they occur, the
rat is very near the lever, actively pursuing rewards (Breton et al.,
2009b). Independent variables used in the analyses were the train
duration [long (1 s) or short (0.25 s)], the pulse frequency (the
number of current pulses delivered per second in each stimula-
tion train), and the price (the cumulative time the lever had to be
depressed in order to trigger delivery of a reward).

THE EXTENDED REWARD-MOUNTAIN MODEL
The reward-mountain model was fit to the data obtained during
the final phase of the experiment. The surfaces fit to the results
obtained during these 8 surveys are defined by an extension of an
earlier version of the reward-mountain model (Hernandez et al.,
2010). The expression used in that paper is:

TA =

⎡
⎢⎢⎣(TAmax − TAmin)×

(
Fg

Fg+F
g

hm

)a

(
Fg

Fg+F
g

hm

)a

+
(

P
Pe

)a

⎤
⎥⎥⎦+ TAmin (1)

where

a = the payoff-sensitivity exponent

F = the pulse frequency

Fhm = the pulse frequency at which reward intensity is

half maximal

g = the reward-growth exponent

P = the price of the stimulation train

Pe = the price at which time allocation for a maximally

intense reward falls halfway between TAmax and TAmin

TAmax = the maximal time allocation

TAmin = the minimal time allocation

According to Equation 1, the subjective price is the same as the
objective value, and the stimulated neurons fire once per pulse

regardless of the pulse frequency. Both of these assumptions break
down at extremes (Solomon et al., 2007, 2010). Given the wide
range of prices and pulse frequencies employed in this study,
Equation 1 was extended to accommodate measurements of the
form and parameters of the functions relating subjective to objec-
tive prices (Solomon et al., 2007) and firing frequencies to pulse
frequencies (Solomon et al., 2010). The resulting equation is as
follows:

TA =

⎡
⎢⎢⎣(TAmax − TAmin) ×

(
FFg

FFg+FF
g

hm

)a

(
FFg

FFg+FF
g

hm

)a

+
(

SP
SPe

)a

⎤
⎥⎥⎦+ TAmin

(2)
where

FF = the induced frequency of firing in the directly-

stimulated neurons

FFhm = the induced frequency of firing that produces a

rewarding effect of half-maximal intensity

SP = the subjective price of the stimulation train

SPe = the subjective price at which time allocation for a

maximally intense reward falls halway between TAmin and

TAmax

The expression that translates objective into subjective prices is

SP = SPmin + SPbend × Ln

(
1 + e

P−SPmin
SPbend

)
(3)

where

SPmin = minimum subjective price

SPbend = parameter determining the abruptness of the transition

between SPmin and the rising portion of the subjective

price function

On the basis of prior experiments (Solomon, in preparation;
Solomon et al., 2007), SPmin was set to 1.75 s, and SPbend to 0.57 s.
The subjective price (SP) approaches SPmin when the objective
price (P) is very low, and it converges on P as P grows (upper
panel of Figure 1). Given the parameter values employed in the
fits, the subjective price is within 0.2% of the objective price once
P equals 4 s.

The expression that translates pulse frequencies into firing
frequencies is

FF = Fbend ×
[

Ln

(
1 + e

FNearMax
Fbend

)
− Ln

(
1 + e

FNearMax−F
Fbend

)]
(4)

where

Fbend = parameter governing the abruptness of the transition

between the rising and flat segments of the function

FNearMax = the midpoint of the transitional region
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FIGURE 1 | Extensions of the reward-mountain model. The upper graph
shows the function that translates objective prices into subjective ones.
The form and parameters of this “subjective-price” function are based on
an experiment by Solomon et al. (2007). When prices are very low, changes
in their objective value have little subjective impact. In contrast, once the
price exceeds about 4 s, the subjective price converges on the objective
price. The lower graph shows the function that translates the pulse
frequency into the induced frequency of firing in the directly stimulated
neurons subserving the rewarding effect of the electrical stimulation. The
form and parameters of this “frequency-following” function are based on
another experiment by Solomon et al. (2010). As long as the pulse
frequency is lower than about 340 pulses per second, each stimulation
pulse triggers an action potential in the directly stimulated neurons. The
frequency-response function then levels off quite abruptly, and increasing
the pulse frequency further has little effect.

On the basis of prior experiments (Solomon, in preparation;
Solomon et al., 2010), Fbend was set to 20.63 pulses per s (pps),
and FNearMax was set to 342.9 pps. Given these values, the induced
frequency of firing in the directly stimulated neurons asymptotes
near 343 pps (lower panel of Figure 1). The values of Fbend and
FNearMax are broadly compatible with earlier results (Simmons
and Gallistel, 1994).

RESAMPLING AND FITTING PROCEDURE
Equation 2 was fitted separately to the time-allocation data from
each rat so as to generate one reward mountain for the short
train duration and another for the long. In order to limit the
number of free parameters and to focus the analysis on the pre-
dictions we had set out to test, the only parameters free to vary
across train duration conditions were Fhm, Pe, and TAmax. Thus,
the two mountains for each rat share a common floor as well as
common slopes but mountains can differ in altitude and in their
locations within the space defined by the strength and price of the
stimulation. Allowing TAmax to vary across train duration condi-
tions was deemed appropriate because the stimulation tended to
produce more severe disruptive motoric side-effects at the longer
train duration than at the shorter one.

A bootstrapping approach (Efron and Tibshirani, 1994;
Hernandez et al., 2010) implemented in MATLAB (The

Mathworks, R2012b) was used to estimate Pe, Fhm, and TAmax as
well as to compute the associated confidence intervals. This pro-
cedure entails drawing multiple samples from the original data,
with replacement.

Each point along a pseudo-sweep is defined by the combi-
nation of a train duration, pulse frequency and price. Either 8
or 16 measurements of time allocation were obtained at each of
these points (16 for the central 5 points and 8 for the 2 points at
either end). One thousand samples, each consisting of the same
number of values as the original sample (8 or 16), were drawn
at random and with replacement from the original data at each
point along each of the 6 pseudo-sweeps. The surface described by
Equation 2 was then fitted to each of the resulting 1000 datasets.
This generated 1000 estimates of Pe, Fhm, and TAmax for each train
duration and 1000 estimates of a, g, and TAmin for both train
durations together. The means of each set of 1000 parameter esti-
mates were computed along with corresponding 95% confidence
regions defined as the range excluding the lowest and highest 25
estimates of the 1000 generated. The criterion for a statistically
reliable shift in a location parameter was an absence of overlap in
the 95% confidence regions about the estimates of Fhm or Pe for
the two train durations.

FITTED SURFACES
Figure 2 illustrates the fit of the surface described by Equation 2
to the data for one subject (Y12). The upper four panels depict
two-dimensional (2D) sections through the fitted surface. Time
allocation at the 1 s (triangles) and 0.25 s (circles) train dura-
tions are shown as a function of pulse frequency (red), price
(blue), or both (green) along with projections of the fitted surface.
Thus, the red points constitute pulse-frequency pseudo-sweeps,
the blue points constitute price pseudo-sweeps, and the green
points, shown in two orthogonal views, constitute radial pseudo-
sweeps. Below the 2D plots, the data from all three pseudo-sweeps
are combined in 3D scatter plots along with wire-mesh depictions
of the fitted surfaces. The contour plots at the bottom provide a
collapsed topographic view of the surface from above; the curved
lines are the perimeters of horizontal sections cut at 10% incre-
ments in time allocation. The red, blue, and green symbols depict
the trajectories of the pulse-frequency, price, and radial pseudo-
sweeps, respectively. Also shown in the bottom panels are the
values of the position parameters, Pe and Fhm, and their sur-
rounding 95% confidence regions (blue vertical lines surrounded
by light-blue shading and red horizontal lines surrounded by
light-red shading, respectively). In what follows, we use the con-
tour maps to capture the displacement of the mountain along the
orthogonal directions of price (a shift in Pe) and pulse frequency
(a shift in Fhm).

Figures 3 through 8 illustrate the shifts resulting from increas-
ing the train duration. The contour graph for the short train
duration is plotted twice, in the top left and bottom right corners,
whereas the contour graph for the long train duration is plot-
ted once, in the bottom left hand side. This format makes readily
apparent any shifts in Pe (top to bottom comparison) and Fhm

(left to right comparison). The magnitudes of the shifts in the
Pe and Fhm parameters are represented in the bar graphs in the
upper-right panel of each figure. Each bar represents the median
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FIGURE 2 | Sample two- and three-dimensional representations of the

data from Rat C26. The top four panels show the set of “pseudo-sweeps”
(see section Behavioral Testing) comprising the reward mountain. Upper

left: time allocated to reward pursuit as a function of pulse frequency (red
circles: 0.25 s duration; red triangles: 1.0 s duration) with price held
constant. Shortening the train duration shifts the curve toward higher pulse
frequencies. Upper right: time allocated to reward pursuit as a function of
price with pulse frequency held constant at a high value. This is one of the
three cases in which changes in train duration did not alter the position of
the mountain along the price axis (blue circles: 0.25 s duration; blue
triangles: 1.0 s duration). Second row: time allocated to reward pursuit as a
function of conjoint variation in both pulse frequency and price (green
circles: 0.25 s duration; green triangles: 1.0 s duration). Time allocation
along the radial pseudo-sweep is plotted against pulse frequency (left
panel) and price (right panel). Third row: 3D surfaces showing how time
allocation varies as a function of pulse frequency and price. Individual data
means along the pulse-frequency (red), price (blue), and radial (green)
sweeps are designated by polyhedrons (0.25 s trains) or pyramids (1.0 s
trains). Bottom row: contour graphs corresponding to the surfaces in the
row above. The vertical blue line represents the estimate of Pe, and the
surrounding band represents the corresponding 95% confidence interval.
The horizontal red line represents the estimate of Fhm, and the surrounding
band represents the corresponding 95% confidence interval.

FIGURE 3 | Shifts of the reward mountain. The contour graph for
the long-duration (1 s) train is shown in the lower left. For comparison the
contour graph for the short-duration (0.25 s) train is shown twice, in the
upper left and lower right. The Pe parameter determines the location along
the price axis, whereas the Fhm parameter determines the location of the
mountain along the pulse-frequency axis. The vertical blue line represents
the estimate of Pe, and the surrounding band represents the corresponding
95% confidence interval. The horizontal red line represents the estimate of
Fhm, and the surrounding band represents the corresponding 95%
confidence interval. The bar graph shows the mean shifts in the location
parameters due to the increase in train duration from 0.25 to 1 s along with
the associated 95% confidence intervals. ∗Indicates that the 95%
confidence interval does not include zero.

difference between the 1000 estimates of a location parameter for
the short and long train duration conditions; the 95% bootstrap
confidence intervals represent the 2.5 and 97.5 percentiles of these
1000 differences. The difference between the median estimate
for the short and long train duration was considered statistically
reliable when the associated confidence region did not include 0.

Figure 9 summarizes the shifts in the location parameters.
Shifts in Fhm (upper panel, red bars) were observed in all six rats
tested. These shifts were all in the predicted direction: increas-
ing the train duration decreased the pulse frequencies required
to drive subjective reward intensity to half its maximal value.
In three cases (rats C26, Y12, Y14), changing the train duration
shifted the mountain along the pulse-frequency axis without pro-
ducing any reliable shift along the price axis (lower panel, blue
bars). However, in the remaining three cases (rats C17, Y13, Y15),
increasing the duration of the train increased the value of Pe.

In all cases, the maximal time allocation attained at the long
train duration was reliably shorter than at the short train dura-
tion. Typically, this reduction was modest (less than 10%), but in
the case of rat Y14, the decrease (27%) was more pronounced.

Figure 10 shows histological reconstruction of the stimulation
sites. The electrode tips for the three cases in which the mountain
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FIGURE 4 | Shifts of the reward mountain. The contour graph for the
long-duration (1 s) train is shown in the lower left. For comparison the contour
graph for the short-duration (0.25 s) train is shown twice, in the upper left and
lower right. The Pe parameter determines the location along the price axis,
whereas the Fhm parameter determines the location of the mountain along the
pulse-frequency axis. The vertical blue line represents the estimate of Pe, and
the surrounding band represents the corresponding 95% confidence interval.
The horizontal red line represents the estimate of Fhm, and the surrounding
band represents the corresponding 95% confidence interval. The bar graph
shows the mean shifts in the location parameters due to the increase in train
duration from 0.25 to 1 s along with the associated 95% confidence intervals.
∗Indicates that the 95% confidence interval does not include zero.

shifted exclusively along the pulse-frequency axis (C26, Y12, Y14;
plus signs) are tightly clustered, whereas the tips for the three cases
in which the mountain shifted as well along the price axis (C17,
Y13, Y15; filled circles) lie outside the cluster.

DISCUSSION
Traditional analyses of the effects produced by manipulating
brain reward circuitry are two-dimensional: reward-seeking
performance is evaluated as a function of a single independent
variable, typically the stimulation strength or response cost. The
three-dimensional reward-mountain model (Arvanitogiannis
and Shizgal, 2008; Hernandez et al., 2010) depicts this long-
standing practice from a novel, critical perspective and provides a
more informative alternative.

According to the reward-mountain model and its antecedents
(Gallistel, 1978; Gallistel et al., 1981; Gallistel and Leon, 1991;
Simmons and Gallistel, 1994), neural activity induced in the
directly-stimulated neurons is translated non-linearly into a
stored record of reward intensity. As shown schematically in
Figure 11, the payoff from the reward is computed by scalar
combination of this information with stored records of the sub-
jective opportunity and effort costs entailed in earning a reward
(Solomon et al., 2007; Breton et al., 2009a; Hernandez et al.,

FIGURE 5 | Shifts of the reward mountain. The contour graph for the
long-duration (1 s) train is shown in the lower left. For comparison the
contour graph for the short-duration (0.25 s) train is shown twice, in the
upper left and lower right. The Pe parameter determines the location along
the price axis, whereas the Fhm parameter determines the location of the
mountain along the pulse-frequency axis. The vertical blue line represents
the estimate of Pe, and the surrounding band represents the corresponding
95% confidence interval. The horizontal red line represents the estimate of
Fhm, and the surrounding band represents the corresponding 95%
confidence interval. The bar graph shows the mean shifts in the location
parameters due to the increase in train duration from 0.25 to 1 s along with
the associated 95% confidence intervals. ∗Indicates that the 95%
confidence interval does not include zero.

2010). The allocation of time to reward pursuit reflects a fur-
ther non-linear transformation, which combines the subjective
estimate of the payoff from the experimenter-controlled reward
with an estimate of the payoff from alternate activities, such as
grooming, exploring, and resting (Hernandez et al., 2010). This
final transformation is based on McDowell’s (McDowell, 2005)
modification of Herrnstein’s Matching Law (Herrnstein, 1970,
1974).

The reward-mountain model highlights how challenging it is
to infer, from behavioral data, the stage of processing at which a
given experimental manipulation alters performance for a reward.
Although the model is a minimal one in the sense that it is hard
to see how a simpler formulation could account for the data, it
nonetheless entails multiple stages of processing, several of which
are non-linear; each stage integrates effects of multiple experi-
mental variables. A given change in the output of the model can
thus arise in multiple ways, not all of which may be intuitive.

It follows from the reward-mountain model that the
two-dimensional depictions employed in the curve-shift and
progressive ratio paradigms are ambiguous and that the con-
ventional interpretations of these depictions do not take suf-
ficient account of the multiple influences on reward-seeking
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FIGURE 6 | Shifts of the reward mountain. The contour graph for the
long-duration (1 s) train is shown in the lower left. For comparison the
contour graph for the short-duration (0.25 s) train is shown twice, in the
upper left and lower right. The Pe parameter determines the location along
the price axis, whereas the Fhm parameter determines the location of the
mountain along the pulse-frequency axis. The vertical blue line represents
the estimate of Pe, and the surrounding band represents the corresponding
95% confidence interval. The horizontal red line represents the estimate of
Fhm, and the surrounding band represents the corresponding 95%
confidence interval. The bar graph shows the mean shifts in the location
parameters due to the increase in train duration from 0.25 to 1 s along with
the associated 95% confidence intervals. ∗Indicates that the 95%
confidence interval does not include zero.

behavior (Arvanitogiannis and Shizgal, 2008; Hernandez et al.,
2010; Shizgal and Hernandez, 2010; Shizgal et al., 2012). By
measuring and depicting performance as a function of both
reward strength and reward cost, the three-dimensional approach
derived from the reward-mountain model reduces the ambigu-
ity inherent in the long-used two-dimensional approaches. Of
crucial relevance to the present experiment is the ability of the
three-dimensional approach, but not the prior two-dimensional
methods, to distinguish changes occurring prior to or beyond the
output of the “integrator” (Gallistel et al., 1981): the neural circuit
that performs temporal and spatial summation of the input from
the directly stimulated neurons subserving the rewarding effect.

The reward-mountain model (Hernandez et al., 2010), as well
as earlier portrayals of the neural circuitry underlying intracra-
nial self-stimulation (Gallistel, 1978; Gallistel et al., 1981), predict
that changes in train duration will alter the stimulation strength
required to drive integrator output to a particular level. If more
time is available for integration (i.e., if the train duration is
longer), and the output of the integrator has not yet reached its
asymptote, then a weaker input will suffice to achieve a given
level of summation by the end of the train. Therefore, increasing
the train duration is predicted to displace the reward mountain
toward lower values along the pulse-frequency axis.

FIGURE 7 | Shifts of the reward mountain. The contour graph for the
long-duration (1 s) train is shown in the lower left. For comparison the
contour graph for the short-duration (0.25 s) train is shown twice, in the
upper left and lower right. The Pe parameter determines the location along
the price axis, whereas the Fhm parameter determines the location of the
mountain along the pulse-frequency axis. The vertical blue line represents
the estimate of Pe, and the surrounding band represents the corresponding
95% confidence interval. The horizontal red line represents the estimate of
Fhm, and the surrounding band represents the corresponding 95%
confidence interval. The bar graph shows the mean shifts in the location
parameters due to the increase in train duration from 0.25 to 1 s along with
the associated 95% confidence intervals. ∗Indicates that the 95%
confidence interval does not include zero.

SHIFTS ALONG THE PULSE-FREQUENCY AXIS
As shown in Figure 9, increasing the train duration indeed
displaced the mountain toward lower values along the pulse-
frequency axis in all six rats (red bars), as predicted. This was
also the case in the four rats tested previously by Arvanitogiannis
and Shizgal (Arvanitogiannis and Shizgal, 2008). Thus, this
finding was not altered by the methodological improvements
incorporated in the present study and in the pharmacologi-
cal applications of the three-dimensional measurement method
(Hernandez et al., 2010, 2012; Trujillo-Pisanty et al., 2011,
2012).

One of the methodological improvements concerns the
schedule of reinforcement. In the current study, a “cumula-
tive handling-time” schedule (Breton et al., 2009b) was used.
This schedule forces the subject to choose between work
(holding down the lever) or leisure (grooming, resting, explor-
ing, etc.); time spent in leisure activities reduces the num-
ber of experimenter-controlled rewards that the subject can
earn. In contrast, the variable-interval schedule employed in the
Arvanitogiannis and Shizgal (2008) study provides weaker exper-
imental control over reward cost. The subject may succeed in
harvesting most of the rewards on offer even it presses the lever
only intermittently. In between these work bouts, the subject
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FIGURE 8 | Shifts of the reward mountain. The contour graph for
the long-duration (1 s) train is shown in the lower left. For comparison the
contour graph for the short-duration (0.25 s) train is shown twice, in the
upper left and lower right. The Pe parameter determines the location along
the price axis, whereas the Fhm parameter determines the location of the
mountain along the pulse-frequency axis. The vertical blue line represents
the estimate of Pe, and the surrounding band represents the corresponding
95% confidence interval. The horizontal red line represents the estimate of
Fhm, and the surrounding band represents the corresponding 95%
confidence interval. The bar graph shows the mean shifts in the location
parameters due to the increase in train duration from 0.25 to 1 s along with
the associated 95% confidence intervals. ∗Indicates that the 95%
confidence interval does not include zero.

can engage in leisure activities without much consequent loss of
income.

A second methodological improvement is the use of random
rather than sequential sampling of the independent variables. We
have shown previously (Breton et al., 2009b) that when reward
cost remains constant during repeated “sweeps” of the pulse
frequency, performance becomes insensitive to the cost variable;
sensitivity is restored when both variables are sampled randomly,
as was done here.

The third methodological improvement is the application of
resampling methods (Efron and Tibshirani, 1994) in fitting the
mountain model and estimating its parameters. The observed
verification of the prediction that the mountain will be displaced
along the pulse-frequency axis constitutes a partial validation of
the improved methods.

SHIFTS ALONG THE PRICE AXIS
The reward-mountain model makes a negative prediction as well
as a positive one concerning the effect of varying the train dura-
tion. The positive prediction, displacement toward lower values
along the pulse-frequency axis as the train duration is increased,
was borne out by the results from all six rats. In contrast, the

FIGURE 9 | Summary of the shifts in the position of the

reward-mountain produced by increasing the train duration from 0.25

to 1 s. Increasing the train duration reduced the pulse frequency required to
produce a half-maximal reward in all rats (upper panel). In contrast, there
was no change, in three cases, in the price at which time allocation for a
maximal reward fell halfway between TAmax and TAmin, whereas
lengthening the train duration reliably increased the value of this position
parameter in the remaining three rats (lower panel). ∗Indicates that the
95% confidence interval does not include zero.

FIGURE 10 | Location of the electrode tips. Plus signs designate
placements for which the reward mountain did not shift along the price
axis, whereas filled circles designate placements for which rightward shifts
were observed when the train duration was increased.

negative prediction was borne out by the results from only three
subjects.

The negative prediction of the model is that the mountain will
not move along the price axis when train duration is changed.
This prediction arises from the ability of changes in stimulation
strength to compensate for changes in temporal integration. In
the model depicted in Figure 11, the train duration does not
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FIGURE 11 | The single-integrator model. The version presented here is
based on an earlier depiction (Hernandez et al., 2010) but incorporates
expressions for the frequency response of the directly stimulated neurons
(Equation 4) and for the subjective-price function (Equation 3). The numbering
of the graphical elements in the diagram indexes the equations. The following
table relates the index numbers in Figure 11 to the equation numbers in the
main text and appendix.

Equation number

in Figure 11

Corresponding manuscript

section

Manuscript

equation number

The Extended Reward Mountain Model 4
The dual integrator model, Appendix

01.AxidneppA

The Extended Reward Mountain Model 3

4.AxidneppA5
5.AxidneppA6

5, A.1, A.92
1

3

4

change the maximum reward intensity attainable; instead it alters
the stimulation strength required to drive reward intensity to
a given level. Once the stimulation strength has been suitably
adjusted for a decrease in train duration, performance will be
restored to the level observed at the longer duration, and no alter-
ation in price will be required. This prediction was borne out in
the results from rats C26, Y12, and Y14. However, contrary to the
prediction, displacements along the price axis were observed in
the results from rats C17, Y13, and Y15 (Figure 9). The detection
of such shifts in the present study, but not in the prior work by
Arvanitogiannis and Shizgal (Arvanitogiannis and Shizgal, 2008),
may be a consequence of across-study differences in electrode
placement or of the methodological improvements embodied in
the current design, which shrank the confidence intervals around
the estimates of the parameter controlling the location of the
mountain along the x-axis.

THE DUAL-INTEGRATOR MODEL
The displacements along the price axis can be accounted for
by relaxing the assumption of a homogeneous reward sub-
strate. What if the rewarding effect of stimulating certain brain
sites arises from the direct activation of a heterogeneous neu-
ral population that provides input to multiple integrators? This
idea of a heterogeneous substrate has figured prominently in
attempts to explain otherwise perplexing data from experiments
on the effects of energy-balance manipulations (Blundell and
Herberg, 1968; Carr and Wolinsky, 1993; Fulton et al., 2000,

2006; Shizgal et al., 2001) and lesions (Arvanitogiannis et al.,
1996; Waraczynski, 2006) on performance for brain stimulation
reward. In this regard, it is interesting to note, in Figure 10, the
separation between the electrode tips in the subjects demon-
strating shifts along the price axis (plus signs) and the subjects
showing shifts uniquely along the pulse-frequency axis (circles).
We have explored, by means of simulations and additional sur-
face fits, how the multiple-integrator idea might account for the
shifts along the price axis, and we propose a way to test this
hypothesis.

In the reward-mountain model, Fhm, the frequency required
to drive reward intensity to half of its maximal value, varies as a
declining, rectangular, hyperbolic function of the train duration
(Gallistel, 1978; Sonnenschein et al., 2003; Hernandez et al.,
2010):

FFhm(D) = FFhmR ×
(

1 + C

D

)
(5)

where

FFhm (D) = the firing frequency required to produce a reward of

half-maximal intensity at train duration D

FFhmR = the rheobase: the firing frequency required to

produce a reward of half-maximal intensity at an

infinitely long train duration
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C = the chronaxie: the train duration at which

FFhm (D) is twice FFhmR

This function, which has provided a very good fit to data from
prior studies (Gallistel, 1978; Sonnenschein et al., 2003), has two
parameters. The horizontal asymptote of this function is called
the rheobase, whereas the curvature of the function is determined
by the chronaxie, the train duration at which FFhm equals twice
the rheobase. Suppose that the electrode in animals C17, Y13, and
Y15 evoked a volley of action potentials in two subsets of primary
reward neurons, each projecting to a separate integration net-
work with a different chronaxie, rheobase, and maximum reward
intensity. The outputs of the two integrators are summed, and the
result is then combined with the values of the remaining variables
determining reward pursuit, as stipulated by the single-integrator
version of the reward-mountain model (e.g., Figure 11). This
dual-integrator version of the model and the reward-growth
functions it generates are shown in Figure 12; the model is
derived in the appendix. This expanded version of the moun-
tain model incorporates empirically supported expressions for the
subjective assessment of opportunity cost (Solomon et al., 2007)
and for the frequency response of the directly stimulated neu-
rons subserving the rewarding effect (Solomon et al., 2010). The
appendix includes a detailed discussion of why even the expanded
version of the single-integrator model cannot account for the
observed shifts of the mountain along the price axis.

Figure 12 shows that the curve describing the growth of inte-
grator output as a function of pulse frequency at the 1 s train
duration is pushed toward higher frequencies when the train
duration is reduced to 0.25 s. In contrast, little or no growth in
output is observed at the 0.25 s train duration in the case of the
integrator with the longer chronaxie (integrator 2). The reason
for the absence of reward growth at the 0.25 s train duration is
that the pulse frequencies required to produce substantial output
from this longer-chronaxie integrator when the train duration is
this short exceed the frequency-following capability of the directly
stimulated neurons. Thus, this integrator can no longer con-
tribute significantly to the summed output, and the maximum
summed output achievable declines. The price of the reward
must be decreased in compensation, reducing the value of the Pe

parameter.
Figures 13, 14 show the results of a constrained fit of the dual-

integrator model to the results from rat C17. The constraints were
required for two reasons. First, as explained in the appendix, the
dual-integrator model adds three parameters to the mountain
model: the original Fhm and Pe parameters are replaced by two
chronaxie parameters, two rheobase parameters, and a weighting
parameter specifying the maximum reward intensity achievable
by integrator 1 as a proportion of the summed maxima for the
two integrators. One minus this latter value gives the weight for
integrator 2. A denser mass of data would be required to esti-
mate the values of this larger number of parameters with the
same precision achieved in the fit of the single-integrator model.
Second, good estimates of the chronaxie and rheobase parameters
require that one or more additional train durations be tested and
that these include a value at which the function has approached

FIGURE 12 | The dual-integrator model. Only the components that differ
from those in Figure 11 are shown; the remaining components are
common to the single- and dual-integrator models. The rewarding effect
arises from the direct activation of two subpopulations of neurons, each of
which projects to a different spatio-temporal integrator; the weighted
outputs of these two integrators are pooled. One integrator has a shorter
chronaxie than the other, which renders it less sensitive to the reduction of
the train duration from 1 to 0.25 s. Note that the pulse-frequency axis is
inverted: the frequency decreases from left to right. The translucent blue
planes are positioned at FNear Max (Fnm), the pulse frequency beyond which
reward intensity approaches asymptote. At both the short and long train
durations, the growth of reward intensity at the output of integrator 1
(upper 3D graph) is largely complete at pulse frequencies lower than
FNear Max. Although reward growth at the output of integrator 2 is also
largely complete at pulse frequencies lower than FNear Max when the train
duration is 1 s (lower 3D graph), reward growth has not yet begun at this
pulse frequency when the train duration is 0.25 s. Thus, reward fails to
grow as a function of pulse frequency when the train duration is short, and
the summed output of the two integrators (right-hand 3D graph) is lower at
the short train duration than at the long. The parameters used to
generate the reward-growth functions in Figure 12 are from the fit of the
dual-integrator model to the data from rat C17 (Figures 13, 14).

rheobase. Neither of these requirements are met by the exist-
ing dataset and thus additional constraints were required. The
values of the a, g, TAmax and TAmin parameters were fixed at
the estimates obtained in the initial fits (Figures 3–8), reduc-
ing the number of free parameters to be estimated. In addition,
an upper limit of 6 s was imposed on the chronaxie parameters.
The dual-integrator model derived in the appendix was then fit
with these constraints in force, using the resampling approach
described above.

Figure 13 shows the 3D surfaces and contour maps generated
by the constrained fit of the dual-integrator model to the results
from rat C17. The value of the subjective-price and frequency-
following parameters were the same as those used in the initial
fits, as specified in section The Extended Reward Mountain
Model. Given these values, both integrators contribute to the
rewarding effect at the longer (1 s) train duration, but the contri-
bution of the integrator with the higher rheobase and the longer
chronaxie drops out at the shorter (0.25 s) train duration due
to the inability of the directly stimulated neurons to fire at the
required pulse frequencies. Due to the composite nature of the
reward-growth function at the 1 s train duration, an indentation
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FIGURE 13 | Fit of the dual-integrator model to the data from rat C17.

Top row: 3D surfaces showing how time allocation varies as a function of
pulse frequency and price. Individual data means along the pulse-frequency
(red), price (blue), and radial (green) sweeps are designated by polyhedrons
(0.25 s trains) or pyramids (1 s trains). Note the indentation in the surface fit
to the data obtained at the longer train duration (upper right). This
indentation is due to the offset between the pulse frequencies over which
reward intensity grows in the two integrators (upper and lower 3D graphs
in Figure 12). Bottom row: contour graphs corresponding to the surfaces
in the row above. The vertical blue line represents the estimate of Pe, and
the surrounding band represents the corresponding 95% confidence
interval. The horizontal red line represents the estimate of Fhm, and the
surrounding band represents the corresponding 95% confidence interval.
The wiggles in the contour lines in the graph for the longer train duration
(lower right) correspond to the indentation in the surface shown above.

appears in the surface. The reason for this indentation and the
corresponding wiggle in the contour graph is that as the pulse
frequency is increased, reward growth in integrator 1 approaches
asymptote before there is significant reward growth at the output
of integrator 2 (see the 3D graph on the right of Figure 12).

Figure 14 shows the contour graphs obtained from the con-
strained fit of the dual-integrator model, in the same format
as the depictions of the fits of the single-integrator model in
Figures 3–8. Note that the mountain for the long train dura-
tion is shifted rightward with respect to the mountain for the
short train duration. This indicates that the rat was willing to
pay higher prices for rewards of a given intensity. According to
the dual-integrator model, the increase in train duration shifts
the reward-growth function for the long-chronaxie integrator
(lower 3D graph in Figure 12) sufficiently so as to allow the
output of this integrator to approach its maximum before the
frequency-following limit is reached. As a result, the summed

FIGURE 14 | Shifts of the reward mountain in the fit of the

dual-integrator model to the data from rat C17. The contour graph for
the long-duration (1 s) train is shown in the lower left. For comparison the
contour graph for the short-duration (0.25 s) train is shown twice, in the
upper left and lower right. For clarity, the sampling vectors (the series of
points designating the pulse frequencies and prices tested) have been
omitted. These can be seen in Figures 3, 13. For comparison with the fit of
the single-integrator model to this same dataset, see Figure 3. Note the
wiggles in the contour lines for the longer train duration (lower left), which
are due to the offset between the pulse frequencies over which reward
intensity grows in the two integrators (upper and lower 3D graphs in
Figure 12). The Pe parameter determines the location along the price axis,
whereas the Fhm parameter determines the location of the mountain along
the pulse-frequency axis. The vertical blue line represents the estimate of
Pe, and the surrounding band represents the corresponding 95%
confidence interval. The horizontal red line represents the estimate of Fhm,
and the surrounding band represents the corresponding 95% confidence
interval. The bar graph shows the mean shifts in the location parameters
due to the increase in train duration from 0.25 to 1 s. As this figure shows,
the dual-integrator model can account for the observed shift of the
mountain rightward along the price axis when the train duration is
increased from 0.25 to 1 s.

reward intensity at the 1 s train duration (right-hand 3D graph
in Figure 12) rises higher than at the 0.25 s duration, and the rat
is willing to pay more for these high-valued “goods.”

The results of the constrained fit argue for the plausibility of
the dual-integrator model. How can this hypothesis be tested
empirically? One approach would be to obtain a richer dataset
that included a train duration sufficiently long to support accu-
rate chronaxie and rheobase estimates. The dual-integrator model
could then be pitted against the simpler version of the mountain
model and the results adjudicated by means of the Akaike or Bayes
information criterion. A more direct test could be performed in a
dual-operant paradigm. According to the dual-integrator model,
the maximum reward value achieved in cases such as those shown
in Figures 12–14 is lower at the short train duration than at the
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long duration. If the pulse frequency were set to a value suffi-
ciently high to achieve asymptotic reward growth (i.e., at a value
at which the contour lines in Figures 13, 14 run vertically), the
rat should prefer the long-duration train over the short-duration
train.

With only six observations in hand, one cannot draw firm
conclusions from the locations of the electrode tips (Figure 10).
That said, it is of interest that the three stimulation sites at which
shifts along the price axis were noted are separated from the three
tightly clustered sites at which no such shifts were seen. If such
a pattern were also seen in future tests, this would support the
notion of a heterogeneous reward substrate that is sampled differ-
entially as a function of the location of the electrode tip (Fulton
et al., 2006).

CONCLUSIONS
The reward-mountain model and the associated measurement
method have advanced efforts to pin down the stage of processing
at which psychomotor stimulants (Hernandez et al., 2010, 2012),
neuroleptics (Trujillo-Pisanty et al., 2012), and cannabinoids
(Trujillo-Pisanty et al., 2011) act to alter performance for BSR.
These tools promise to produce similar benefits in the analysis of
effects produced by other drugs as well as by manipulations such
as lesions, alterations in energy balance, and optogenetic activa-
tion or silencing. That said, the results of the current study both
sound a note of caution and offer a remedy concerning the inter-
pretation of results obtained by means of the 3D method. The
dual-integrator model developed here shows that a manipulation
that acts prior to the output of the integrator, such as changing the
train duration, can nonetheless shift the mountain along the price
axis under a special condition: when the increase in pulse fre-
quency required to offset the effect of the manipulation outstrips
the ability of the directly stimulated neurons to fire in response
to each and every stimulation pulse. The use of moderate to high
currents in future studies would reduce this risk by moving the
value of the Fhm parameter away from FNear Max, the value that
marks the breakdown of perfect frequency following (Solomon
et al., 2010).

New optogenetic methods (Yizhar et al., 2011) promise to
advance research on brain reward circuitry in many ways, several

of which are directly germane to the issues raised here. These
methods allow much more specific targeting of neural activa-
tion, which should help identify the components of the BSR
substrate. Once this has been done, models such as the one
proposed here could be put to exacting tests by optogenetic acti-
vation or silencing of specific circuit elements. Such methods
have already identified multiple promising candidates for the
directly stimulated stage of the circuitry subserving medial fore-
brain bundle self-stimulation (Jennings et al., 2013; Kempadoo
et al., 2013), which lends plausibility to the notion of multiple
integrators.

Gallistel has long argued that the output of the integrator is
recorded in an enduring memory of reward intensity (Gallistel
et al., 1974, 1981). Such memories are believed to play crucial
roles in reward-seeking behaviors, both salubrious and patho-
logical. Working out the structure of the circuitry subserving
spatio-temporal integration of reward signals should shed light
on how such memories are formed. Along with stored informa-
tion about the costs, risks, and kinds of rewards available (Shizgal,
1997), a record of reward intensity provides essential data for
the processes that select goals and allocate behavior to their
pursuit.
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APPENDIX
THE ORIGINAL SINGLE-INTEGRATOR VERSION OF THE
REWARD-MOUNTAIN MODEL
A paper by Hernandez et al. (2010) derives the version of the
reward-mountain model that is extended here. The dependent
behavioral variable, time allocation (TA), is expressed as a func-
tion of two independent variables, pulse frequency (F) and price
(P). (Recall that price is the cumulative time that the rat must
depress the lever in order to trigger a reward.) The extensions
proposed here incorporate two transformations that allow the
independent variables to be treated in a more realistic fashion
than in the earlier versions of the model. The stimulated neu-
rons are no longer assumed to be capable of firing in response to
every stimulation pulse, regardless of the pulse frequency. When
the price is trivially small, a modest proportional change of a given
magnitude is no longer assumed to have the same behavioral con-
sequence as the same proportional change at higher prices. (For
example, in the version proposed here, increasing the price from
0.01 to 0.02 s has a negligible effect, but increasing it from 10 to
20 s has a large effect. In contrast, the effects of both increases are
equivalent in the earlier versions.) The extended mountain model
is illustrated in Figure 11.

The frequency roll-off, reward-growth, and train strength-duration
functions
The extension described by Equation 4 (section The Extended
Reward Mountain Model; Figure 1, lower panel) translates the
pulse frequency into the stimulation-induced spike rate in the
directly stimulated neurons responsible for the rewarding effect
(Figure 1, right panel).

FF = Fbend ×
[

Ln

(
1 + e

FNearMax
Fbend

)
− Ln

(
1 + e

FNearMax−F
Fbend

)]

where

Fbend = parameter governing the abruptness of the transition

between the rising and flat segments of the function

FNearMax = the midpoint of the transitional region

Once the pulse frequency surpasses a critical value, FNearMax,
further increases fail to boost the induced firing rate.

The induced rate of firing is translated into the intensity
of the rewarding effect by a logistic “reward-growth” function
(Sonnenschein et al., 2003; Arvanitogiannis and Shizgal, 2008;
Hernandez et al., 2010) based on scaling work carried out by
Gallistel’s group (Gallistel and Leon, 1991; Simmons and Gallistel,
1994):

RI(D, FF) = RImax × FFg

FFg + [FFhm(D)]g
(A.1)

where

D = duration of the stimulation train

FF = induced firing frequency in the directly stimulated

neurons

FFhm = induced firing frequency that produces a half-maximal

reward intensity

g = the intensity-growth exponent

RI = reward intensity, and

RImax = the maximum reward intensity achieveable

A rectangular hyperbolic function (Gallistel, 1978; Sonnenschein
et al., 2003; Hernandez et al., 2010) translates the train dura-
tion (D) into the induced firing frequency (FFhm), as specified in
Equation 5 (section The Dual Integrator Model).

FFhm(D) = FFhmR ×
(

1 + C

D

)
where

FFhm (D) = the firing frequency required to produce a reward of

half-maximal intensity at train duration D

FFhmR = the rheobase: the firing frequency required to

produce a reward of half-maximal intensity at an

infinitely long train duration

C = the chronaxie: the train duration at which FFhm (D)

is twice FFhmR

At any given train duration, D, we can recover Fhm, the param-
eter that locates the reward mountain along the pulse frequency
axis, by back-solving Equation 4 (section The Extended Reward
Mountain Model) as follows:

Fhm(D) = FNear Max − Fbend

× Ln

(
e

FNearMax−FFhm(D)

Fbend + e
− FFhm(D)

Fbend − 1

)
(A.2)

The subjective-price function
The second extension introduced here maps the objective price
(P) into its subjective equivalent (SP). According to this func-
tion (section The Extended Reward Mountain Model, Equation
3; Figure 1, upper panel), the subjective price remains nearly con-
stant at a minimal value when the objective price is very low,
but once the objective price exceeds a critical value, the subjec-
tive price starts to grow and eventually approaches the objective
price.

SP = SPmin + SPbend × Ln

(
1 + e

P−SPmin
SPbend

)
where

SPmin = minimum subjective price

SPbend = parameter determining the abruptness of the transition

between SPmin and the rising portion of the

subjective-price function

The surface-fitting procedure returns an estimate of SPe,
the subjective price at which time allocation for a maximally
intense reward falls halfway between maximal and minimal time
allocation when frequency following is perfect. This estimate
can be transformed into the parameter that locates the reward
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mountain along the price axis, Pe, by back-solving the subjective-
price equation:

Pe = SPmin + SPbend × Ln

(
e

SPe−SPmin
SPbend − 1

)
(A.3)

The payoff and behavioral-allocation functions
The payoff from BSR is modeled (Hernandez et al., 2010) as a
scalar combination of the strength and cost of the reward:

Ubsr = RI

SP × (1 + ξ)
(A.4)

where Ubsr = the payoff from BSR and
1 + ξ = the subjective rate of exertion entailed in holding down
the lever.

The behavioral-allocation function in the reward-mountain
model (Hernandez et al., 2010) relates time allocated to depress-
ing the lever to the relative payoffs obtained from BSR and from
alternate activities such as grooming, exploring and resting:

TA =
[
(TAmax − TAmin) × U a

bsr

U a
bsr + U a

e

]
+ TAmin (A.5)

where

a = the payoff-sensitivity exponent

Ue = the payoff from “everything else” (alternate activities)

TAmax = maximum time allocation, and

TAmin = minimum time allocation

It follows from Equation A.3, that TA will fall mid-way between
TAmax and TAmin (TA = TAmid) when the payoff from BSR equals
the payoff from “everything else” (UbsrTAmid

= Ue). Thus, we can
define a subjective price, SPe, such that

Ue = UbsrTAmid
= RImax

SPe × (1 + ξ)
(A.6)

where SPe = the subjective price at which time allocation for a

maximal BSR falls halfway between TAmax and

TAmin, and

1 + ξ = the subjective rate of exertion required to hold down

the lever

Substituting for Ubsr and Ue in Equation A.5 and dividing the
payoff terms by RImax

SPe×(1+ξ)
, we obtain:

TA =
⎡
⎢⎣(TAmax − TAmin) ×

(
RI

RImax

)a

(
RI

RImax

)a +
(

SP
SPe

)a

⎤
⎥⎦+ TAmin (A.7)

This is the equation that was fit to the data to produce the
graphs in Figures 2–8.

Shifts exclusively along the pulse-frequency axis
We are now in a position to see why, in the single-integrator
version of the mountain model (Figure 11), changing the train

duration moves the mountain along the pulse-frequency axis and
not along the price axis, provided that perfect frequency follow-
ing doesn’t break down. Changing the train duration alters the
pulse frequency required to drive reward intensity to its maxi-
mal value. Once RImax is attained, RI

RImax
equals 1, and TA will

fall halfway between its minimum and maximum values when
SP = SPe, regardless of the pulse frequency required to reach
RImax.

Shifts along both the pulse-frequency and price axes
The extension of the reward-mountain model allows us to predict
what will happen when perfect frequency following does break
down. In that case, changing the train duration can shift the
mountain along the price axis as well as along the pulse-frequency
axis.

To accommodate the limited frequency-following capability
of the stimulated neurons, let us redefine SPe as SPePFF , where
“PFF” stands for “perfect frequency following.” As long as per-
fect frequency following is maintained, the “middle” contour of
the mountain, the one representing the TAmid “altitude” (half-
way between TAmin and TAmax), will asymptote at SPePFF . This
follows from Equation A.6, which defines SPe (and by exten-
sion, SPePFF ) as the price at which time allocation to pursuit of
a half-maximal reward equals TAmid. However, if Fhm is near
or greater than FNear Max, then reward intensity can no longer
reach its maximum value. In order to achieve a time allocation
of TAmid for this weaker reward, the price must be decreased.
As a result, the middle contour line will start to run verti-
cally at an SP value (and corresponding objective price) lower
than SPePFF that we will call SPeVMC , where “VMC” represents
the vertical orientation of the TAmid contour at the highest
pulse frequencies. Thus, the mountain shifts leftwards along the
price axis.

Let FHiF = the highest pulse frequency the rat can tolerate

FFHiF = the corresponding spike rate, and

RIHiF = the corresponding reward intensity

Given these definitions and Equation A.1,

SPeVMC = SPePFF × RIHiF

RImax
(A.8)

When Fhm � FNearMax, even at the shorter train duration, then
RIHiF
RImax

will approach unity, and SPeVMC ≈ SPePFF . As a result,
decreasing the train duration will not shift the mountain along
the price axis. In contrast, if Fhm�FNearMax at the short train
duration, then SPeVMC < SPePFF , and the mountain shifts left-
wards along the price axis.

This section of the appendix sounds a note of caution con-
cerning the interpretation of shifts in the position of the reward
mountain. The extension of the model to accommodate realistic
frequency-following capabilities in the directly stimulated sub-
strate shows how leftward shifts along the price axis could result
from treatments, such as drug administration, lesions, or opto-
genetic manipulations that cause large increases in Fhm. In such
cases, the observed values of Fhm should be evaluated carefully
so as to estimate the ability of the directly stimulated neurons
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to follow the tested pulse frequencies with good fidelity (Simmons
and Gallistel, 1994; Solomon et al., 2010).

Could failure of frequency following in a single-integrator
model account for the shifts along the price axis observed in
the cases of rats C17, Y13, and Y15 when the train duration
was reduced from 1 to 0.25 s? Inspection of Figures 3, 6, 8
suggests that this is highly unlikely: the Fhm values are only
113, 107, and 82 pulses per second, well within the range of
high-fidelity frequency following (Simmons and Gallistel, 1994;
Solomon et al., 2010). Thus, the single-integrator account can-
not plausibly explain observed shifts along the price axis, even
when the frequency-following limitation is incorporated in the
model. In the next section, we develop a dual-integrator ver-
sion of the reward-mountain model, and we show in section The
Dual Integrator Model that this version does provide a plausible,
testable account.

THE DUAL-INTEGRATOR VERSION OF THE REWARD-MOUNTAIN
MODEL
The distinguishing features of the dual-integrator model are illus-
trated in Figure 12, which replaces the leftmost components of
the single-integrator model shown in Figure 11. The electrode
samples from two intermingled populations of fibers, and the
synaptic drive produced in each population is integrated sepa-
rately; the outputs of the two integrators are summed. To accom-
modate these changes and to make the dependence of FFhm on D
explicit, Equation A.1 has been modified as follows:

RI(D, FF) =
∑⎛

⎜⎝RImaxi × FFg

FF g +
[

FFhmRi

(
1 + Ci

D

)]g

⎞
⎟⎠ (A.9)

where i ∈ {integrator 1, integrator 2}
Now, each integrator can achieve a different maximum reward

intensity (RImaxi ), which is achieved at the end of the pulse train:

RImaxi = RIpeaki
(t, FFsat)

0≤t≤D

= RI(D, FFsat) (A.10)

where FFsat = the frequency of firing that saturates (maximizes)

the growth of reward intensity

These maximal, peak values scale the growth of reward inten-
sity at the output of each integrator and thereby weight the
contribution of each integrator to the summed output:

wi = RImaxi∑
RImaxi

(A.11)

where wi = the relative contribution of integrator i to the pooled
output when frequency following is perfect.

Equation A.11 expresses the weights in terms of the proportion
of the maximum summed output each integrator can contribute
when perfect frequency following obtains. By definition, the two
weights sum to one:

∑
wi = 1

Generalizing from section Shifts Along Both the Pulse-Frequency
and Price Axes we define RIHiFi as the reward intensity achieved
by integrator i at the highest pulse frequency that can be
tested. When frequency following is perfect, RIHiFi = RImaxi .
Substituting for RImaxi in Equations A.9 and A.11 and rearranging
terms, we obtain:

RI(D, FFHiF)

RImax
=
∑⎛

⎜⎝wi × FF
g

HiF

FF
g

HiF +
[

FFhmRi

(
1 + Ci

D

)]g

⎞
⎟⎠ (A.12)

If frequency following in the input to either integrator is imper-

fect, then RI(D,FFHiF)
RImax

< 1. Equation A.12 shows that the higher the
values of FFhmR and C, the more likely that Fhmi(D) will approach
FNearMax, and the further RI(D, FFHiF) will fall below RImaxi . The
shorter the train duration, the greater the separation between the
pulse-frequencies over which the outputs of the two integrators
grow.

In the example illustrated in Figure 12, the chronaxie and
rheobase for integrator 2 are larger than for integrator 1. This
is why reward growth begins in earnest at a lower frequency at
the output of integrator 1 and why the output of integrator 2
does not begin to rise until the output of integrator 1 is already
approaching asymptote. At the longer train duration Fhmi(D) is
still sufficiently below FNearMax that the output of integrator 2 can
eventually approach its maximum. However, decreasing the train
duration to the shorter value pushes the reward-growth func-
tion for integrator 2 sufficiently far to the right that the failure
of frequency following prevents the output of that integrator from
making a substantial contribution to the pooled output. Thus, the
summed value of RImax is lower at the shorter train duration than
at the long. Equation A.8 then applies:

SPeVMC = SPePFF × RIHiF

RImax

As in the case described in section 7.1.4, SPeVMC is pulled leftward,
away from SPePFF , producing a shift along the price axis such as
those seen in the data from rats C17, Y13, and Y15.

The value of the Pe parameter was derived from SPePFF , as spec-
ified by Equation A.3. The value of Fhm was computed by solving
Equation A.13

FFhm =

g

√√√√√√√√√√
FF

g
hm2

− FF
g

hm1
+

⎛
⎜⎜⎜⎝
(

4 × FF
2g

hm1
× w2

1

)
−
(

4 × FF
g

hm1
× w1 + FF

2g
hm1

)
−
(

8 × FF
g

hm1
× FF

g
hm2

× w2
1

)
+(

8 × FF
g

hm1
× FF

g
hm2

× w1

)
+
(

2 × FF
g

hm1
× FF

g
hm2

)
+
(

4 × FF
2g

hm2
× w2

1

)
−(

4 × FF
2g

hm2
× w1

)
+
(

4 × FF
2g

hm2

)
⎞
⎟⎟⎟⎠

1
2

2
+
(

FF
g

hm1
× w1

)
−
(

FF
g

hm2
× w1

)
(A.13)

and then backsolving for Fhm using Equation A.2.
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