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INTRODUCTION

A disruption of the vitamin A signaling pathway has been involved in age-related memory
decline and hippocampal plasticity alterations. Using vitamin A deficiency (VAD), a
nutritional model leading to a hyposignaling of the retinoid pathway, we have recently
demonstrated that retinoic acid (RA), the active metabolite of vitamin A, is efficient
to reverse VAD-induced spatial memory deficits and adult hippocampal neurogenesis
alterations.Besides, excess of glucocorticoids (GCs) occurring with aging is known to
strongly inhibit hippocampal plasticity and functions and few studies report on the
counteracting effects of RA signaling pathway on GCs action. Here, we have addressed
whether the modulation of brain GCs availability could be one of the biological mechanisms
involved in the effects of vitamin A status on hippocampal plasticity and functions. Thus,
we have studied the effects of a vitamin A-free diet for 14 weeks and a 4-week vitamin
A supplementation on plasma and hippocampal corticosterone (CORT) levels in Wistar
rats. We have also investigated corticosteroid binding globulin (CBG) binding capacity
and 11beta-Hydrosteroid Dehydrogenase type 1 (118-HSD1) activity, both important
modulators of CORT availability at the peripheral and hippocampal levels respectively.
Interestingly, we show that the vitamin A status regulates levels of free plasma CORT
and hippocampal CORT levels, by acting through a regulation of CBG binding capacity and
11B-HSD1 activity. Moreover, our results suggest that increased CORT levels in VAD rats
could have some deleterious consequences on spatial memory, anxiety-like behavior and
adult hippocampal neurogenesis whereas these effects could be corrected by a vitamin
A supplementation. Thus, the modulation of GCs availability by vitamin A status is an
important biological mechanism that should be taken into account in order to prevent
age-related cognitive decline and hippocampal plasticity alterations.

Keywords: Vitamin A status, retinoic acid, glucocorticoid, spatial memory, anxiety-like behavior, hippocampal
neurogenesis, 11beta-Hydrosteroid dehydrogenase type 1, corticosteroid binding globulin

et al., 2012), hippocampal neurogenesis (Jacobs et al., 2006) and

The vitamin A, through its main metabolite retinoic acid (RA),
plays a key role in cognitive functions and more specifically in
anxiety-like behavior and hippocampus-dependent memory dur-
ing adulthood (Lane and Bailey, 2005; McCaffery et al., 20065
Cai et al., 2010; Olson and Mello, 2010). A disruption of RA sig-
naling pathway has been involved in age-related memory decline
(Etchamendy et al., 2001; Mingaud et al., 2008). Interestingly, in
these studies life-long nutritional vitamin A supplementation or
RA treatment corrected memory deficits in aged rodents. The
involvement of retinoids in the control of hippocampal plastic-
ity, known to underlie spatial memory processing (Eichenbaum
et al., 1999; Eichenbaum, 2004), has been largely demonstrated
in Vitamin A Deficiency (VAD) models, a nutritional approach
leading to a hyposignaling of RA pathway. Thus, VAD disrupted
hippocampal long-term potentiation (Misner et al., 2001; Jiang

induced spatial and relational memory deficits (Cocco et al., 2002;
Etchamendy et al., 2003). Furthermore, we have recently demon-
strated that VAD-induced hippoccampal neurogenesis alterations
and spatial memory deficits could be corrected by RA treatment
(Bonnet et al., 2008).

Yet, it is still not clear how the vitamin A status modulates
plasticity and memory processes. On the one hand, it is now
commonly accepted that RA regulates gene expression includ-
ing plasticity-related genes through binding to specific nuclear
receptors: retinoic acid receptors (RARs) or retinoid X receptors
(RXRs) (Marill et al., 2003). It has been shown that VAD could
alter hippocampal plasticity and functions through a hypoexpres-
sion of some retinoid receptors, which has been associated with
decreased plasticity-related target gene expression (Etchamendy
et al., 2003; Husson et al., 2003, 2004). On the other hand,
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it has recently been proposed that the stimulation of retinoid
signaling pathway antagonizes glucocorticoid-mediated actions
(Paez-Pereda et al., 2001; Aubry and Odermatt, 2009; Brossaud
et al., 2013). Thus, the deleterious effects of VAD may also be
explained by a more indirect action of vitamin A status on the
availability of glucocorticoids (GCs) in the hippocampus.

The hippocampus is a prime target for GCs as it contains the
highest number of GCs receptors that can modulate memory pro-
cesses (Oitzl and de Kloet, 1992). High levels of circulating GCs
as a consequence of chronic stress or aging are known as risk fac-
tors in the development of psychopathologies (de Kloet et al.,
2005). Thus, prolonged exposure to an excess of corticosterone
(CORT) in rodents can lead to hippocampal atrophy with a signif-
icant disbranching and shortening of apical dendrites (Magarinos
and McEwen, 1995; McEwen, 1999; Krugers et al., 2010) and
these hippocampal alterations have been correlated with mem-
ory impairments (Sousa et al., 2000; Sandi, 2003; Sandi et al,,
2004; Joels and Krugers, 2007). A reduction in adult hippocam-
pal neurogenesis after chronic CORT exposure is also associated
with learning impairments (Montaron et al., 2006; Klempin and
Kempermann, 2007; Yau et al., 2012).

The magnitude of CORT action in the rodent hippocampus
is thought to be determined (i) by the activity of hippocam-
pal 11p-Hydroxysteroid Dehydrogenase type 1 (118-HSD1), an
enzyme that regenerates active CORT within cells, and (ii) by
free CORT circulating in the blood, delivered to the brain (Seckl,
1997) and regulated by corticosteroid binding globulin (CBG)
(Breuner and Orchinik, 2002). Both the hyperactivity of hip-
pocampal 118-HSD1 and elevated plasma CORT, are correlated
with impairments in hippocampal-dependent memory tasks dur-
ing aging (Yau et al., 2001; Holmes et al., 2010; Yau and Seckl,
2012). Interestingly, the inhibitory effects of RA and vitamin A
supplementation have been shown on the expression and the
activity of 118-HSD1, in differentiated C2C12 myotubes (Aubry
and Odermatt, 2009), in obese rat liver (Sakamuri et al., 2011)
but also in vitamin A-deficient LOU/C rats (Arvy et al., 2013).
Indeed, in this latter study, the VAD-induced up-regulation of
the hippocampal expression of 11f-HSD1 has been associated to
an increased Hypothalamic-Pituitary-Adrenal (HPA) axis activ-
ity in basal and stress conditions which has been normalized by a
RA treatment (Arvy et al., 2013). Finally, a RA treatment inhibits
the hypersecretion of CORT in an experimental model of the
Cushing’s syndrome (Paez-Pereda et al., 2001) suggesting that it
could be used as a successful treatment to reverse endocrine and
cognitive alterations found in stress-related disorders.

Thus, these data show some antagonistic effects between GCs
and retinoid pathways. Here, we hypothesize that the stimulation
of the retinoid pathway could be a successful strategy to coun-
teract the deleterious effects of an excess of GCs on hippocampal
plasticity and functions. The effects of VAD and supplementation
on hippocampus-dependent memory and anxiety-like behavior
have been assessed. To clarify the molecular mechanisms under-
lying VAD-induced behavioral alterations, we have evaluated how
vitamin A status could modulate GCs availability both at the
peripheral and the hippocampal levels. Thus, we have demon-
strated for the first time that VAD induced an elevated free
CORT in the plasma and the hippocampus, a downregulation of

plasma CBG binding capacity and a hyperactivity of hippocam-
pal 118-HSD1. Moreover, such deleterious effects are associated
with spatial memory deficits, elevated anxiety, and decreased hip-
pocampal neurogenesis in VAD rats, which could be corrected by
a vitamin A supplementation. Thus, acting on vitamin A status
could be a good strategy to prevent excess GCs-induced cognitive
decline occurring with aging.

MATERIALS AND METHODS

ANIMALS

Weaned male Wistar rats (3 weeks old) were purchased from
Janvier (Le Genest Saint-Isle, France). They were housed two per
cage in a room with a constant airflow system, controlled temper-
ature (21-23°C), and a 12 h light/dark cycle. Rats were given ad
libitum access to food and water and weighed twice a week. As in
(Bonnet et al., 2008), 1 week prior to the beginning of behavioral
experiments, all animals were housed individually until sacrifice.
All experiments were performed in accordance with the European
Communities Council Directives (86/609/EEC) and the French
national Committee (87/848) recommendations, and have been
approved by the Animal Care and Use Committee of Bordeaux
under the N°50120169-A.

DIET

At their arrival, the weaned rats were randomly assigned to two
experimental groups: one group (n = 40) received a vitamin A-
free diet (Laboratorio Piccionni, Italy), whereas the second one
(n = 40) was fed with a control diet containing 5IU retinol/g
(INRA, Jouy-en-Josas). Subsequently, the weaned rats (n = 80)
have been fed with a control diet containing 51U retinol/g or
a vitamin A deficient diet (0IU retinol/g) for 10 weeks. They
are referred to as control rats (n = 40) and VAD rats (n = 40),
respectively. Then, half of the vitamin A-deficient rats (n = 20)
and half of the control rats (n = 20) have been supplemented with
a vitamin A-enriched diet (20 IU retinol/g) for 4 weeks: they were
referred to as VAD + Vit A and Control + Vit A, respectively while
the other halves have been kept on their respective diets. The sup-
plemented vitamin A diet (20 IU retinol/g) has been used, as it has
been shown to be effective in reversing the VAD -related memory
decline (Cocco et al., 2002).

EXPERIMENTAL DESIGN

We have studied the effects of vitamin A status (deficiency and
supplementation) on CORT availability at the plasma and the
hippocampal levels and its impact on hippocampal plasticity and
functions (Figure 1). After 10 weeks of diet, the two experimental
groups (Controls n = 40, VAD n = 40) were tested in the open
field test with a systematic characterization of locomotor reac-
tivity to novelty. We could thus subdivide the two experimental
groups and equilibrate their activity scores: half of the controls
and half of the VAD rats (Controls, VAD, Control 4+ Vit A, VAD +
Vit A) have been supplemented during the next 4 weeks. Thirteen
weeks after their arrival, rats were trained and tested in a Morris
water maze spatial reference memory task followed by an elevated
plus maze to assess their anxiety-like behavior. One day after the
anxiety test, all groups were sacrificed in the morning; blood sam-
ples and hippocampi were collected for further biochemical and
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FIGURE 1 | Experimental design. The weaned rats were fed with a
control diet containing 51U retinol/g or a vitamin A-deficient diet for 10
weeks until the open-field test. From the 10thweek of VAD, half of the
animals was supplemented with a vitamin A-enriched diet (201U retinol/g)
for 4 weeks (Control, VAD, Control + Vit A, VAD + Vit A). After
euthanasia, the first experiment (Exp 1) investigated the effects of 14
weeks of VAD and a 4-week vitamin A supplementation on retinoid and
GCs status both at the peripheral levels (serum retinol, plasma CORT,
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h——) \\/ccks

14

=== Vitamine A-enriched diet (201U retinol/g)

CBG binding capacity) and the hippocampal levels (activity and expression
of 118-HSD1, CORT levels). These parameters were evaluated after the
completion of spatial memory and anxiety-like behavior tasks. In the
second experiment (Exp 2), we studied the effects of 14 weeks of VAD
and a 4-week of vitamin A supplementation on hippocampal
neurogenesis (immunostaining of DCX) evaluated after the behavioral
tests. The arrows and the bars indicate the time scale and the diet
received by the rats, respectively.

biomolecular analyzes (experiment 1) and immunohistochemical
analyzes (experiment 2).

BEHAVIORAL TESTS

Open-field

This test measures the spontaneous locomotor activity of the ani-
mals on placement in a novel environment. The floor (1 x 1 m) is
a white square in Plexiglas with walls (45 cm) made in PVC. The
open field arena is thoroughly cleaned before each rat is tested.
Ten weeks after their arrival, the locomotor activity of the rats was
measured using the video tracking system containing an infrared
video camera. Each animal was placed in the center of the appa-
ratus and the total distance travelled by the animals was recorded
during 10 min (Videotrack, Viewpoint, Lyon, France). A low light
intensity (60lux) was used to limit high anxiety levels and to
obtain normal amount of exploration levels.

Spatial reference memory in the morris water maze

Rats were tested in a Morris water maze (180 cm diameter, 60 cm
high) filled with water (22 4= 1°C) with a spatial reference mem-
ory protocol as previously described in Bonnet et al. (2008).
Briefly, 13 weeks after their arrival, animals were required to locate
a submerged platform by using distal extramaze cues. They were
trained four trials a day (90 s with an intertrial interval of 60,
starting from three different start points randomized every day)
for 7 consecutive days. As the latency to reach the hidden platform

is dependent on the swimming speed, the distance covered to
reach the platform is a more appropriate measure and has been
chosen as a good index of the acquisition rate for spatial learning
in the water maze. On day 8 (at 14 weeks of VAD), spatial mem-
ory was evaluated by the percentage of time spent in the quadrant
where the platform was located during training (target quadrant).
After the probe trial, on day 9, animals were trained for 4 trials
to find a visible platform. Two VAD rats were excluded from the
experiment due to failure to search for the platform during the
acquisition phase (floating).

Elevated plus-maze

Two days after the end of the water maze, rats were tested for
anxiety-like behavior in the elevated-plus maze. The elevated
plus-maze apparatus consisted of two opposite open arms (50 x
10cm) and two opposite enclosed arms (50 x 10 cm) emanat-
ing from a common central platform (10 x 10cm) to form a
plus shape. The apparatus was elevated 50 cm above the floor.
The luminosity conditions were the same than that of the open-
field test (601lux). Each rat was placed on the central platform
with his head facing an open arm. The anxiety-related behav-
iors (total time and percentage of time spent in open arms
as indexes of anxiety (Walf and Frye, 2007) of all animals
and their global locomotor activity were recorded for a period
of 10min by a video camera (Videotrack, Viewpoint, Lyon,
France).
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TISSUE PREPARATION
One day after the elevated plus maze, rats were transferred to a
room adjacent to the laboratory, were euthanized with isoflurane,
and decapitated within 3 min to avoid the effects of euthanasia on
plasma CORT levels.

As described in Figure 1 (experiment 1), trunk blood was col-
lected immediately in order to measure serum retinol, plasma
CORT, and CBG binding capacity. Trunk blood was then cen-
trifuged to obtain serum samples (1500 g for 15 min) and plasma
samples (1500 g for 10 min in tubes containing 10% EDTA). The
supernatant was collected and stored until assay at —20°C and
at —80°C respectively.

Ten brains per group were randomly assigned for later mea-
surements: i.e., 40 for biochemical and PCR analyzes (Figure 1,
experiment 1) and 40 for DCX immunohistochemistry (Figure 1,
experiment 2). In order to measure hippocampal activity of 11p-
HSD1 and its mRNA expression by quantitative RT-PCR and
to evaluate hippocampal levels of CORT, the hippocampi from
both cerebral hemispheres were rapidly removed, frozen in liq-
uid nitrogen, and then stored at —80°C until assay. In order
to analyze hippocampal neurogenesis by immunohistochemistry,
the dissected brains were washed with 0.9% sodium chloride and
emerged in 4% paraformaldehyde. After a 3-week postfixation
period, 50 um coronal sections were cut on a vibratome (Leica).

SERUM RETINOL
Serum retinol was assayed by HPLC according to a previously
described method (Biesalski et al., 1983).

PLASMA CORT AND CBG ANALYZES
Total and free CORT levels and CBG binding capacity were
measured in the same plasma samples.

Total plasma CORT concentration was measured by RIA (see
Richard et al., 2010 for details). Briefly, after steroid extraction of
plasma samples with absolute ethanol, total CORT was measured
by competition between cold CORT and *H-CORT by a spe-
cific anti-CORT antibody provided by Dr H.Vaudry (University
of Rouen, France). The sensitivity of this assay is around
5ng/mL.

Free plasma CORT concentration was measured by isotopic
dilution and plasma ultrafiltration using Centrifree filter device
(YM membranes 30 K, Millipore, France) as in (Richard et al.,
2010), using 100 L of plasma. Free CORT fraction was calculated
as the ratio of counts per minute (cpm) filtrate (free CORT)/cpm
total CORT.

CBG maximum binding capacity (Bmax) and Kd were mea-
sured with a saturation curve and Scatchard analysis as described
in Richard et al. (2010) using a standard curve of tritiated CORT
up to 64 nM.

CORT AND 118-HSD1 ANALYZES IN THE HIPPOCAMPUS

Half of the microdissected hippocampi was homogenized on
ice in 1 mL of buffer (1.37M Glycerol, 300 mM NaCl, 1 mM
EDTA, 50 mM Tris, 1X Phosphatase Inhibitor Cocktail, 2 mM
NaOV, 1mM NaF; pH = 7.7). The total protein content of
the homogenate was determined with a BC Assay kit (Uptima,
Montlugon, France).

Hippocampal levels of CORT were measured by an enzyme
immunoassay commercial kit (Correlate-EIA; Assay Designs, Ann
Arbor, MI) from homogenates containing a final protein con-
centration of 6 mg/mL. This assay was chosen for his high sen-
sitivity, allowing the detection of low levels of CORT (around
18.6 pg/mL).

Hippocampal activity of 11f-HSD1 was also measured from
the same homogenates. In vivo, 11-HSD1 catalyzed the con-
version of inactive 11-dehydroCORT to CORT. According to
(Moisan et al., 1990), dehydrogenase activity was measured by
quantifying the conversion of CORT (B) to 11-dehydroCORT
(A). 0.5mg/mL of total protein were incubated at 37°C
for 1h with 12nM 3H-CORT as substrate (specific activ-
ity: 78.1 Ci/mmol, PerkinElmer) and an excess (400 uM) of
the enzyme-specific cofactor NADP. After incubation, steroids
were extracted by addition of ethyl acetate, separated by thin-
layer chromatography on silica gel plates (TLC Silica Gel
60 F254, VWR) using a mixture of chloroform and ethanol
(92:8). Then, 3H-CORT and *H-dehydroCORT were quanti-
fied with a P-Imager apparatus and 11B-HSD1 activity was
expressed as the percentage conversion of H-CORT (B) to
3H-dehydroCORT (A).

REAL-TIME PCR ANALYZES OF RETINOID TARGET GENE EXPRESSION
IN THE HIPPOCAMPUS

The other half of the hippocampi was used to measure gene
expression. RNA extraction was conducted using TRIzol reagent
(Invitrogen, Saint Aubin, France) according to the manufacturer’s
instructions. The integrity of the purified RNA was verified using
the RNA 6000 Nano LabChip kit in combination with the 2100
Bioanalyzer (Agilent Technologies). The concentrations of RNA
were determined by using a Nanodrop ND-1000 (Labtech).
Using oligodT and random primers (Promega, Charbonniéres
les bains, France), cDNA was synthesized from 1pg of RNA
with ImPromlII reverse transcriptase (Promega, Charbonnieres
les Bains, France) according to the manufacturer protocol. The
real-time PCR was performed using the LightCycler 480 system
with a 96-well format (Roche Diagnostics) in a volume of 20 uL,
containing 1X LightCycler 480 SYBR Green I Master solution,
0.5uM of each primer and 6 uL of cDNA. The forward and
reverse primer sequences for the 118-HSD1 and p-microglobulin
(BMG) that has been used as a house-keeping gene, was the
following: 11B-HSDI-f: AAAATACCTCCTCCCCGTCCTG;
11g-HSD1-r: TCTCTTCCGATCCCTTTGCTG; BMG-f: GCC
CAACTTCCTCAACTGCTACG; BMG-r: GCATATACATCGGT
CTCGGTGGG. The results were expressed as the tar-
get/reference ratio divided by the target/reference ratio of the
calibrator.

IMMUNOHISTOCHEMISTRY

Free-floating sections processed with a standard
immunohistochemical procedure (Lemaire et al, 2006).
A one-in-ten section was treated for doublecortin (DCX)
immunoreactivity using a goat polyclonal antibody (1:1000,
Santa Cruz Biotechnology) and a biotinylated donkey anti-goat
secondary antibody (1:200, Amersham). All sections were
processed in parallel, and immunoreactivities were visualized

were
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FIGURE 2 | Effects of 14 weeks of VAD and vitamin A
supplementation on body weight gain (A) and serum retinol
concentration (B). (A) The growth of the vitamin A deprived rats
slows down after 10 weeks and reaches a plateau until the 14th
week of VAD. This effect is counteracted by vitamin A
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supplementation. (B) VAD decreases serum retinol levels and 4 weeks
of supplementation normalize this level. *p < 0.05 vs. VAD + Vit A;
***n < 0.001 vs. Control; ##p <0.001 vs. Control + Vit A;
°°°p < 0.001 vs. VAD + Vit A by Three-Way and Two-Way ANOVA,
respectively followed by Fischer's post-hoc tests. n=8-10 per group.

by the biotin-streptavidin technique (ABC kit, Dako) by using
3,3-diaminobenzidine as chromogen. The number of immunore-
active (IR) cells in the left Dentate Gyrus (DG) was estimated
by using a modified version of the optical fractionators method
with a systematic random sampling of every 10 sections along
the rostrocaudal axis of the DG. On each section, IR cells in
the granular and subgranular layers of the DG were counted
with a 100 x microscope objective (Lemaire et al., 2006). All
results were expressed as the total number of DCX-IR cells in the
whole DG.

STATISTICAL ANALYSIS

Locomotor activity was analyzed by a One-Way ANOVA (effect
of deficiency). Reference memory, elevated-plus maze test, DCX
immunohistochemistry, biochemical, and PCR data were ana-
lyzed using a Two-Way ANOVA (effect of deficiency and supple-
mentation) followed by a post-hoc Fisher PLSD test. Body weight
gain, spatial learning, and swim speed data were analyzed using a
Three-Way ANOVA with repeated measures (effect of deficiency,
supplementation and days or weeks) followed by a post-hoc Fisher
PLSD test. All results were expressed as mean = SEM.

RESULTS

EFFECTS OF VAD ON LOCOMOTOR ACTIVITY IN THE OPEN-FIELD TEST
The same diet protocol was used as in a previous study that has
shown that the consumption of the vitamin A-free diet for 10
weeks induces a time course vitamin A depletion of the liver
store in rats, leading to a decreased serum retinol concentra-
tion (Husson et al., 2003). The impact of vitamin A deficiency
on locomotor activity in response to novelty was evaluated
in the open-field test. The ANOVA on total distance revealed
no significant difference between the control and VAD groups
[7253.47 £ 523.59 cm vs. 7755.9 £ 546.09 cm; F(q, 35) = 2.42,
n.s.] indicating that a 10-week VAD does not induce alterations in
global locomotor activity. The levels of activity scores were used
to equilibrate the groups receiving or not a vitamin A supplemen-
tation (at 10 weeks, Control: 7481.9 & 319.2 cm; Control + Vit

A: 7025.1 & 321.8 cm; VAD: 7760.9 + 304.8 cm; VAD + Vit A:
7751 £ 290.2 cm).

EFFECTS OF VAD AND VITAMIN A SUPPLEMENTATION ON BODY
WEIGHT AND SERUM RETINOL CONCENTRATION

In order to control the vitamin A status of the animals, we mea-
sured the body weight gain over 14 weeks and the serum retinol
concentration after 14 weeks of diet.

A Two-Way ANOVA on body weight over the 10 weeks of
VAD revealed a highly significant effect of deficiency [F(;, 35 =
32.69, p < 0.001] and a strong interaction deficiency x weeks
[F9,315) = 52, p < 0.001]. Indeed, the Figure 2A indicates that
the growth of the vitamin A-deprived rats reached a plateau after
10 weeks of VAD and then stabilized their body weight until the
14th week whereas control rats kept on gaining weight. However,
a vitamin A supplementation during 4 weeks was sufficient to
induce a significant increase of body weight in VAD rats while
it did not affect the weight of control rats [Three-Way ANOVA
between 11 and 14 weeks of VAD, deficiency x supplementation
x weeks: F3. 99)=52.20, p < 0.001]. On the 14th week, VAD rats
that had been supplemented for 4 weeks had a similar weight as
control rats (Fisher’s post-hoc, p > 0.05, between VAD + Vit A
and Controls).

The analysis of serum retinol levels was performed at 14 weeks
of VAD in order to control for the vitamin A status for each group
(Figure 2B). The ANOVA on serum retinol levels revealed a sig-
nificant effect of deficiency [F(;, 33 = 88.68, p < 0.001], a signif-
icant effect of supplementation [F(;, 33y = 62.47, p < 0.001] with
an interaction deficiency x supplementation [F(;, 33 = 82.74,
p < 0.001]. A significant reduction (—90%) in serum retinol con-
centration was observed in VAD rats (0.069 %+ 0.001 wmol/L)
relative to control rats (1.133 £ 0.068 pumol/L) (Fisher’s post-hoc,
p < 0.001). Four weeks of a vitamin A-enriched diet restored
the serum retinol level in VAD rats (1.046 £ 0.054 wmol/L)
(Fisher’s post-hoc, p < 0.001, between VAD and VAD + Vit A)
while no effect of supplementation was observed in control rats
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FIGURE 3 | Effects of 14 weeks of VAD and vitamin A
supplementation on (A, B) spatial learning and memory and
(C) anxiety-like behavior. (A) Distance covered to reach the
hidden platform over the 7 consecutive days of spatial learning
(spatial learning; blocks of trials for each training day are
averaged). (B) Percentage of time spent by rats in the target
quadrant (Probe test). The dotted line corresponds to chance level
(25%). VAD rats exhibit longer distance compared to controls to
reach the platform during acquisition and they spent a percentage
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of time in the target quadrant around the chance level. The
spatial learning and memory deficits are corrected by a 4-week
vitamin A supplementation. (C) VAD decreases the percentage of
time spent in open arms in plus-maze test suggesting an
increased anxiety level in VAD rats which is normalized by
supplementation. **p < 0.001 vs. Control; *#p <0.01 vs. Control +
Vit A; "¥p <0.001 vs. Control + Vit A; °°°p <0.001 vs. VAD +
Vit A by Three-Way ANOVA (spatial learning) and Two-Way ANOVA
followed by Fischer's post-hoc tests. n=8-10 per group.

(Control + Vit A: 1.078 % 0.061 wmol/L) (Fisher’s post-hoc, p >
0.05, between Control and Control + Vit A).

EFFECTS OF VAD AND VITAMIN A SUPPLEMENTATION ON SPATIAL
LEARNING AND MEMORY

The reference memory of rats was performed in the Morris water
maze task.

A Three-Way ANOVA of the distance to reach the platform
over the seven training days (Figure 3A) revealed a significant
effect of deficiency. Indeed, VAD rats travelled significantly longer
distance to find the hidden platform than control rats, evidenc-
ing spatial learning impairments [F(i 37y =29.03, p < 0.001].
Interestingly, the ANOVA revealed a significant effect of supple-
mentation [F(1,32) = 8.97, p < 0.001] with an interaction days x
deficiency x supplementation [F, 192y = 3.96, p < 0.001] show-
ing that a vitamin A-enriched diet could correct learning impair-
ments of the VAD rats. However, the vitamin A supplementation
had no effect on the spatial performances of the control rats.

Twenty four hours later, their spatial memory for the plat-
form location was evaluated using a probe test (Figure 3B). A
Two-Way ANOVA was performed on the percentage of time
spent in the target quadrant and revealed a significant effect
of deficiency [F(1,33) = 22.78, p < 0.001], and of supplementa-
tion [F(1,33) = 17.65, p < 0.001] with an interaction deficiency

x supplementation [F(1,33) = 10.37, p < 0.001]. Unlike control
rats, VAD rats did not look for the platform in the target quad-
rant as indicated by a percentage of time around the chance level
(25%) suggesting that VAD induces spatial memory impairments
(Fisher’s post-hoc VAD vs. Control p < 0.001). Interestingly, a
vitamin A supplementation normalized spatial memory perfor-
mances in VAD rats, looking for the platform mainly in the cor-
rect quadrant, with a percentage of time similar to that observed
in control rats (Fisher’s post-hoc VAD + Vit A vs. VAD, p < 0.001;
VAD + Vit A vs. Control, n.s.). However, the supplementation
did not improve the performances of the control group (Fisher’s
post-hoc Control + Vit A vs. Control, n.s.).

Rats from all groups performed similarly in the control ver-
sion of the water maze task with a visible platform indicating
that learning differences were not due to differences in motor
or visual capabilities, thigmotaxic behavior, or more generally to
differences in health status (data not shown).

EFFECTS OF VAD AND VITAMIN A SUPPLEMENTATION ON
ANXIETY-LIKE BEHAVIOR

The influence of 14 weeks of VAD and vitamin A supplementation
on anxiety-like behavior was evaluated in the elevated plus-maze
(Figure 3C). A Two-Way ANOVA on the percentage of time
spent in the open arms revealed an effect of supplementation
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[F(1,33) = 5.73, p < 0.05] with an interaction deficiency x sup-
plementation [F(j, 33y = 7.78, p < 0.01]. Indeed, VAD animals
spent less time in open arms (—70%) than control animals,
(Fisher’s post-hoc VAD vs. Control, p < 0.05) suggesting that they
had higher anxiety levels but normal locomotor activity (no sig-
nificant differences found on total travelled distance, data not
shown). Interestingly, 4 weeks of vitamin A supplementation nor-
malized the anxiety level of VAD rats (Fisher’s post-hoc VAD vs.
VAD + Vit A, p < 0.001) but had no effect on control animals
(Fisher’s post-hoc control vs. control + Vit A, n.s.).

EFFECTS OF VAD AND VITAMIN A SUPPLEMENTATION ON
HIPPOCAMPAL NEUROGENESIS

The effects of retinoids on spatial memory have been proposed
to be mediated, at least in part, by a modulation of hippocam-
pal neurogenesis (Bonnet et al., 2008). As seen in Figure4A, a
quantitative analysis on the number of newly generated imma-
ture neurons revealed no effect of deficiency [F(1, 35) = 0.99, n.s.]
nor supplementation [F(j, 35y = 2.4; n.s.] but an interaction defi-
ciency x supplementation [F(j, 35) = 6.14, p < 0.01] (Figure 4B).
Thus, we showed that the number of DCX-IR cells was decreased
in VAD rats (—25%) and this effect was compensated by a vitamin
A supplementation that did not have any effect in control ani-
mals by itself (Fisher’s post-hoc VAD vs. Control p < 0.01; VAD
vs. VAD + Vit A p < 0.01, Control vs. Control + Vit A, n.s.).

EFFECTS OF VAD AND VITAMIN A SUPPLEMENTATION ON PLASMA
GLUCOCORTICOID STATUS
In order to verify whether vitamin A could act through the modu-
lation of GCs, we investigated total and free plasma CORT and we
also examined the plasma CBG binding capacity involved in the
regulation of free CORT levels according to the vitamin A status.
No significant differences in the total plasma CORT con-
centration (Figure5A) were found but the ANOVA on free
plasma CORT levels (Figure 5B) revealed a deficiency tendency

[F(1,32) = 3.59, p=0.06] and a significant supplementation
effect [F, 32 = 4.72, p < 0.05] without deficiency x supple-
mentation interaction [F(; 32 = 1.90, p = 0.17]. Interestingly,
the ANOVA on plasma free CORT fraction (Figure 5C) indi-
cated a strong deficiency effect [F(1, 32 = 8.48, p < 0.01], a
supplementation effect [F(1,32) = 5.79, p < 0.05] with a signif-
icant deficiency x supplementation interaction [F(j, 37) = 6.54,
p = 0.01]. Thus, free CORT fraction was increased in VAD rats
(4+38%) compared to controls (Fisher’s post-hoc VAD vs. Control,
p < 0.001; VAD: 4.3 £ 0.4% > Control: 3.1 £ 0.06%). The sup-
plementation normalized the level of free CORT fraction in VAD
rats (Fisher’s post-hoc VAD vs. VAD + Vit A: 3.2 £ 0.09%, p <
0.001), but had no effect in control rats (Fisher’s post-hoc Control
vs. Control + Vit A: 3.13 £ 0.07%, n.s.).

As total circulating CORT is largely bound to CBG, we
examined the importance of plasma CBG in regulating free
plasma CORT under deficiency and supplementation condi-
tions. The ANOVA on CBG Bmax concentrations (Figure 5D)
showed significant effects of deficiency and of supplementa-
tion [F(1,32) = 6.15, p < 0.05; F(1,32) = 13.1, p = 0.001, respec-
tively] with a strong deficiency x supplementation interaction
[F1,32) = 14.90, p < 0.001]. Fisher’s post-hoc analyzes, revealed
that the VAD diet significantly decreased CBG Bmax (—55%;
VAD: 459.5 & 62.4nM vs Control: 1038 + 99.3nM, p < 0.001).
Moreover, the level of CBG Bmax in VAD rats was normalized by
the vitamin A supplementation (Fisher’s post-hoc VAD vs. VAD +
Vit A: 1142.61 + 82.5nM, p < 0.001) but was not modified in
control rats. As observed for Bmax, the ANOVA on CBG Kd
indicated significant effects (data not shown).

EFFECTS OF VAD AND VITAMIN A SUPPLEMENTATION ON
HIPPOCAMPAL GLUCOCORTICOID STATUS

We explored the possibility that 14 weeks of VAD and 4 weeks
of vitamin A supplementation could modulate GCs availabil-
ity in the hippocampus. Thus, activity and gene expression
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FIGURE 4 | Effects of 14 weeks of VAD and vitamin A
supplementation on hippocampal neurogenesis. (A) Images show
the immunoperoxydase staining of DCX-IR cells in the DG granule cell
layer in the different groups: Control (A1), Control + Vit A (A2), VAD
(A3), VAD + Vit A (A4). (B) Number of DCX-IR cells in the DG granule

30000

20000

10000

i T
(o)e]
*%
-
Control Control + Vit A VAD VAD + Vit A

cell layer. VAD induces a decrease in the number of IR cells which is
corrected by vitamin A supplementation. **p < 0.01 vs. Control;

°°p < 0.01 vs. VAD + Vit A by Two-Way ANOVA followed by Fischer’s
post-hoc tests. Scale bar: 100um. gcl = granule cell layer. n=10 per
group.
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binding capacity measured by RIA. VAD rats exhibit lower plasma CBG Bmax
compared to controls whereas vitamin A supplementation restores CBG
binding capacity. ***p < 0.001 vs. Control; °°°p < 0.001 vs. VAD + Vit A;
###p < 0.001 vs. Control + Vit A by Two-Way ANOVA followed by Fischer’s
post-hoc tests. n =9 per group.

of 113-HSD1 but also CORT levels were studied in the
hippocampus.

The activity of 118-HSD1 within the hippocampus was not
affected by the deficiency (Figure 6A). [F(1 29y = 1.81, n.s.] nor
by the supplementation [F(; 9y = 1.39, n.s.] but there was a
significant deficiency x supplementation interaction [F(j 29) =
5.28, p < 0.05]. Indeed, the activity of 118-HSD1 was signifi-
cantly increased in VAD rats (Fisher’s post-hoc VAD vs. Control
p < 0.05; VAD: 43.7 £ 2.5% > control: 33 £ 3.2%) and was nor-
malized by vitamin A supplementation (Fisher’s post-hoc VAD
vs. VAD + Vit A p < 0.05; VAD: 43.7 &+ 2.5% > VAD + Vit
A: 33.5 £ 2.9%). However, this supplementation did not have
any effect in control rats (Fisher’s post-hoc Control vs. Control
+ vit A, n.s.). Thus, we checked whether this increased 11B-
HSD1 activity in VAD rats could be due to an increase in mRNA
expression. The ANOVA on hippocampal mRNA expression of
118-HSD1 (Figure 6B) showed a deficiency effect indicating an
increased level of 118-HSD1 mRNA expression in rats submit-
ted to VAD compared to control rats [F(j 29y = 6.52, p = 0.01].
Moreover, the vitamin A supplementation tended to decrease the
levels of 118-HSD1 expression in the hippocampus [F(i 29) =
3.59,p = 0.06].

As 11B-HSD1 catalyses the regeneration of active GCs within
cells, we measured CORT levels in the hippocampus (Figure 6C).
Whereas no effect of deficiency was observed, [F(j 29 = 1.61,
n.s.], the ANOVA revealed a significant supplementation effect

[F(1,29) = 12.85, p = 0.001] and a deficiency x supplementa-
tion interaction [F(j 29) = 5.04, p < 0.05] suggesting that VAD
rats have a significant elevation of hippocampal CORT lev-
els (+53.9%) compared to controls (Fisher’s post-hoc VAD vs.
Control p < 0.001; VAD: 2.37 £ 0.28nM > Control: 1.49 £
0.34 nM). Interestingly, the vitamin A supplementation normal-
ized these CORT levels in VAD rats (Fisher’s post-hoc VAD vs.
VAD + Vit A p < 0.001; VAD: 2.37 &+ 0.28nM > VAD + Vit
A: 0.91 £ 0.06nM) but had no effect in control rats (Fisher’s
post-hoc Control vs. Control + Vit A p < 0.001; Control: 1.49 £
0.34 nM ~ Control + Vit A: 1.16 £ 0.19 nM).

As shown in Figure 6D, there was a strong negative correlation
between hippocampal CORT levels and spatial memory (r =
0.82, p < 0.001) suggesting that the higher the level of hippocam-
pal CORT, the poorer the spatial memory of the rats.

DISCUSSION

Our data demonstrate for the first time that vitamin A status can
regulate GCs availability at both peripheral and hippocampal lev-
els. Thus, the excess of free plasma and hippocampal CORT in
VAD rats, which is associated with a decreased binding capacity
of plasma CBG and a hyperactivity of hippocampal 118-HSD1,
could contribute to the appearance of spatial memory deficits,
elevated anxiety-like behavior and hippocampal neurogenesis
alterations observed after 14 weeks of VAD. Interestingly, such
effects could be limited by a 4-week vitamin A supplementation.
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hippocampal CORT that are normalized by vitamin A
supplementation. (D) Correlation analyzes. Hippocampal CORT
levels negatively correlates with spatial memory in the probe
test (r=0.822, p=0.0003). *p<0.05 vs. Control; °p<0.05 vs.
VAD + Vit A; °*°p<0.001 vs. VAD + Vit A; ##¥p<0.001 vs.
Control + Vit A by Two-Way ANOVA followed by Fischer's
post-hoc tests. n=7-9 per group.

VITAMIN A STATUS REGULATES PLASMA CORT LEVELS THROUGH CBG
BINDING CAPACITY

Prolonged exposure to elevated GCs during life has been hypoth-
esized to contribute to the decline of hippocampal plasticity and
functions (Cameron and Gould, 1994; Lupien et al., 1998; Yau
and Seckl, 2012). It has recently been found that CBG would play
a critical role in the deliverance of GCs to the brain by impact-
ing on memory retrieval (Breuner and Orchinik, 2002; Minni et
al,, 2012). Indeed, CBG acts as a buffer of most systemic GCs by
limiting the amount of circulating free hormones that are active
on their receptors (Moisan, 2010; Richard et al., 2010). In order
to better understand the mechanisms by which the hippocampal
availability of GCs could be modulated by vitamin A status, we
have studied total plasma CORT levels, free plasma CORT levels
and CBG binding capacity, measured under resting conditions (in
the morning). Neither a vitamin A deficient diet nor a vitamin A
supplemented diet affects total plasma CORT levels. On the con-
trary, free plasma CORT levels is modulated by vitamin A status
with a significant effect on free plasma CORT fraction, higher in
VAD rats compared to controls and normalized by a vitamin A
supplementation. Moreover, our data suggest that the increased
free plasma CORT levels in VAD rats can be directly related to the
decreased CBG binding capacity. This link is reinforced by data on
vitamin A supplementation that appeared efficient in normalizing
both effects. Thus, these results evidence an antagonistic effect of
vitamin A on plasma GCs status.

The effects of VAD on plasma GCs status has been recently
reported by our team in LOU/C rats (Arvy et al.,, 2013) that are
derived from the Wistar strain and described as a model of healthy
ageing with decreased age-related memory deficits (Alliot et al.,
2002). Indeed, an increase in HPA axis activity has been shown
in VAD LOU/C rats leading to elevated total plasma CORT levels
in basal and stress conditions, which were restored by RA treat-
ment (Arvy et al., 2013). We have shown that VAD in Wistar rats
can increase HPA axis activity leading to hypersecretion of basal
free plasma CORT level that is normalized by a vitamin A sup-
plementation. Moreover, total or free plasma CORT level of the
control rats are not affected by the vitamin A supplementation.
On the contrary, it has been shown that long term RA treat-
ment induced a hyperactivation of HPA axis accompanied with
increased basal plasma CORT levels in young Sprague Dawley rats
(Cai et al., 2010). This discrepancy may be related to differences
in the treatment used (RA injections vs. food supplementation)
and the nutritional status (deficient rats vs. control rats). Indeed,
chronic injections of high doses of RA are known to induce alter-
ations in hippocampal plasticity and functions in young animals
with a normal vitamin A status (Crandall et al., 2004). The nutri-
tional intake of vitamin A in our young control rats does not
modify serum retinol concentration, known to be tightly regu-
lated. In our nutritional conditions, RA would be physiologically
provided to the tissues. Thus, we can suggest that the counteract-
ing effects of the supplemented diet on free plasma CORT levels
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would be efficient only in animals exhibiting a decreased vitamin
A status with a retinoid hyposignaling.

VITAMIN A STATUS REGULATES HIPPOCAMPAL CORT LEVELS
THROUGH 118-HSD1 ACTIVITY

Here, we demonstrate for the first time that vitamin A supple-
mentation can counteract the elevation of hippocampal CORT
levels in VAD rats, probably by normalizing the activity and
expression of hippocampal 118-HSD1. We have shown previ-
ously that vitamin A status can induce a modulation of GCs
at systemic levels which probably impact on the hippocampal
availability of GCs (Yau and Seckl, 2012). The magnitude of
intracellular GCs action is also thought to be determined by the
activity of 118-HSDs (Seckl, 1997). Indeed, 118-HSD1 regener-
ates active GCs from their inactive forms, in specific areas in the
adult brain, such as the hippocampus, thereby effectively ampli-
fying intracellular GC levels before they bind to MRs and/or GRs
(Holmes et al., 2003). Our results show that VAD diet induces a
hyperactivity of the hippocampal 118-HSD1, probably resulting
from gene overexpression since the amount of 118-HSD1 mRNA
increased in VAD rats. Moreover, the increased activity of this
enzyme is associated with elevated hippocampal CORT concen-
tration suggesting an amplification of GCs signaling pathway in
VAD rats. Interestingly, these effects on hippocampal 118-HSD1
and local levels of CORT in VAD rats are abolished by a vita-
min A supplementation suggesting that this enriched diet could
exert an inhibitory effect on GCs hippocampal signaling path-
way. Consistent with these findings, it has been shown that RA
treatment can reduce both the gene expression and the activ-
ity of 118-HSD1 in C2C12 myotubes (Aubry and Odermatt,
2009). Moreover, the vitamin A supplementation can normal-
ize elevated hepatic levels of 118-HSD1 in obese rats (Sakamuri
et al., 2011) and the overexpression of hippocampal 113-HSD1
in VAD LOU/C rats (Arvy et al., 2013). These effects of vitamin
A status on hippocampal 118-HSD1 could directly be mediated
through nuclear retinoid receptors, that have been shown to reg-
ulate negatively 113-HSD1 expression in vitro models (Aubry and
Odermatt, 2009). Thus, since VAD induces a decrease in brain
mRNA expression and immunoreactivity of some retinoid recep-
tors (Husson et al., 2004; Arfaoui et al., 2013), the overexpression
of 11B-HSDI1 in vitamin A deficient rats could result from this
regulatory mechanism.

DOES VITAMIN A STATUS IMPACT ON HIPPOCAMPAL PLASTICITY
AND FUNCTIONS VIA GLUCOCORTICOIDS?

Vitamin A and its active metabolite RA, act on memory pro-
cesses by modulating different aspects of hippocampal plasticity
(Etchamendy et al., 2001, 2003; Cocco et al., 2002; Mingaud
et al,, 2008) including hippocampal neurogenesis (Jacobs et al.,
2006; Bonnet et al., 2008; Goodman et al., 2012; Touyarot et al.,
2013). We also show that a nutritional approach could be as
effective as a pharmacological treatment (Bonnet et al., 2008)
to correct spatial memory deficits and hippocampal neurogen-
esis alterations induced by VAD. Thus, in VAD enriched rats,
the newly absorbed vitamin A from diet may be directly used
by extra-hepatic tissue such as the brain (Ross et al., 2009) to
increase local synthesis of RA which would allow to normalize

retinoid signaling and to maintain normal hippocampal plastic-
ity and functions. Interestingly, we have also evidenced a negative
correlation between hippocampal CORT levels and spatial mem-
ory: the higher the hippocampal CORT levels, the poorer the
spatial memory performance, suggesting that the excess of local
GCs could result in memory deficits in VAD rats. Thus, this result
sustains the hypothesis that GCs signaling pathway could medi-
ate the deleterious effects of VAD on hippocampal plasticity and
functions.

Consistent with our findings, higher plasma cortisol or CORT
levels is associated with spatial memory impairments in humans
and rodents, respectively (Issa et al., 1990; Yau et al., 1995; Lupien
et al., 1998). Moreover, aged mice exhibiting an overactivation of
11B-HSD1 (Yau et al., 1995; Yau and Seckl, 2012) show similar
memory impairments as our VAD rats. The involvement of 11f-
HSD1 in age-induced memory deficits has been demonstrated
in 118-HSD1 KO mice (Yau et al., 2001, 2007) or by decreas-
ing the activity of the enzyme using selective inhibitors (Sooy et
al., 2010; Mohler et al., 2011). The improved spatial memory in
aged 11B-HSD1 KO mice has been proposed to occur via reduced
intracellular CORT levels altering the balance of corticoid recep-
tor activation (Yau et al., 2011). Moreover, in aged animals and
in VAD LOU/C rats hippocampal expression of GR is decreased,
leading to alterations of hippocampus-induced negative feedback
on HPA axis and an increased plasma CORT levels in these ani-
mals (Mizoguchi et al.,, 2009; Arvy et al., 2013). Since CORT
concentration in target tissues as the hippocampus results from
(i) free plasma CORT produced by HPA axis and (ii) local CORT
synthesis by 118-HSD1 (Yau and Seckl, 2012), both the normal-
ization of hippocampal 118-HSD1 activity and free plasma CORT
fraction by vitamin A supplementation, could contribute to the
correction of VAD-induced memory deficits. Finally, we show
that VAD rats with spatial memory deficits are more anxious
than control rats, and that vitamin A supplementation normal-
izes this anxiety trait. According to our results, the alteration of
vitamin A status by chronic injections of high doses of RA has
been shown to induce an increased plasma CORT level that has
been associated with increased anxiety in the elevated plus maze
(Cai et al., 2010). Thus, a normal vitamin A status would allow
to maintain hippocampus-dependent memory integrity but also
anxiety-related responses probably through a tight control of the
CORT availability in the hippocampus.

Besides, excess of GCs are known to strongly inhibit adult hip-
pocampal neurogenesis (Cameron and Gould, 1994; Gould and
Tanapat, 1999). Vitamin A supplementation may thus limit their
negative effects and maintain normal neurogenesis. Indeed, the
suppression of GCs secretion from mid-life by adrenalectomy
increases neurogenesis in old animals and prevents the emer-
gence of age-related memory disorders (Montaron et al., 2006).
Moreover, 11p-HSD1 is particularly expressed in the DG and
increased hippocampal neurogenesis has been found in young
118-HSD1 KO mice (Yau et al., 2007). Thus, the beneficial effects
of a vitamin A supplementation on VAD-induced neurogenesis
decline could be partly mediated by hippocampal GCs pathway.
This hypothesis has been also comforted by the fact that RA min-
imizes the potentially deleterious effect of GCs on the decreased
secretion of BDNF in hippocampal HT22 cells (Brossaud et al.,
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2013), a neurotrophin known to stimulate adult neurogenesis
processes and to be involved in the reduction of neurogenesis
during chronic exposure to GCs (Duman and Monteggia, 2006).
Finally, glutamatergic mechanisms are thought to be also involved
in stress-induced changes of hippocampal neurogenesis (Joels et
al., 2004; Hunter et al., 2009). As it has been shown recently
that VAD could alter hippocampal glutamatergic transmission
(Zhang et al., 2011; Jiang et al., 2012), all of these endpoints pro-
vide potential targets for novel treatment strategies of chronic
GCs-induced hippocampal plasticity alterations by nutritional
factors.

Considerable progress has been made in controlling VAD
worldwide (Bloem et al., 2002) and fortification programs have
been shown repeatedly to be an effective food-based strategy to
improve Vitamin A status (Souganidis et al., 2013). Our data show
that a vitamin A supplementation could act on biochemical and
molecular parameters but also cerebral plasticity and cognitive
functions. However, we cannot exclude the possibility that a con-
trol diet with a lower vitamin A content would also be efficient
to correct the observed deleterious effects of VAD. Indeed, future
investigations and additional prevention efforts are still needed to
better determine the dietary forms and/or the doses of vitamin A.

CONCLUSION

Altogether, the present study demonstrates for the first time a
modulation of hippocampal CORT availability by the vitamin
A status. Indeed, the vitamin A supplementation normalizes the
excess of CORT in VAD rats, (i) at the plasma level by regulat-
ing free CORT fraction and CBG binding capacity but also (ii)
at the hippocampal level probably through a modulation of 118-
HSD1 activity. Moreover, the strong negative correlation found
between the hippocampal CORT levels and the spatial mem-
ory performances suggests that the modulation of hippocampal
CORT availability by the vitamin A status could be a neuro-
biological mechanism by which the retinoid pathway impacts
on hippocampal neurogenesis and functions. Since same alter-
ations of vitamin A metabolism and GCs availability occur during
aging, this study supports the idea that a vitamin A supplemen-
tation could be a potent way to prevent age-related cognitive
impairments by maintaining normal vitamin A and GCs status
in seniors.
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