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The search for neuronal and psychological underpinnings of pathological gambling in
humans would benefit from investigating related phenomena also outside of our species.
In this paper, we present a survey of studies in three widely different populations of
agents, namely rodents, non-human primates, and robots. Each of these populations
offers valuable and complementary insights on the topic, as the literature demonstrates.
In addition, we highlight the deep and complex connections between relevant results
across these different areas of research (i.e., cognitive and computational neuroscience,
neuroethology, cognitive primatology, neuropsychiatry, evolutionary robotics), to make the
case for a greater degree of methodological integration in future studies on pathological
gambling.
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INTRODUCTION
Gambling can be defined as betting money, or other equivalent
goods, upon the future outcome of an event which presents
a high degree of uncertainty, with a view to winning a prize.
Winning is mainly (or exclusively) due to chance and not much
(or not at all) to individual abilities. While betting may represent
a recreational activity for the majority of people, it may become
a serious behavioral disorder for others (Petry et al., 2005).
The rapid worldwide growth of legalised gaming opportunities
(Wilber and Potenza, 2006; McCormack et al., 2012; Donati et al.,
2013), including the increasing possibility of online gambling
through the Internet, has raised concerns over the impact of
exaggerated gambling and its detrimental consequences on pub-
lic health (Shaffer and Korn, 2002; Carragher and McWilliams,
2011). Thus, due to the increasing number of affected peo-
ple, pathological gambling represents a growing concern for
society.

In fact, this behavior is clinically characterized as a pathology:
in DSM-IV-TR (American Psychiatric Association, 2000), it was
described as a persistent, recurrent and maladaptive behavior,
which disrupts personal, family, professional or vocational pur-
suits (Potenza, 2001). The personal and social consequences of
this disorder often include job loss, family problems and divorce,
financial and legal problems, and criminal behavior (Lowengrub
et al., 2006). Pathological gambling affects 0.2–5.3% of adults in

western socities (Bastiani et al., 2013) and is highly comorbid
with a range of other psychiatric disorders such as attention-
deficit/hyperactivity disorder (ADHD; and other impulse-control
disorders, obsessive-compulsive disorders; Hollander et al., 2005)
and with substance abuse (Petry et al., 2005; Hodgins et al.,
2011). Some pathological features of gambling are similar to
those of drug addiction, such as the need to gamble increasing
amounts of money (escalation) in order to achieve the desired
excitement or “rush” (tolerance), the irritability that accompa-
nies the abstention from the activity (withdrawal), the failure
of attempts to control or stop the behavior (loss of control).
Notably, whilst pathological gambling has been classified until
recently (in DSM-III and DSM-IV) among the “Impulse-Control
Disorders Not Elsewhere Classified”, it has been turned into
a “no substance addiction” in DSM-V (American Psychiatric
Association, 2013), that is a “behavioral addiction”. Pathologi-
cal gambling is also associated with increased suicidal ideation
and attempts compared to the general population: approxi-
mately one out of five pathological gamblers attempts suicide
(Volberg, 2002). Such rates among pathological gamblers are
higher than for any other addictive disorder. Thus, gambling
represents a public concern being both a social and a psychiatric
issue.

Far from being an adult concern, gambling is becoming
a serious behavioral problem also among adolescents
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(Cunningham-Williams and Cottler, 2001; Dickson et al.,
2002), whose involvement has increased substantially over the
past 20 years (Huang and Boyer, 2007). Epidemiological studies
show that the prevalence of pathological gambling is 2–4 times
higher among adolescents than among adults, with 3.5–8.0%
of adolescents meeting the criteria for such pathology (Felsher
et al., 2004; Ellenbogen et al., 2007; Hodgins et al., 2011; Caillon
et al., 2012). Adolescence and young adulthood may be periods
of especially heightened vulnerability for the development of
gambling disorders, which are therefore receiving increasing
attention by clinicians and preclinical researchers (Jazaeri and
Habil, 2012; Zoratto et al., 2013).

The etiology of pathological gambling is multi-factorial; both
genetic (e.g., a polymorphism in the serotonin transporter gene;
Ibanez et al., 2003) and socio-environmental (e.g., Donati et al.,
2013; Potenza, 2013) risk-factors have been identified. Moreover,
cognitive models of gambling argue that irrational beliefs and
erroneous perceptions may play a key role (Reid, 1986; Clark,
2010). Indeed, some authors argue that expectancies of winning,
illusions of control, and subsequent entrapment do contribute
to the development and the maintenance of gambling patterns
(Joukhador et al., 2003). Psycho-genetic studies have revealed
that, among genes involved in altered serotonergic and dopamin-
ergic neurotransmission, the most significant for pathological
gambling are serotonin transporter (SERT; Ibanez et al., 2003;
Reuter et al., 2005) and dopamine transporter (DAT; Comings
et al., 2001).

Methods for treating pathological gambling include vari-
ous counselling-based approaches and pharmacological therapy,
although there are no drugs which have been officially approved
for the specific treatment of pathological gambling by the U.S.
Food and Drug Administration (FDA). Therefore, in pathological
gamblers, drugs are mainly prescribed for the treatment of the
comorbid conditions and not for the pathology itself (Hollander
et al., 2005). Pathological gamblers respond well to treatment
with selective serotonin reuptake inhibitors (SSRIs, particularly
paroxetine; Kim et al., 2002), mood stabilizers, and opioid antag-
onists (such as nalmefene), commonly used in the treatment of
alcoholism (see for a review Lowengrub et al., 2006).

In view of the growing incidence of pathological gambling,
its severe mental and social consequences, and the still prelim-
inary nature of its treatment, it is urgent to mobilize various
approaches and methods to further deepen our understanding
of the neuronal and psychological underpinnings of this condi-
tion. Indeed, the present Research Topic constitutes an impor-
tant and timely initiative towards that end. The contribution
we offer in this review concerns how evidence obtained on
nonhuman subjects is crucial to investigate pathological gam-
bling in humans. In particular, we make the case for studying
three widely different populations of agents: rodents (Section
Rodents as an Animal Model of Gambling Behavior), nonhu-
man primates (Section Risky Choices in Nonhuman Primates:
Implications for Human Pathological Gambling), and robots
(Section Risk Attitudes, Environmental Uncertainty and Addic-
tive Behavior: Perspectives From Computational Neuroscience
and Evolutionary Robotics). While each of these populations
offer valuable insights on the topic, their true worth is revealed

only by looking at how they relate to each other. Hence we
will review the literature across all these areas of research (i.e.,
cognitive and computational neuroscience, neuroethology, cog-
nitive primatology, neuropsychiatry, evolutionary robotics), with
the aim of suggesting the need for greater methodological inte-
gration in future studies on laboratory modeling of pathological
gambling.

RODENTS AS AN ANIMAL MODEL OF GAMBLING BEHAVIOR
In the field of behavioral neuroscience, animal models enable
the investigation of brain-behavior relations under controlled
conditions (e.g., standardized housing and testing), with the aim
of gaining insight into normal and abnormal human behav-
ior and its underlying neural, psychobiological and neuro-
endocrinological processes (van der Staay, 2006). In particular,
they are particularly suitable for the dissection of precise mech-
anisms involved in decision-making processes, for the analysis of
inter-individual differences with a tight control of environmental
and genetic conditions, and for follow-up studies (de Visser et al.,
2011). As we shall see in what follows, these considerations do
apply also to the study of gambling behavior, and especially to the
use of rodents (mostly rats) as an animal model for risk proneness
(e.g., Adriani et al., 2009, 2010).

ASSESSMENT OF GAMBLING PRONENESS: CLINICAL AND
PRECLINICAL APPROACHES
In humans, Probability Discounting can be studied by means of
either questionnaires or operant paradigms. The “South Oaks
Gambling Screen” (for adults Lesieur and Blume, 1987; for
adolescents Wiebe et al., 2000), the “Gambling Attitudes and
Beliefs Survey” (Strong et al., 2004) and the “Canadian Problem
Gambling Index” (Young and Wohl, 2011) are some examples
of personality tests and reports, widely used in the framework
of clinical psychology and experimental research. In these pro-
tocols, gamblers are characterized with scores that represent
their averaged behavior over periods of weeks, months or years
whilst the time spans that most naturally correspond to the
expression of gambling behavior are those of seconds, minutes
or hours. The main limitation of these traditional methods
regards therefore the lack of an appropriate temporal dimension
(van den Bos et al., 2013). By contrast, controlled experimen-
tal or clinical paradigms such as the “Iowa Gambling Task”
(IGT; Bechara et al., 1994), the “Balloon Analogue Risk Task”
(Lejuez et al., 2002) and the “Probability Discounting Task”
(e.g., Scheres et al., 2006; Shead and Hodgins, 2009) allow to
overcome the above mentioned limitation regarding the temporal
dimension. However, as extensively discussed in van den Bos
et al. (2013), they are characterized by a second limitation, i.e.,
the lack of appropriate context due to the artificial conditions
of a laboratory environment. It should also be noted that these
paradigms can be performed with either real rewards over limited
time intervals (e.g., minutes, hours) or with questions about
hypothetical ones (e.g., huge amounts of money) over months
or years.

Due to the complexity of human studies, preclinical investi-
gations in laboratory animal models are necessary for a deeper
understanding of pathological gambling. Specifically, it is relevant
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to exploit preclinical models for (i) the symptoms; (ii) their
neurobiological determinants; and (iii) their possible modulation
by pharmacological manipulation. Specifically, these studies are
crucial as they allow the dissection of processes and factors
associated with normal and pathological gambling in a controlled
way (de Visser et al., 2011; Winstanley et al., 2011; Koot et al.,
2012). Furthermore, animal models have added value from a
translational perspective because it is possible to use approaches
that are virtually impossible with humans, as in the case of in vivo
transgenic approaches that allow to directly reach and modulate
expression of target genes in relevant brain areas (Adriani et al.,
2010).

Many operant paradigms have been developed to study toler-
ance to uncertainty and/or gambling proneness in animal models
(Mobini et al., 2000; Cardinal and Howes, 2005; Adriani et al.,
2006; Wilhelm and Mitchell, 2008; Winstanley et al., 2011).
Specifically, by exploiting uncertainty of reward delivery, these
tasks allow to probe individual (in)tolerance to frustration, linked
to missing an anticipated reward (i.e., the “loss”). The “IGT”
involves the choice between a low probability of a large reward
vs. a high probability of a small food reward (van den Bos et al.,
2006). The “Probabilistic-Delivery Task” (PDT; which belongs to
the broader category of Probability Discounting) is based on a
choice between either a certain, small amount of food reward
or larger amounts delivered (or not) depending on a given (and
progressively decreasing) probability (Adriani and Laviola, 2006;
Adriani et al., 2006). The “Risky Decision-Making Task” (RDT)
implies the choice between a small, “safe” food reward or a
larger food reward associated with the risk of punishment (e.g.,
footshock; Simon et al., 2009). The “rodent Slot Machine Task”
(rSMT) allows to evaluate if the experimental subject discrimi-
nates a complete signal (e.g., three lights turned on, indicative of
win) from a nearly complete one (e.g., two lights out of three,
indicative of loss): by means of this task, it has been recently
demonstrated that rats are susceptible to putative-win signals
in non-winning trials (Winstanley et al., 2011; Cocker et al.,
2013). Such a phenomenon might resemble the so-called “near-
miss effect”, one of the cognitive distortion regarding gambling
outcomes that is thought to confer vulnerability to pathological
gambling (Reid, 1986; Clark, 2010; see also Section Normative
(Algorithmic) Models).

Notably, the “IGT” and the “Probability Discounting Task”
are widely used in experimental or clinical research on humans.
Obviously, when performed on animals, these paradigms involve
real, ethologically relevant rewards over limited time intervals.
Symbolic reward (as money in humans) or time intervals longer
than few hours cannot be used. Moreover, to be effective, the
contrast between alternative rewards (e.g., small vs. large one)
can not be as marked as it would be desired to mimic 1000-fold
prizes as in humans. In these tasks, in which a moderate food
restriction is usually applied to increase subjects’ motivation to
work for food delivery, the rewards’ magnitude shall be accurately
calibrated in order to (i) allow animals to eat enough food; (ii)
prevent them from being fully satiated; and (iii) enable them
to discriminate between rewards. The first aspect is especially
relevant in “closed” (compared to “open”) economies, in which
subjects have to obtain all their daily meal from the operant

panels and no extra food is given at the end of each exper-
imental session (Timberlake and Peden, 1987; Zoratto et al.,
2012). The second one is necessary to avoid a potential recovery
from the consequences of the food loss (occurring because of
the probabilistic delivery). The last one can be crucial for the
establishment of basal preference in developing rats (Zoratto
et al., 2013). We have recently shown that high contrast between
rewards (one pellet vs. five pellets instead of two pellets vs. six
pellets) and high probability initially associated, during training,
with the large reward (66% instead of 50%) are essential to
shorten the overall testing period: namely, much less sessions are
required for the development of baseline large-reward preference
(which is otherwise slow in young animals). This is of paramount
importance to overcome the developmental constraint associated
with the short duration of the adolescent phase (Laviola et al.,
2003).

These operant-behavior tasks imply a series of discrete
decisions between two reward alternatives (Adriani et al.,
2012a). In terms of automatization, the experimental appa-
ratus requires two alternative operanda (e.g., levers or nose-
poking holes, where the animal can express its choice), and
computer-controlled delivery of reinforcers (e.g., food or liquids)
that differ in size and actual probability of delivery (uncer-
tainty). Other important features of the task are inherent to
the trial/session schedule. For instance, the total number of
choice opportunities (i.e., trials) given to the subject may be
fixed (i.e., the session ends after the last trial) and indepen-
dent of total time needed to complete the task. Alternatively,
the total duration of the experimental session may be fixed
(minutes, hours) and thus independent of the total number of
trials actually completed within such time-window (Koot et al.,
2012).

The protocols reviewed above probe animals for the bal-
ance between “innate, sub-cortical” drives and “evolved, cor-
tical” processes (Adriani and Laviola, 2009). In other words,
these operant tasks allow to evaluate a cognitive ability, i.e.,
to inhibit sub-cortical drives and to express a more controlled
response. Self-control is known to require intact serotonergic
function (Wogar et al., 1993; Harrison et al., 1997; Puumala and
Sirvio, 1998; Dalley et al., 2002), especially within the prefrontal
cortex (McClure et al., 2004; Ridderinkhof et al., 2004) and
its cortico-striatal projections (Cardinal et al., 2004; Christakou
et al., 2004).

THE PROBABILISTIC-DELIVERY TASK (PDT)
The “PDT” (Mobini et al., 2000; Adriani and Laviola, 2006)
involves a larger but probabilistic reinforcer which is randomly
withheld by the feeding device, and delivered only occasionally
so that experimental subjects face a “loss”. The progressively
accumulating “losses” over time clearly have consequences for
the sake of long-term payoff. Such a task also provides infor-
mation reflecting the ability to cope with non-regularly deliv-
ered, randomly missing reinforcement. We have shown recently
that laboratory rodents are not only tolerant to this random
delivery, but are also sub-optimally attracted by this probabilistic
uncertainty (Adriani and Laviola, 2006, 2009). Indeed, if the very
frequent food-delivery omission is masked by the same cue (e.g.,
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a light flash) normally accompanying occasional food delivery,
this cue may turn out to act as a secondary reinforcer. As such,
like in second-order schedules, this conditioned stimulus may
sustain continued responding for the large/uncertain reward, even
though this implies a decreased overall foraging in the long
term. Gambling proneness may thus be sustained by the cue-
induced secondary reward, which renovates in the subject the
expectation for an eventual delivery of binge reward (Adriani and
Laviola, 2006, 2009). Translated to human subjects, this would
suggest that it is the thrill—associated with whatever physical
stimuli accompanies both successful and unsuccessful gambling
experiences—that sustain a motivation to gamble, in spite of
abysmal odds and past (mostly negative) experience: looking
at the ball madly spinning on the roulette and waiting for the
crucial card to be turned, with a mix of hope for success and
fear of loss, become rewarding in themselves, and it is in view
of these (certain) rewards that people start enjoying gambling
activities. Until the individual can keep under control the desire,
these activities have nothing wrong in themselves. However, in
vulnerable individuals, eventually a loss of control over these
activities may intervene: pathological gamblers keep on gam-
bling as this compulsive “urge” becomes a strong habit, not
differently from other kinds of addictions (van den Bos et al.,
2013).

Methodological remarks on the probabilistic-delivery task (PDT)
A theoretical framework has been recently formulated to interpret
the performance of laboratory rats in this kind of two-choice
tasks (Adriani and Laviola, 2006). Specifically, a landmark in the
PDT protocol is the “indifference” point: i.e., the specific level
of uncertainty at which the animals can choose either option
freely with no effect on the overall economic convenience. As
an example, if the ratio between large and small reward size is
five-fold then the indifference point is at “p” = 20%. Therefore,
once the “indifference” point is established, the range of “p”
values providing worthy information is easily recognized at “p”
values beyond the indifference point (i.e., 20% > “p” > 0%),
when economical benefit (i.e., maximization of payoff) is attained
unequivocally by choosing repeatedly the small-reward option.
Thus, to maximize the payoff, subjects should be flexible enough
to abandon their innate large-reward preference. As optimal
performance in terms of benefit takes the form of a choice-shift
towards small reward, this requires a self-control effort in order
to overcome the “innate drive” that justifies its attractiveness
(Adriani et al., 2006). By contrast, a sustained preference for large
reward denotes “temptation by risk”.

In this kind of two-choice tasks, details of the schedule
can be calibrated appropriately (Adriani and Laviola, 2009),
so that one alternative option leads to “optimal” benefit (i.e.,
the raw convenience in terms of quantitative foraging or any
other measurable revenue), while the other alternative provides
an “affective” benefit, with a more emotional outcome (i.e.,
better feeling and/or avoidance of adverse mood). In brief,
to run a protocol providing useful information, any “inner
drive” of interest (e.g., gambling proneness) shall push animals
into a choice that necessarily leads to a sub-optimal outcome.
Self-control is then defined as the ability to effect an optimal

response (Stephens and Anderson, 2001) by directing choices
onto the opposite operandum (nose-poking hole or lever to
press). The protocol must never load both instances (i.e., the
inner drive and the optimal payoff) on the same operan-
dum because it would be impossible to discriminate whether
any preference for that operandum is due to payoff-detecting
processes (“economical efficiency”) or to the “inner drive”
itself.

Probabilistic-delivery task (PDT) at very low probability levels
Many factors can act together to push animals towards a sub-
optimal preference for a large reward, even though this is deliv-
ered quite rarely. One factor is insensitivity to risk, whereby the
subjects are unable (i) to figure the uncertainty in the outcome
(usually, they should anticipate the notion that reward is not for
sure, which acts as a source of aversion immediately before choice)
or (ii) to perceive the punishment of “losses” (represented by
the occurrence of a randomly and frequently omitted delivery of
reward).

Another factor is habit-induced rigidity, under which the
subject seems to behave according to a well consolidated strategy.
Such form of inflexibility may be due to a failure of negative
reinforcement, namely to a lack of adaptation and feedback-
reaction to the aversion (for an anticipated “unsure” prize) and/or
to the punishment (due to an actually “omitted” prize) just
described.

A third factor is temptation to gamble, whereby the moti-
vational impact of the reward magnitude (“bingeing”) seems to
monopolize the subject’s attention over any other reward feature.
It is also possible that risk of punishment under conditions of
uncertainty becomes attractive as a secondary conditioned fea-
ture, and this because the “binge” reward (eventually delivered)
may well be generating an overwhelming peak of positive rein-
forcement. The latter could extend a secondary rewarding prop-
erty to all cues and surrounding stimuli that predict uncertain
features. Whatever of these factors is prevalent in the PDT and in
similar tasks, the sub-optimal preference for big, rarefied reward
is taken as an index of “gambling proneness” (namely, the innate
attraction for a “rare but binge” event).

“RISK OF LOSING” vs. “FAILING TO WIN”
A crucial component of human gambling is the “risk of los-
ing”, that is, “the resources staked on a favorable outcome are
lost when a wager is unsuccessful” (Zeeb et al., 2009). This is
distinct from “failing to win”, that is, the absence of any addi-
tional gain, causing a “frustration” but only compared to one’s
expectation.

Most paradigms of risky decision-making (Mobini et al., 2000;
Cardinal and Howes, 2005; Adriani and Laviola, 2006; van den
Bos et al., 2006) deal exclusively with “failing to win”: i.e., com-
plete omission of reward delivery, or delivery of an unpalatable
reward. Thus, there is frustration of an expectation but no risk of
“negative payoff ”, i.e., of finishing the session at a disadvantage
compared with the start. In other words, every case of unsuccess
is an “unlucky event” but not necessarily a “risk”. Therefore, while
the attraction for uncertain reward may resemble the features
of a “gambling proneness”, it is not necessarily fitting with the
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construct of “risk proneness” (on this point, see Anselme, 2012).
Therefore, it should be noted that “uncertainty” and “risk” are
not synonymous:1 indeed, the PDT and similar tasks do offer
stochastic “unsuccess” which is even a “punishment”, but not
necessarily a “risk” which would need a construct implying a
potential for overtly adverse consequences (e.g., footshock).

Recently, however, choice behavior has been also studied in a
setting where a greater reward was associated with the probability
of an overtly adverse event (i.e., the “risk”), represented by a
foot shock (Simon et al., 2009). This can represent a promising
methodological refinements of paradigms tailored for gambling
proneness, although its ethical implications (especially when deal-
ing with non-human primates) should be carefully evaluated.

Another attempt to deal with this issue is represented by
the “Rat gambling task” (rGT; Zeeb et al., 2009). In this task,
subjects have a limited amount of time to maximize the number
of pellets earned, and loss is signaled by punishing timeouts
during which reward cannot be obtained. On each trial, animals
can choose from four options, each associated with a different
number of sugar pellets; each subject then receives either the
associated reward or a punishing timeout. Larger reward options
are associated with a higher chance of longer timeouts, resulting in
less reward earned overall per session. To maximize their earnings,
rats must learn to avoid these risky options.

THE ECOLOGICAL VALIDITY OF ANIMAL MODELS OF HUMAN
(PATHOLOGICAL) GAMBLING
Classically, the performance of laboratory animals on tasks
tailored for gambling proneness is investigated by placing the
animals (in most cases laboratory rodents, primarily rats) individ-
ually in operant chambers for a short daily session (Evenden and
Ryan, 1996, 1999; Mobini et al., 2000, 2002; Adriani et al., 2009).
Thus, differences across laboratories in working environments
and in human interventions (e.g., handling and transport to a
novel testing room) may compromise the reliability and repro-
ducibility of behavioral data (Crabbe et al., 1999; Wahlsten et al.,
2003).

Therefore, for the ecological validity of animal models of
human (pathological) gambling, it is critical to address some
crucial issues (van den Bos et al., 2013). Firstly, confounding
factors such as stress due to handling, facing a new environment
and social isolation should be avoided (e.g., de Visser et al., 2006;
Spruijt and de Visser, 2006; Koot et al., 2009, 2012; Zoratto
et al., 2013). Secondly, the level of tasks’ automation should
be increased, since the involvement of the experimenter during
testing procedures (and for scoring behavior) may be difficult
to standardize: indeed, results may often strongly vary between
laboratories (Crabbe et al., 1999; Chesler et al., 2002). Thirdly,

1Another common way of distinguishing between risk and uncertainty is in
terms of how measurable the odds are: Knight (1921) proposed to consider as
“risky” those choices were the odds are measurable and known to the subject,
whereas the term “uncertainty” should be reserved for probabilistic outcomes
with unknown odds. While this distinction has become canonical in behav-
ioral economics (e.g., Camerer and Weber, 1992; Tversky and Kahneman,
1992), its application to animal studies is highly problematic, due to obvious
difficulties in establishing how much the odds are known (that is, precisely
understood and quantitatively assessed) by experimental subjects.

tasks incorporating a social component should be used, to assess
the impact of social factors on gambling proneness. It is well
known, indeed, that the social environment in humans may have
an undeniable effect on the development and maintenance of
pathological gambling. Finally, innovative tasks should be devel-
oped that allow the investigation of normal time-budget (and its
potential disruptions) devoted to social interaction, foraging, and
other activities. This aspect, which is yet unexplored in animal
models, would be highly relevant. The goal is to identify altered
time budget possibly analogous to the disruption of personal, pro-
fessional or financial life, widely reported in human pathological
gamblers (DSM-IV-TR, American Psychiatric Association, 2000;
Potenza, 2001).

To address the issues mentioned above, different automated
social home-cage systems have recently been developed for per-
manent monitoring of subjects’ operant-choices and spontaneous
(social and non-social) behavior (e.g., Adriani et al., 2012b). For
instance, the Home-Cage Operant Panels (HOPs, PRS Italia) are
new low-cost computer-controlled operant panels (Koot et al.,
2009), which can be placed inside the home-cage, enabling
rodents to operate it 24 h/day. Operant-choice tasks are par-
ticularly interesting to be run during adolescence (Adriani and
Laviola, 2003; Adriani et al., 2004), but social deprivation during
this ontogenetic period may produce changes in reward sensitivity
(Van den Berg et al., 1999), as well as psychotic-like symptoms
(Leussis and Andersen, 2008). To solve this problem, Zoratto
et al. (2013) recently developed a considerable methodological
improvement that allow testing adolescent rats in the home-cage
with a task tailored for gambling proneness, while socially living
and within the limited span of this developmental phase.

RISKY CHOICES IN NONHUMAN PRIMATES: IMPLICATIONS
FOR HUMAN PATHOLOGICAL GAMBLING
Laboratory studies in nonhuman primates can inform the
research on human pathological gambling in at least four three
ways. First, the behavioral tasks employed in laboratory rodents
(see The Probabilistic-Delivery Task (PDT)) may be implemented
in non-human primates for studying the psychobiological bases
and evolutionary roots of human gambling behavior. Second, the
comparison of risk preferences between phylogenetically closely
related nonhuman primate species with different ecologies can
shed light on the selective pressures that shaped decision-making
under risk in the course of the evolution. Third, the study of
how nonhuman primates make decisions under risk may provide
important information on the contextual and social factors deter-
mining the occurrence of similar risky choices in humans. Fourth,
since nonhuman primates are our closest relatives, but are not
constrained by the socio-cultural system of beliefs and attitudes
that characterizes humans, their study may allow to assess whether
biases in the making of decisions under risk emerged before the
human lineage diverged from the other primates, or whether
they are a more recent—and possibly culturally determined—
acquisition.

As noted above (see The Ecological Validity of Animal Models
of Human (Pathological) Gambling), in studies with nonhuman
primates, the term “risk” is typically understood as the frustration
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of a positive expectation (failure to receive a reward), rather than
as the occurrence of a negative event (a loss of valuable resources,
or the infliction of physical damage). This happens since the
second type of “risk” cannot be implemented in nonhuman pri-
mate experiments, mostly due to ethical considerations. However,
it is clear that nonhuman primates are exposed, in their own
environment, also to “true” risks of the second type (e.g., pre-
dation). Note that, in humans, the risks involved in pathological
gambling include the loss of job, family, social reputation; in
a laboratory model, the appropriate meaning of “risk” should
encompass therefore the possibility of overtly adverse outcomes as
consequence of “high stakes”. In any case, a comparative approach
has much to offer to our understanding of human attitudes
towards such “high stakes risks”, once appropriate methodologies
for studying them will be developed.

THE PROBABILISTIC-DELIVERY TASK (PDT) IN THE COMMON
MARMOSET
The behavioral tasks mentioned in Section Rodents as an Ani-
mal Model of Gambling Behavior, used to focus on particular
gambling-related aspects, are classically performed in laboratory
rodents, primarily rats. However, the implementation of these
tasks in species other than rats (that is, non-human primates)
may be relevant for studying the psychobiological bases and
evolutionary roots of human gambling behavior. Moreover, very
little is known about the possibility to run such tasks by means of
automated operant panels. This possibility is especially relevant
in sight of increasing the ecological validity of these models
(see above). The HOPs, originally developed for rodents, have
been recently adapted to small non-human primates like the
common marmoset (Callithrix jacchus; Adriani et al., 2013). In
such a recent experiment, whereby the operandum was adapted
for example into hand-poking holes, we showed that HOPs can be
reliably exploited to model operant-choice behavior in a delayed-
reward setting. The aim of future studies will be to evaluate
marmosets as possible models for gambling behavior, using a PDT
and drawing a comparison with rats.

THE “ECOLOGICAL RATIONALITY” OF RISK PREFERENCES
According to normative economic models, mainly formulated in
mathematical terms, rational decision makers should be indiffer-
ence when choosing between a safe option and a risky option
leading on average to the same payoff (e.g., von Neumann and
Morgenstern, 1947). In practical terms, this means that a rational
decision maker has no reason to prefer either option when offered
choice between e.g., a certain, small reward vs. an uncertain,
larger one whose size is five-fold and whose probability of delivery
is at “p” = 20% (i.e., at the indifference point). However, both
human and nonhuman animals are not similar to such “rational”
entity, as their instinct will guide their choice towards some kind
of a preference: they are generally risk-averse for gains (e.g.,
Kahneman and Tversky, 1979; Kacelnik and Bateson, 1996), with
the notable exception of nonhuman primates, for which the pic-
ture is more complicated (Stevens, 2010). To explain this pattern
of behavior, it has been proposed that risk-related preferences
could reflect the environments in which species evolved and,
in particular, their feeding ecology (Heilbronner et al., 2008),

leading to “ecologically rational” decisions (Gigerenzer and Todd,
1999). In order to test the above ecological hypothesis, risk pref-
erences were compared in phylogenetically closely related primate
species employing two main paradigms.

In the most simple paradigm, the subject is given a series of
choices between two options: the “safe” option yields a reward
that is constant in amount, whereas the “risky” option yields a
reward that varies probabilistically around the mean, with the
two options leading on average to the same payoff. Individuals’
attitude towards risk is inferred on the basis of their prefer-
ence for the safe option (indicating risk aversion), for the risky
option (indicating risk seeking) or for neither option (indicating
risk neutrality) (Kacelnik and Bateson, 1996, 1997). Bonobos
(Pan paniscus) and chimpanzees (Pan troglodytes), two closely
related species that evolved behavioral differences possibly as a
result of their different ecologies (Wrangham and Pilbeam, 2001),
received an experimental schedule whereby they were offered
choices between two different upside-down bowls, covering the
safe option (always four food items) and the risky option (either
one or seven food items with equal probability; Heilbronner
et al., 2008). The two species differed markedly in their risk
preferences: chimpanzees were risk-seeking, whereas bonobos
were risk-averse. Their feeding ecology offers a plausible expla-
nation for this difference: bonobos feed mainly on terrestrial
herbaceous vegetation, an abundant and reliable food source,
whereas chimpanzees feed primarily on fruit, a more variable food
source (Wrangham and Peterson, 1996). Thus, since chimpanzees
often rely on more unpredictable food sources than bonobos, this
evolutive force may have shaped their behavioral regulations so
that to render them tolerant to, if not attracted from, a reward
uncertainty. As such, an ecological feature may have led them to
be more risk-seeking than their sister species (Heilbronner et al.,
2008; Stevens, 2010).

A methodologically similar study conducted on individuals
belonging to different lemur species (Lemur catta, Eulemur mon-
goz, Varecia rubra) showed that, as bonobos, lemurs were clearly
risk-averse (MacLean et al., 2012). Subjects were required to
choose between two images on a touch-screen, associated to a safe
option and to a risky option, respectively. The safe option always
led to one food item, whereas the payoff of the risky option varied
across two experiments. In a first experiment, the risky option
corresponded either to two food items or to zero food items with
equal probability (leading to an average payoff of one food item,
as the risky option). In a second experiment, the payoff of the
risky option was gradually increased across trials up to 7.5 times
the safe option. In the first experiment, lemurs strongly preferred
the safe option; in the second experiment, half of the subjects
switched to risk seeking only when the potential payoff of the
uncertain option was at least five times higher than that of the safe
option. These results are somewhat puzzling if compared to the
findings obtained by Heilbronner et al. (2008) in chimpanzees.
However, it can be hypothesized that animals living in a relatively
productive environment compared to lemurs, like chimpanzees,
can exploit also risky resources, and thus evolve a risk-seeking
attitude, without incurring in the danger of starvation. In con-
trast, for animals living in very harsh environments, like lemurs
(that have also evolved several anatomical and behavioral traits
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as adaptations to their unpredictable habitats; Wright, 1999),
risk proneness is not advantageous in the long term and is
better to rely on low-quality, yet stable resources (Caraco, 1981;
McNamara, 1996).

In a more complex paradigm, Haun et al. (2011) investigated
whether, when choosing between a safe and a risky option, the
four nonhuman great ape species (Pan paniscus, Pan troglodytes,
Gorilla gorilla, and Pongo abelii) make decisions based on the
expected value, defined as the probability of receiving the reward
multiplied by the amount of the reward. In each trial, sub-
jects choose between a safe option, consisting in a small food
item hidden under a yellow cover positioned to the right of
the subject, and a risky option, consisting in a large food item
put in one of four brown bowls placed in a row in front of
the subject and hidden under a blue cover. The probability of
receiving the reward was manipulated by increasing the number
of blue cups covering the four brown bowls (varying from P =
100%, when one blue cup covered the brown bowl containing
the risky option, to P = 25%, when four blue cups covered
all the brown bowls), whereas the relative value of the risky
option was increased by decreasing the size of the small food
item. Overall, apes preferred the risky option, although their
preferences were influenced by the expected value. In fact, sub-
jects chose the safe option more often when (i) the safe reward
increased in size compared to the risky reward, and (ii) the
probability to receive the risky reward decreased. As for species
differences, chimpanzees were more risk-seeking than bonobos
(as in Heilbronner et al., 2008) also when tested in this more
complex paradigm, and orang-utans, whose feeding ecology is
somewhat similar to that of chimpanzees (Knott, 1999), were also
risk-seeking.

Interestingly, similar differences in risk preferences have been
observed in human small-scale societies, possibly as an effect of
cultural differences and environmental conditions (Kuznar, 2001;
Henrich and McElreath, 2002) that deserves further investigation.

CONTEXTUAL AND SOCIAL FACTORS AFFECTING RISK PREFERENCES
IN NONHUMAN PRIMATES
Several neurophysiological studies in nonhuman primates have
employed risk preference tasks to understand whether single neu-
rons track the subjective value rather than the objective value of a
chosen option (McCoy and Platt, 2005; O’Neill and Schultz, 2010;
So and Stuphorn, 2010; but see Yamada et al., 2013). In a first
study, McCoy and Platt (2005) tested rhesus macaques (Macaca
mulatta) in a visual gambling task and measured the activity of
single neurons in the posterior cingulate cortex. Macaques were
presented with choices between visual targets offering on average
the same reward but differing in reward uncertainty. They had
to choose whether directing their gaze to a safe target (offering a
150 ms access to fruit juice) or to a risky target (randomly offering
either a shorter or longer than 150 ms access to juice, resulting on
average in 150 ms access). Overall, monkeys strongly preferred
the risky target and its selection increased with the degree of
risk, regardless of the internal state of the subjects. Also neuronal
activity increased with increasing variance in payoff of the risky
option, mirroring the macaques’ risk proneness observed at the
behavioral level. Interestingly, macaques continued to prefer the

risky option even when the probability of receiving the larger
outcome was reduced from 50 to 30% and thus its payoff was
smaller than that of the safe option.

In the above study, rhesus macaques were consistently risk-
seeking and the same pattern was observed also in subsequent
studies carried out by the same Authors and in other neuro-
physiological laboratories (Hayden et al., 2008b, 2010; Long et al.,
2009; Watson et al., 2009; O’Neill and Schultz, 2010; So and
Stuphorn, 2010; Heilbronner et al., 2011; but see Yamada et al.,
2013). Interestingly, macaques’ choices are not explained by non-
linear utility functions (as proposed by Lee, 2005) since they
preferred an uncertain option, in which the delivery of the larger
payoff was unpredictable, to an alternating option, in which the
delivery of the larger payoff was predictably alternating across
trials (Hayden et al., 2008a). Thus, borrowing the distinction
between uncertainty and risk favored in the field of behavioral
economics (Knight, 1921; Camerer and Weber, 1992; Tversky and
Kahneman, 1992), macaques are not only risk prone, but also
uncertainty-seeking.

However, not in all conditions do rhesus macaques exhibit
a preference for risky options. In fact, when another macaque
sample was tested in a risk preference task under different condi-
tions, their behavior ranged from risk aversion to risk neutrality,
but none of them was risk-seeking (Behar, 1961). Thus, although
rhesus macaques’ ecology may suggest a general predisposition for
risk proneness (Goldstein and Richard, 1989; Richard et al., 1989),
Heilbronner and Hayden (2013) proposed that macaques’ risk
preferences are driven by some features of the task design typically
used in neurophysiological studies, such as (i) the small stakes
involved in these experiments (typically 0.1–0.3 ml of juice); (ii)
the large amount of trials (the same decision problem is typically
presented hundreds or thousands of times to the same subject);
and (iii) the short intertrial intervals (ITIs).

At least for the latter point, an experiment showed that this
might be the case. Whereas in McCoy and Platt (2005), where
macaques were risk-seeking, the average ITI was 3 s, in other
nonhuman animal studies, where individuals were risk-averse
(reviewed in Kacelnik and Bateson, 1996), the ITI was much
longer (usually 30 s). Thus, Hayden and Platt (2007) presented
rhesus macaques with a novel version of the visual gambling task
in which the variance of the risky option was kept constant and the
ITI varied from 1 s to 90 s. They found interestingly that, as the
ITI increased, macaques’ preference for the risky option decreased
and monkeys turned to risk neutrality at 90 s ITI. To explain
this pattern, Hayden and Platt (2007) hypothesized that macaques
interpreted the risky option as a certain reward available at a
future time and, since the higher payoff may occur on the next
trial, the subjective expected utility of the risky option depends
on the length of the ITI. Interestingly, when humans were tested
with a paradigm as similar as possible to that usually employed
with macaques, they were more risk-seeking than in typical one-
shot gambling experiments employing questionnaires (Hayden
and Platt, 2009).

However, the above factors cannot explain the risk-seeking
behavior observed in chimpanzees and orangutans (Heilbronner
et al., 2008; Haun et al., 2011), where the stakes involved where
comparatively high, the number of trials lower, and the ITIs

Frontiers in Behavioral Neuroscience www.frontiersin.org February 2014 | Volume 8 | Article 33 | 7

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Paglieri et al. Gambling in rodents, primates, robots

longer than in the macaque studies. Although the results on
chimpanzees appears to be very robust and have been replicated
with larger samples (Rosati and Hare, 2012, 2013), it cannot
generally be excluded that the different risk preferences obtained
in the nonhuman primate studies reviewed so far were due to
individual differences. In fact, in rhesus macaques, risk sensitivity
appears to be partly determined by the serotonergic system:
serotonin depletion increases risk proneness (Long et al., 2009),
a finding consistent with recent rodent data (Koot et al., 2012).
Similarly, the length polymorphisms of the serotonin transporter
gene promotor (known as 5-HTTLPR, the serotonin-transporter-
linked polymorphic region) is crucial as well (Watson et al., 2009),
in relation to interspecific and intraspecific behavioral variability.
Wendland and colleagues (2006) found, in macaque species, that
the 5-HTTLPR was responsible for interspecific behavioral vari-
ability. In contrast, Chakraborty et al. (2010) proposed that this
particular polymorphism had a role in intraspecific variability,
which in turn may account for the greater ecological success of
5-HTTLPR polymorphic species. An example of its consequences
in the wild is represented by the presumed selective emigration
of rhesus macaques over the Himalyan Mountains into China in
the early history of the species (Champoux et al., 1997; Heinz
et al., 1998). According to Belsky et al. (2009), this particu-
lar polymorphism may confer an advantage when dealing with
novel, possibly hostile environments. Relative to Indian-derived
monkeys, Chinese-hybrid macaques with higher prevalence of
the long repeat allele of the 5-HTTLPR show predispositions
to aggressive and risk-taking behaviors, as well as lower levels
of serotonin as indicated via its metabolite (Champoux et al.,
1997; Heinz et al., 1998). Nonetheless, although feeding ecology
and inter-individual differences are likely to influence risk pref-
erences, the findings obtained in rhesus macaques underline the
importance of carefully controlling all task and environmental
parameters when comparing risk preferences among different
species.

Finally, as observed in humans (Bault et al., 2008; Ermer
et al., 2008; Hill and Buss, 2010), another important factor
affecting nonhuman primates’ risk preferences seems to be the
social context in which the individuals make decisions. To our
knowledge, there is only one study evaluating this aspect in
nonhuman primates (Rosati and Hare, 2012). Chimpanzees and
bonobos were presented with choices between a safe option,
yielding an intermediately preferred food item, and a risky option,
yielding either a low-preferred or a high-preferred food item, in
a competitive context and in a play context. In both contexts
an experimenter interacted with the subject before the presen-
tation of the decision-making task: in the competitive context,
the experimenter first offered the subject a food item and then,
when the subject attempted to take it, immediately pulled it
out of the subject’s reach; in the play context, the experimenter
tickled or chased the subject. Apes’ behavior in each condition
was compared with a neutral context, in which the experimenter
was present but not interacting with the subject. All subjects
chose the risky option more in the competitive than in the
neutral context, whereas the play context did not increase risk
proneness. Probably, an eco-ethological explanation is very likely
given that feeding competition and consequent loss of resources

is a potential problem for all group-living species. In this frame it
can be proposed that, in the competitive context, the salience and
attractiveness of the larger option would be increased notwith-
standing its uncertainty.

THE EVOLUTIONARY ORIGINS OF BIASES IN DECISIONS UNDER RISK
When making choices between risky options, humans show the
so-called “reflection effect”, i.e., the tendency to evaluate gambles
in relation to an arbitrary reference point. The same individual
can decide differently, being risk-seeking when some options are
framed as losses and risk-averse when the same, identical options
are framed as gains (Kahneman and Tversky, 1979; Tversky and
Kahneman, 1981).

Nonhuman animals apparently share with humans the reflec-
tion effect and other behavioral biases (e.g., Waite, 2001; Marsh
and Kacelnik, 2002; Shafir et al., 2002). This can be either because
of an early emergence of economic biases during evolution, or
because of convergent evolution. Only the study of nonhuman
primates, our closest relatives, can allow to disentangle the topic
and select one between these two hypotheses. To this aim, in
recent years a series of studies investigated decision-making under
risk in capuchin monkeys (Sapajus spp., formerly Cebus apella2)
that, despite 35 million year of independent evolution, show many
striking analogies with humans in terms of encephalization index,
ontogeny, lifespan, and various cognitive traits (Fragaszy et al.,
2004).

In a first study (Chen et al., 2006), capuchins were tested
in a token exchange task, in which they were provided with
a starting budget of 12 tokens that could be exchanged with
one of two experimenters, as they preferred. Preliminary exper-
iments demonstrated that capuchins can behave rationally in
this framework: when the two experimenters provided the same
amount of two equally preferred different food types, capuchins
exchanged a similar amount of tokens with each of them; however,
when one experimenter doubled the amount of food provided in
exchange for one token or showed two food items and delivered
either one or two pieces with the same probability, capuchins
reliably shifted their preference towards her, showing that they
were able to maximize their payoff. In the main experiment,
capuchins were presented with choices between experimenters
providing a risky “trade” of either one or two food items with
equal probability, but the amount of food initially displayed to
the subject was different: one experimenter showed one food
item and added a “gain” of one additional food item in half
of the trials, whereas the other experimenter showed two food
items and subtracted a “loss” of one food item in half of the
trials. Although the two experimenters provided on average

2Recent molecular analysis has revealed that capuchin monkeys, formerly
identified as the single genus Cebus, are two genera, with the robust (tufted)
forms (including libidinosus, xanthosternos, apella and several other species)
now recognized as the genus Sapajus, and the gracile forms retained as the
genus Cebus (Lynch Alfaro et al., 2012). The nomenclature for Sapajus is regis-
tered with ZooBank (urn:lsid:zoobank.org:act:3AAFD645-6B09-4C88-B243-
652316B55918). Animals identified as Cebus apella in laboratory colonies
outside of South America may be any combination of the several species (e.g.,
C. apella, C. libidinosus, C. nigritus) recognized as separate species since 2001
(Groves, 2001; Fragaszy et al., 2004), but previously considered C. apella.
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the same payoff, capuchins preferred to exchange their tokens
with the first experimenter, although—according to a rational
perspective—they should have been indifferent between the two
options. These results demonstrate that, as in humans, they
chose on the basis of an arbitrary reference point (namely, the
initial food amount shown by the two experimenters), therefore
preferring the experimenter which was framing the “trade” as a
gain.

In a subsequent study (Lakshminarayanan et al., 2011),
capuchins were tested with a similar paradigm, presenting them
choices between a risky option and a safe option yielding the
same average payoff (of two food items) but in two conditions: (i)
Losses: both experimenters initially displayed three food items, but
the first experimenter always delivered two food items, whereas
the second experimenter delivered either one or three food items
with equal probability; and (ii) Gains: both experimenters initially
displayed one food item, but the first experimenter always deliv-
ered two food items, whereas the second experimenter delivered
either one or three food items with equal probability. Overall,
capuchins showed a clear-cut evidence of the “reflection effect”
since they were risk-seeking when options were framed as losses,
and risk averse (although to a lesser extent) when options were
framed as gains. Again, decisions appear to be made by subjects
relative to their initial reference point.

In sum, the above findings suggest that humans and capuchin
monkeys share the reflection effect, as is reported with other
behavioral biases (Chen et al., 2006; Lakshminarayanan et al.,
2008). However, a very recent “up-linkage” replication of
Lakshminarayanan et al. (2011), in which adult humans were
tested with exactly the same procedure employed with capuchin
monkeys, failed to find a reflection effect (Silberberg et al., 2013).
Nonetheless, it should be noted that such a replication may have
had a low ecological validity for cognitively sophisticated adult
humans, especially because of the repeated interactions with the
experimenters, which the participants may have found boring or
embarrassing. Future studies should investigate biases in decisions
under risk in closely-related non-human primate species with
different ecologies (Clutton-Brock and Harvey, 1979; Rosati and
Stevens, 2009; Rosati and Hare, 2012) in order to understand
whether these behavioral patterns are maladaptive, suboptimal,
or instead “ecologically rational” (Todd and Gigerenzer, 2000).

RISK ATTITUDES, ENVIRONMENTAL UNCERTAINTY AND
ADDICTIVE BEHAVIOR: PERSPECTIVES FROM
COMPUTATIONAL NEUROSCIENCE AND EVOLUTIONARY
ROBOTICS
Computational models are a new way of doing science which can
be very useful for theorizing about extremely complex systems
like vertebrate organisms and their brains. The usefulness of
computational models comes largely from two factors: (i) they
express hypotheses in a formal, precise, and unambiguous way,
so that from those hypotheses a number of detailed predictions
can be unequivocally derived which can then be tested through
empirical experimentation; (ii) they allow for a degree of direct
manipulation on all relevant variables which is unparallelled by
naturalistic methods.

The vast majority of computational models deal with the nor-
mal functioning of the brain and normal cognitive phenomena,
but since the 1990s a number of models have been proposed
that address psychiatric and neurological disorders, and recently
these models have been raising increasing interest, so that sev-
eral scholars started to discuss the prospects, challenges, and
limitations of computational psychiatry (Maia and Frank, 2011;
Montague et al., 2012; Huys, 2013). There are many ways in which
computational models may help research on decision-making
in general and pathological gambling more in particular. Here,
we will focus on three different kinds of models: (1) normative
(algorithmic) models; (2) neural models; and (3) evolutionary
robotics models.

NORMATIVE (ALGORITHMIC) MODELS
A first class of relevant models is what we can call “normative”
or “algorithmic” models. These models derive from the computa-
tional reinforcement learning literature (Sutton and Barto, 1998)
and are normative because they are based on machine learning
algorithms, which prescribe how an agent should behave in order
to maximize its payoff with future rewards. They became famous
in the mid 1990s when it was discovered that the dynamics of
dopamine, which is highly involved in motivation and learning
(Wise, 2004; Schultz, 2006; Berridge, 2007), as well as in drug
addiction, could be modeled by the reward prediction error signal
postulated in Temporal Difference (TD) reinforcement learning
(Barto, 1995; Schultz et al., 1997). The reward prediction error
of TD learning is a signal that quantifies “surprise”, that is, the
difference between expected and actual rewards, and it is used
in reinforcement learning models as the learning signal that
drives action learning. In a nutshell, the theory holds that an
agent continually evaluates the current states (situations) with
respect to the reward that it expects to achieve in those states.
If it gets more reward than expected, then a prediction error
signal is generated that is used to update both its prediction and
its action policy, that is the way the animal selects its actions.
The idea is that the probability to select an action again, in a
given context, is increased if that action leads to more rewards
than expected and is decreased if it leads to less reward than
expected. Dopamine behaves just as the reward prediction error:
its release is triggered by unexpected rewards or unexpected
stimuli that predict reward but it is not released when the reward
is perfectly predictable and it is inhibited (a deep in dopamine
levels occurs) when an expected reward is omitted. This has led
to conclude with the hypothesis that dopamine plays the same
function of the reward prediction error, within phenomena of
reinforcement. Phasic dopamine release would have the role of
making the agent learn (1) the value (“saliency”) of the stim-
uli and (2) which are the actions (“strategies”) to be deployed
in each circumstance in order to maximize future rewards. In
mammals, these two roles are attributed to mesolimbic vs. nigros-
triatal dopamine pathways, respectively. This theory has guided
an enormous amount of empirical research and has received so
much empirical support that it is now an important tenet of
contemporary neuroscience, and it has become one of the most
successful examples of using computational models in the behav-
ioral and brain sciences (e.g., Montague et al., 2004; Ungless,
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2004; Wise, 2004; Sugrue et al., 2005; Graybiel, 2008; Glimcher,
2011).

What is most interesting for our purposes is that the reward
prediction error hypothesis for dopamine has not only been
used to predict and explain behavioral and brain dynamics in
normal conditions, but also to explain pathological phenomena.
In particular, normative algorithmic models have been used to
interpret brain imaging data related to various mental pathologies
like schizophrenia and depression-related anhedonia (Smith et al.,
2007; Kumar et al., 2008; Murray et al., 2008; Huys et al., 2013).

Moreover, a seminal work by David Redish (2004) used a
TD model to explain drug addiction. In particular, the model
explained addiction as the consequence of the pharmacological
effect that certain drugs of abuse, like amphetamines, cocaine
or nicotine, may have on forebrain dopamine circuits. Indeed,
these drugs are known to increase dopamine levels upon acute
administration. According to Redish’s model, the addictive effect
of these drugs is associated to specific consequences, due to
the dopamine elevation produced by the drug. With natural
rewards, a phasic release of dopamine is present only when
the reward is not predicted, unexpected. In this perspective,
the normal process of reinforcement, produced by any reward,
can be cancelled out by accurate predictions. On the con-
trary, the model postulates that drugs of abuse generate also a
pharmacologically-induced dopamine release, a term that cannot
be compensated by predictions. Since, in this way, the dopamine
prediction error never disappears, as if drug-related pleasure is
always “unexpected”, the subjective values of the drug related
internal states will keep on increasing indefinitely, and the actions
that lead to the drug consumption keep on being reinforced,
hence becoming a strong habit and thus ultimately resulting
in the development of addiction. This model explains several
aspects of addiction including, for example, the fact that both
drugs and natural rewards are sensitive to effort-related cost,
but the reward provided by drugs is much less sensitive than
that given by natural rewards. However, one of the key predic-
tions of the theory has been falsified by subsequent research.
In particular, the theory predicted that drugs should prevent
blocking, i.e., the phenomenon for which a stimulus that pre-
dicts a reward, if paired with a new stimulus before presenting
the reward, prevents the second stimulus to be conditioned as
it stops the learning-inducing dopamine prediction error from
occurring. If a drug always produced a dopamine prediction error,
as postulated by Redish’s model, then the conditioning of the
second stimulus should occur, but it does not (Panlilio et al.,
2007).

Building on this computational interpretation of drug addic-
tion, Redish et al. (2007) proposed a model that provides a
possible explanation of pathological gambling. This model adds
to the basic TD prediction error model, which learns the values
of states and actions, a second “situation recognition” system
that learns to categorize the states. In particular, this system
learns to categorize as different states all those situations in
which, after having received high rewards, those rewards are
not present anymore. Noteworthy, this addition was done to
accommodate in the TD framework basic reinforcement learn-
ing phenomena related to the extinction of behaviors and their

renewal. However, it provides also an explanation of gambling.
Indeed, many pathological gamblers became addict after hav-
ing experienced an unlikely sequence of wins or a single very
high win (Custer, 1984; but see Kassinove and Schare, 2001,
for empirically founded doubts on the strength of this big win
effect). The model assumes that, when the gambler experiences
such a huge success (or the feeling to have almost succeeded,
the so called “near miss” effect; Kassinove and Schare, 2001), he
forms a very strong and unrealistic expectation that he can win
again (or finally; on the similarity in neural processing of wins
and near misses, see Chase and Clark, 2010; Winstanley et al.,
2011). When the gambler starts to loose, instead of unlearning
and cancelling this (false) expectation, by negative reinforcement,
his situation recognition system starts to create new “associative”
states, namely looking for cues that are supposed to distinguish
the winning situation against the loosing ones. Hence, according
to this model, pathological gambling results from a misclassifi-
cation of the situation, with the irrational belief that there are
contingencies in which the gambler can win as different from
those where he looses. This explanation can account also for
two related phenomena: (1) the “hindsight bias” effect, where
gamblers analyze their losses and (post-hoc) identify which are the
cues that differed from the situation when they won, as well as (2)
the “illusion of control” phenomenon, in which they believe that
they can control an otherwise random situation by identifying
and following the right cues that, in their mind, distinguish
winning from losing situations (Custer, 1984; Wagenaar, 1988).
The most common superstitions of pathological gamblers are
thus accounted for.

One limitation of this model is that it tries to explain patho-
logical gambling as a unitary phenomenon with a unique cause,
while it is likely that there might be several different causes
that underlie this complex behavior, both in the same individual
and across different individuals. For example, many pathological
gamblers keep on gambling even if they report knowing that they
will loose, something that is in contrast with the model (but
see the results on cue-induced secondary rewards in rodents and
their potential implications for human gambling, discussed in
Section Assessment of Gambling Proneness: Clinical and Preclin-
ical Approaches). However, the most important limit of this kind
of normative, algorithmic models is that they provide abstract
explanations on what computations may go awry in pathological
conditions, but they do not explain which are the actual brain
mechanisms that may underlie these phenomena: hence the range
of phenomena that they can account for and predict is limited. In
order to investigate the details of the brain processes that are the
basis of the phenomena of study, we need models that simulate
those details. This is the province of neural models.

NEURAL MODELS
Neural models explain a cognitive phenomenon by simulating
(with a variable degree of abstraction) neurons and their con-
nections, and making the simulated neural network reproduce
the phenomenon. The first models of this kind were called
“connectionist” models (McClelland and Rumelhart, 1989): they
included very simple neural networks, which were supposed
to perform computations in a brain-like manner, but whose
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structure was not meant to replicate the structure of real brains.
More recently, much more biologically realistic models have been
developed in computational neuroscience. In these models, dif-
ferent groups of nodes are meant to represent neurons belonging
to different parts of the brain, and the connections between the
different groups correspond to the connections between those
brain areas. The architecture and functioning of the model are
thus based on the anatomy and physiology of the same brain
areas that are known to be relevant for the phenomenon under
study. If the model is able to reproduce the phenomenon, this
would give us a detailed explanation on what brain mechanisms
may be responsible for it. The plausibility of such an explana-
tion rests on two foundations: (i) how many anatomical and
physiological constrains are considered, and how much they are
respected; and (ii) how many different phenomena the model
is able to account for. Furthermore, the model can be used
to derive a number of predictions that can then be tested in
humans as well as animal models, through further empirical
experiments.

To the best of our knowledge, no neural models have been
developed so far to explain pathological gambling, although there
is evidence of a role of midbrain dopamine in the coding of
reward uncertainty (Fiorillo et al., 2003), thus suggesting an
influence of the dopaminergic system on risk-taking behavior.
On the other hand, several models, both connectionist (e.g.,
Cohen and Servan-Schreiber, 1992; Cohen et al., 1996; Braver
et al., 1999) and biologically detailed ones (Frank et al., 2004,
2007a,b,c; Gutkin et al., 2006; Waltz et al., 2007; Rolls et al., 2008;
Ahmed et al., 2009; Maia and Frank, 2011), have been developed
to describe neurological and psychiatric pathologies, including
schizophrenia, Parkinson, Tourette’s syndrome, ADHD, and drug
addiction. Briefly reviewing these existing models can provide
useful suggestions on how to apply the same methods to the
investigation of pathological gambling.

Most of these models deal with the dopaminergic system
and its interactions with the basal-ganglia-thalamo-cortical cir-
cuits that implement action selection. A notable example is the
work of Frank and colleagues on modeling several aspects of
Parkinson disease (e.g., Frank et al., 2004, 2007a; Moustafa et al.,
2008). Parkinson disease is known to depend on the degener-
ation of nigro-striatal dopamine cells. This work is based on
a detailed model of the basal ganglia-thalamo-cortical circuit
that is assumed to implement action selection and reinforcement
learning (e.g., Frank et al., 2001). The main idea behind the model
is that two sub-systems, a Go and a no-Go system, are present
in the basal ganglia, which together implement action selection.
In particular, neurons in the basal ganglia are supposed to allow
the release of actions in the cortex by selectively disinhibiting
a certain action (through the Go system) while inhibiting the
others (through the no-Go system). Furthermore, a third struc-
ture of the basal ganglia (the subthalamic nucleus) is supposed
to dynamically exert a global inhibitory role and to modulate
the threshold at which actions are selected depending on the
level of cortical conflict. Importantly, neurons belonging to the
different systems have different dopamine receptors distributions,
with Go neurons having receptors which make dopamine excite
the neuron and no-Go neurons that have receptors which make

dopamine inhibit the neuron. Through such a model, Frank
and colleagues have been able to reproduce and explain a num-
ber of detailed behavioral and neural data, and to predict new
data that have been empirically verified, such as the effects of
dopaminergic medication and of deep brain stimulation of the
subthalamic nucleus (a procedure that is known to improve
motor symptoms) on different cognitive tasks in Parkinson
patients (Frank et al., 2007a), and why medication can lead
those patients to develop pathological gambling (Dodd et al.,
2005).

In order to explain other facets of this complex behavior and
its neural basis, many more details should be added to these
models. For example, pathological gambling is known to be
associated with dysfunction not only of dopamine, but also of
other neuromodulators like serotonin (e.g., Nordin and Eklundh,
1999) and noradrenaline (e.g., Meyer et al., 2004). For this reason,
the role of these two neuromodulators should be modeled in
future research, possibly by incorporating findings from other
computational models that deal with the interactions between
these neuro-modulators and dopamine (e.g., Daw et al., 2002).
Furthermore, beyond the anomalies in the basal-ganglia and in
associated fronto-cortical areas, recent evidence suggests that also
deficits in amygdala functioning may be responsible for gambling
behavior by significantly reducing loss aversion (De Martino
et al., 2010). For this reason, modeling pathological gambling may
require modeling the interactions between the amygdala and the
basal-ganglia, as done in recent neuro-robotic models of the role
of amygdala in conditioning (Mannella et al., 2007, 2008, 2010;
Mirolli et al., 2010).

Finally, also factors related to intrinsic motivations (i.e., moti-
vations related to novelty, surprise, and competence acquisition:
Ryan and Deci, 2000; Baldassarre and Mirolli, 2013) may play a
role in pathological gambling. For example, Parkinson patients
that develop pathological gambling are distinguished from those
that do not in tests that measure impulsivity and novelty seeking
(Voon et al., 2007). Recent computational models assume that
intrinsic motivations work by hijacking the neural brain systems
that underlie also extrinsic motivations, and in particular the
dopaminergic system and the action selection system in the basal-
ganglia (e.g., Kakade and Dayan, 2002; Mirolli et al., 2013). Some
of these models are detailed neural models very similar to the
ones discussed above on dopamine in Parkinson, including basal-
ganglia-thalamo-cortical circuits, the dopaminergic system, and
other relevant areas (e.g., Baldassarre et al., 2013; Fiore et al.,
2014). Merging the two kinds of models may be a promising
way to further understand the brain mechanisms underlying
pathological gambling.

EVOLUTIONARY ROBOTICS MODELS
Evolutionary robotics provide a valuable platform to test evolu-
tionary hypotheses on the ecological pressures behind the emer-
gence of specific behaviors and traits. Such hypotheses, like those
already discussed in Sections Rodents as an Animal Model of
Gambling Behavior and Risky Choices in Nonhuman Primates:
Implications for Human Pathological Gambling with respect to
risk attitudes, are often plausible, but also hard to verify directly.
They rely on key assumptions about the environment in which
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the evolution of a given species occurred, and yet it is typically
hard to observe with precision the effects of a given ecological
variable (e.g., dangers of predation) on the behavior under study
(e.g., risk proneness/aversion). Moreover, these assumptions refer
to ancestral environments, not present-day ecologies: while there
are methods to acquire data on living conditions in ancestral times
(e.g., through paleobiology and primate archeology; Haslam et al.,
2009), they are bound to deliver incomplete information at best,
in spite of substantial research efforts. Recent work has demon-
strated the viability and fruitfulness of computational methods,
e.g., experimental evolutionary robotics: the basic idea is to let
populations of simulated robots evolve under specific ecolog-
ical pressures, and then observe their behavior with the aim
of drawing implications for the understanding of processes in
natural organisms faced by similar, uncertainty-based tasks (Da
Rold et al., 2011; Saglimbeni and Parisi, 2011). This approach
allows to observe how several forms of risk introduced in the
evolutionary environment affect choice behavior, both in ecology
and in experimental settings.

Moreover, robots are controlled by simple neural networks,
whose evolution and effects on behavior can be studied with
extreme precision and flexibility: not only recording their activ-
ity during behavior, but also “lesioning” a well-adapted neural
network and observing the impact on risk-related choices, hence
drawing new insights into pathological gambling. These are all key
advantages of computational evolutionary models, as opposed
to purely mathematical and game-theoretical approaches, for
putting forward hypotheses regarding the evolution of cer-
tain aspects of risk attitudes in uncertain environments (e.g.,
McNamara et al., 2013). While mathematical and theoretical
models certainly provide valuable contributions to breach the
gap between laboratory studies and ecological observations, they
lack the opportunities for direct manipulation and experimental
observation granted instead by robotics platforms, be they purely
simulated or physically implemented.

To the best of our knowledge, no evolutionary (computa-
tional) model of pathological gambling have yet been proposed.
However, there are several interesting simulations on how risk
attitudes in general might have evolved: some of these works have
already important implications for our understanding of gam-
bling behavior, and points towards promising research directions.
For instance, Niv et al. (2002) used evolutionary computation
techniques to evolve near-optimal neuronal learning rules in
a simple neural network model of reinforcement learning in
bumblebees foraging for nectar. This resulted in a replication of
two well-documented choice strategies in these animals: risk aver-
sion and probability matching. Moreover, risk aversion evolved
even in a completely risk-less environment. These results sug-
gest that risk-aversion may be a direct consequence of near-
optimal reinforcement learning, with no need to assume further
evolutionary constraints, such as the existence of a nonlin-
ear subjective utility function for rewards. Their results were
also demonstrated in real-world situations, using experiments
in a Kephera wheeled robot, and they dovetail nicely with the
evidence on the role of the reward prediction error in determining
various choice behaviors (see Section Normative (Algorithmic)
Models).

Other models do not explicitly focus on any particular species,
but rather try to address general issues pertaining the evolu-
tion of risk attitudes. Arbilly et al. (2011) used agent-based
evolutionary simulations to investigate an important connection
between environmental features, risk-aversion, and the evolution
of social learning. They started from the observation that, in
environments with significant risks associated to higher value
rewards (e.g., an ecology in which the most valuable food is rare
and difficult to obtain), the possibility of acquiring such rewards
is most likely to require a certain number of failed attempts,
before success is achieved. In these circumstances, risk-aversion
would lead to neglect such rewards, even if doing so may be
sub-optimal in the long run (Real, 1991). However, Arbilly and
colleagues noted that this situation also create an important (and
often overlooked) evolutionary advantage to social learning over
individual learning, since social learners can by-pass the problem
of risk aversion by learning where to forage from individuals
that have already found food. The results of their evolutionary
simulations, which combined a producer–scrounger game with
explicit individual and social learning rules for associating dif-
ferent food patch types with experienced reward, confirmed the
key role of social learning in similar situations, as an antidote
to the adverse effects of risk-aversion in this type of environ-
ment. Incidentally, this also provides an explanation to why many
species, humans included, continue to rely heavily on social
learning even when it produces disastrous effects, e.g., in escape
panic scenarios (Helbing et al., 2000). And it also illustrates
how this reliance on social learning can be used to produce
“contagious gambling”: this is precisely what happens when con-
artists and casinos employ confederates who (falsely) win huge
sums, in order to lure unsuspecting potential gamblers into the
game.

While the number of computational evolutionary models
of risk attitudes is still too limited to permit any universal
conclusions on the evolution of this complex suite of behav-
iors, some important methodological implications stand out,
and are worth noticing. This methodology has in fact both
advantages and limitations, but what matters is that they tend
to be complementary to those exhibited by naturalistic meth-
ods. Thus, integrating evolutionary simulations with naturalis-
tic studies has the potential for huge scientific payoffs. With
respect to experimental evolutionary robotics (Da Rold et al.,
2011; Saglimbeni and Parisi, 2011), advantages of this method
include the following ones. First, full observability means that
robots’ behavior can be observed in extreme detail both “in
the wild” (i.e., in the ecological setting where robots evolve),
and “in the lab” (i.e., under specific test conditions). Second,
there is full control, meaning that all variables can be easily and
precisely manipulated, regarding both ecology and test condi-
tions, including the possibility of “counterfactual experiments”
(that is, studying how ecological pressures for which no natural
correlate is known might affect behavior). Third, there is neu-
rocomputational transparency, in that also the internal dynam-
ics of the robots’ control system (e.g., a neural network) are
precisely measured (which is not entirely the case for natural,
alive organisms). Fourth, individual differences emerge, since
robots differ in how they cope with their ecology and in their
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level of proficiency (also, opening the way to the study of arti-
ficial pathologies). Interestingly, non-deterministic responses are
present, since evolutionary robots are typically responding in a
non-deterministic way, with respect to external stimuli, facili-
tating comparison with natural, alive organisms (who also do
not react always in the same way to identical inputs from the
environment). Finally, a potential exists for embodied implemen-
tation, since simulated robots are based on simulators of real
physical platforms, thus allowing easy implementation in real-
world scenarios.

In contrast, the method is mostly vulnerable to the follow-
ing problems and limitations. First, abstraction, since both the
ecology and the artificial laboratory are much simpler than most
natural counterparts (and the same is true for the structure of
the robot’s body and its control system). Second, there is much
arbitrariness, since a huge variety of parameters needs to be set
by the experimenter, concerning both the ecology, the robot’s
structure, and the test conditions (and these are likely to have
some impact on the resulting behavior). Last, there is need
to start small; however, given the number of variables directly
controlled by the experimenter and the amount of data obtained,
a scalar approach is unavoidable (to understand the results).
As mentioned, however, most of these drawbacks can be easily
overcome, by allying computational evolutionary models with
naturalistic studies (see Sections Risky Choices in Nonhuman Pri-
mates: Implications for Human Pathological Gambling and Risk
Attitudes, Environmental Uncertainty and Addictive Behavior:
Perspectives from Computational Neuroscience and Evolutionary
Robotics).

CONCLUSIONS
In this review, we first discussed how the development of
refined operant protocols, to reproduce and to evaluate the gam-
bling proneness phenotype in animal models, is fundamental
to increase our understanding of the neurobiological determi-
nants underlying the etiology of pathological gambling and/or
to develop new treatment strategies. Then, we surveyed the role
of comparative studies on choice behavior in other species, in
particular in nonhuman primates, for informing us on the evolu-
tionary origins and cognitive underpinnings of human attitudes
towards risk and uncertainty. Finally, we summarized various
ways in which computational models can be of assistance in
the study of gambling behaviors: while results in this area are
still preliminary, we were able to point out several substantial
indications originated from combining naturalistic observations
and artificial modeling.

Reviewing such diverse studies together is meant to impact
on the methodology of future gambling research: while look-
ing at each of these three rich areas of research in isolation
is certainly useful, the potential emerging benefits are only
compounded by integrating all these methods together. What
one learns from an animal model (about the neurobiological
underpinnings of pathological gambling) should immediately
be verified via computational techniques, and the further
predictions generated by that computational model should be
tested empirically in natural, alive organisms. Similarly, any
evolutionary hypothesis on what adaptive pressures shaped risk

attitudes, and generated (possibly as a by-product) gambling
behavior, should be verified via computational evolutionary mod-
els, which in turn should be informed by naturalistic data coming
from ethological studies. Only by bringing to the table both
human and nonhuman gamblers, we shall understand what
makes us so vulnerable to such a self-destructive behavioral
pattern.
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