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Performance monitoring is an executive function, which we depend on for detecting and
evaluating the consequences of our behavior. Although event related potentials (ERPs)
have revealed the existence of differences after correct and incorrect decisions, it is not
known whether there is a trial-by-trial representation of the accuracy of the decision.
We recorded the electroencephalographic activity (EEG) while participants performed
a perceptual discrimination task, with two levels of difficulty, in which they received
immediate feedback. Receiver Operating Characteristic (ROC) analyses were used to
reveal two components that convey trial-by-trial representations of the correctness of
the decisions. Firstly, the performance monitoring-related negativity (PM-N), a negative
deflection whose amplitude is higher (more negative) after incorrect trials. Secondly, the
performance monitoring-related positivity (PM-P), a positive deflection whose amplitude is
higher after incorrect trials. During the time periods corresponding to these components,
trials can be accurately categorized as correct or incorrect by looking at the EEG activity;
this categorization is more accurate when based on the PM-P. We further show that the
difficulty of the discrimination task has a different effect on each component: after easy
trials the latency of the PM-N is shorter and the amplitude of the PM-P is higher than
after difficult trials. Consistent with previous interpretations of performance-related ERPs,
these results suggest a functional differentiation between these components. The PM-N
could be related to an automatic error detection system, responsible for fast behavioral
corrections of ongoing actions, while the PM-P could reflect the difference between
expected and actual outcomes and be related to long-term changes in the decision
process.

Keywords: performance-monitoring, perceptual decision-making, event-related potential (ERP), feedback,

trial-by-trial

INTRODUCTION
Efficient decision-making for adaptive behavior requires moni-
toring of performance in order to detect and correct errors and to
adjust future behavior accordingly. Previous electrophysiological
recordings in human participants have allowed the identifica-
tion of two ERP components that have been interpreted as brain
correlates of performance monitoring. The first one, called error-
related negativity (ERN; Gehring et al., 1993) or error negativity
(Ne; Falkenstein et al., 1991), is a negative deflection, with a
fronto-central scalp distribution, which peaks about 80–100 ms
after an incorrect response. This component is often followed
by a positive deflection, called error positivity (Pe; Falkenstein
et al., 1991, 1995), with a centro-parietal distribution, which
peaks about 200–450 ms after an incorrect response. A negative
deflection has also been found after feedback informing the par-
ticipants about their performance; it has a fronto-central distri-
bution, peaks about 250–350 ms after error feedback and is called
feedback-related negativity (FRN; Miltner et al., 1997; Gehring
and Willoughby, 2002; Holroyd and Coles, 2002; Nieuwenhuis
et al., 2004). Regarding the positive component, when partici-
pants receive feedback after their behavioral response the results

are more inconsistent. Some works describe a positive wave,
which peaks about 300–600 ms after feedback, whose magnitude
is higher after positive (gains) than after negative (losses) feed-
back and that has been interpreted as a type of P300 (Holroyd
and Coles, 2002; Yeung and Sanfey, 2004; Hajcak et al., 2005;
Yeung et al., 2005; Holroyd et al., 2006; Bellebaum et al., 2010;
Zhou et al., 2010). In other cases, however, the positive deflection
is higher after negative feedback, resembling the Pe (Frank et al.,
2005; Crowley et al., 2009; San Martin et al., 2010; Schuermann
et al., 2012).

Error detection, response conflict, emotional reaction and
reinforcement-learning signal have been proposed as possible
meanings of these waves, but their functional role remains unclear
(Gehring et al., 2012; San Martin, 2012). Moreover, despite
the abundant research on this topic, the functional differences
between the negative and the positive components are still under
debate (Taylor et al., 2007; Gehring et al., 2012; San Martin, 2012;
Riesel et al., 2013). The general consensus is that these ERP com-
ponents are related to performance monitoring. However, most
studies have analyzed these components by averaging the brain
activity across a large number of trials. Trial averaging was used
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to increase signal-to-noise ratio (SNR), but this technique con-
veys a major disadvantage: it hides inter-trial and inter-subject
response variability, preventing a precise temporal characteriza-
tion of these components (Philiastides et al., 2010). In contrast,
single-trial methods allow revealing the origin of response vari-
ability in the analyses of performance-related ERPs (Parra et al.,
2002; Philiastides and Heekeren, 2009). If these components
(ERN, FRN, and Pe) are the neural correlates of performance
monitoring, it will be expected that they will covariate with the
outcomes of current decisions trial-by-trial.

The ROC analysis, a methodology based on signal detection
theory (SDT; Green and Swets, 1966), has proved to be use-
ful in studying trial-by-trial covariation between single neuron
activity and different components of the decision process (Romo
et al., 2004; Pardo-Vazquez et al., 2008, 2009). In this work,
we have used this methodology to study trial-by-trial covaria-
tion between EEG activity and the correctness of the decision in
humans. This technique requires almost no data pre-processing
and provides direct information about the capability of EEG
data to discriminate between correct and incorrect trials after
feedback presentation. Recently, similar approaches have been
used to study different ERP components (Debener et al., 2005;
Philiastides and Sajda, 2006; Bandt et al., 2009; Philiastides et al.,
2010).

In the present study we have recorded ERPs in human par-
ticipants while they performed a two-alternative forced-choice
task in which they had to discriminate the length of two lines.
It has been found that subjects’ awareness of the outcomes
affects performance-related ERPs (Nieuwenhuis et al., 2001;
Hajcak et al., 2004; Endrass et al., 2007; O’Connell et al., 2007;
Steinhauser and Yeung, 2010); therefore, to be sure that par-
ticipants can recognize correct and incorrect decisions in every
trial, we gave them feedback immediately after their responses. In
previous works, a delay was usually imposed between the behav-
ioral response and the feedback presentation in order to separate
response-related from feedback-related processes and, therefore,
disentangle the contribution of each of these two processes to
EEG activity. However, since in most sensorimotor tasks feedback
closely follows behavior, here we have studied how performance
monitoring is represented in the brain when the behavioral report
and the feedback are kept close. The difficulty of the discrimina-
tion was manipulated to study its effect on performance-related
ERPs and thus to provide new information on the functional
meaning of these components. Trial-by-trial covariation between
accuracy and EEG activity was assessed with ROC analysis.

MATERIALS AND METHODS
PARTICIPANTS
Twelve undergraduate students (six females) between 18 and 28
years old (mean = 22.6, SD = 2.41) participated in the study. All
had a normal or corrected to normal vision and reported no his-
tory of neurological disorders. Each participant provided written
consent to participate in the study and received 10 C per session.

GENERAL PROCEDURE
Participants performed the behavioral task in an isolated room
(provided with a one-way mirror with the experimenter’s room)

and watching a computer screen binocularly at 57 cm from their
eyes. A chin rest was used to avoid head movements and to
maintain the distance from the screen. Stimuli presentation and
participants’ responses were controlled with Superlab 4.5 (www.

cedrus.com). This software was used to record the participants’
responses and reaction times (RTs) for the behavioral analyses
(see below).

The experiment consisted of two stages. The first stage
included one experimental session of about 90 min during which
the participants performed 720 trials (four blocks of 180 trials
separated by short resting periods) of the length discrimination
task (LDT). This stage was aimed at estimating the psychomet-
ric curves for each participant. This information was then used to
select the stimuli set for the second stage. The second stage con-
sisted of two experimental sessions of about 90 min during which
participants performed the LDT while we recorded the electroen-
cephalographic activity (EEG). Each recording session included
two consecutive blocks of 288 trials separated by a short resting
period. Each participant performed a minimum of 1152 trials,
except for one that performed 864 trials in two recording ses-
sions. The three sessions were conducted on consecutive days at
the same hour. The Bioethics Commission of the University of
Santiago de Compostela approved the experimental procedures.

STIMULI
The stimuli were stationary bright lines subtending 0.10◦ in
width. During the first stage three lengths were used as first stim-
ulus (S1): 1.6◦, 2◦, and 2.4◦ and 10 lengths (five longer and five
shorter than S1) as second stimulus (S2) for each S1, in steps of
0.10◦. The use of 10 S2 for each S1 stimulus allowed us to com-
pute psychometric functions reliably. These functions were then
used to select the stimuli set for the second stage depending on the
capability of each participant to discriminate. In the second stage,
three lengths were used for the S1 and 12 for the S2 (four lengths
for each S1). The three S1 were selected so that they were clearly
different for the participants (using, for each participant, the
differences in length—between S2 and S1—that provoked 90%
correct discriminations). The four S2 for each S1 were chosen so
that two of them (one longer and one shorter than S1) were diffi-
cult to discriminate (60% correct discriminations) and the other
two (one longer and one shorter than S1) were easy (90% correct
discriminations). Visual stimuli were created on a PC Intel E8200
at 2.13 GHz, 3.37 GB of RAM, using an ATI Radeon HD 4350,
presented on a LDC monitor LG Flatron 60 Hz vertical refresh
rate. Screen resolution was set to 1680 × 1050 pixels during the
experiment.

BEHAVIORAL TASK
Length Discrimination Task (LDT). Participants had to compare
the length of two lines and decide whether the second line (S2)
was shorter or longer than the first line (S1) (Figures 1A,B). Each
trial began with a fixation target (FT) presented in the center of
the screen until participants pressed the spacebar, then the FT
disappeared and, after a variable pre-stimulus delay (PSD, 100–
300 ms), two stimuli (S1 and S2) were presented in sequence, with
a fixed inter-stimulus interval (ISI or delay, 1s). First stimulus
was presented during 500 ms and second stimulus remained on
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FIGURE 1 | Length discrimination task and behavioral results.

(A,B) Sequence of events during a correct and an incorrect trial,
respectively, of the length discrimination (LD) task. The fixation target (FT)
appears in the center of the monitor screen. The participant initiates the
trial by pressing the spacebar and, after a variable pre-stimulus delay
(PSD), two stimuli (white lines of variable length. S1 and S2) are presented
sequentially, separated by a delay of 1 s. The first stimulus is presented for
500 ms and the second one remains on screen until the participant
indicates, by pressing one of the mouse buttons, whether S2 is larger
(right button) or shorter (left button) than S1. After the behavioral response,
the participant receives feedback about the correctness of the choice

(“Correct” or “Incorrect” in green or red, respectively). (C) Psychometric
functions obtained during the first behavioral session for one example
participant (upper panel) and averaged across the sample (N = 12; lower
panel). (D) Percentage of correct responses, as a function of the sign of
the difference between S2 and S1 (S2 < S1 and S2 > S1) and the
difficulty of the discriminations, for one example participant (upper panel)
and averaged across the sample (N = 12; lower panel); E, easy, D, difficult.
(E) Cumulative distributions of the reaction times, as a function of the sign
of the difference between S2 and S1 and the difficulty of the
discriminations, for one example participant (upper panel) and for the
sample (N = 12; lower panel).

screen until the participants indicated their decisions by pressing
the right mouse button when they considered that S2 > S1 and
to the left mouse button when they considered that S2 < S1; par-
ticipants had 2000 ms to respond, otherwise the trial was aborted
(and a text message on screen indicated to the participants that
they had to respond faster). Immediately after the behavioral
response, participants received information about their perfor-
mance. Feedback consisted of a text message presented in the
center of the screen with the word “CORRECT” (written in green)

or “INCORRECT” (written in red), after correct and incorrect
responses, respectively (see Figures 1A,B).

EEG DATA ACQUISITION
The electroencephalogram (EEG) was recorded from 62 scalp
sites using Ag/AgCl electrodes embedded in an elastic cap
(Easycap, Bionic Electrics Inc.) according to the international
10–20 system (Supplementary Figure 1). We used a monopo-
lar configuration with 60 active electrodes, 2 inactive electrodes
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(located on the earlobes) that were used as references and a
ground electrode placed between Fpz and Fz positions. Vertical
eye movements (VEOG) were recorded simultaneously with the
EEG using two electrodes placed on the muscles below and above
the left eye orbital. Electrode impedances were kept below 10 k�.
EEG and VEOG data were continuously recorded using Brain
Vision QuickAm-72 amplifier (www.brainproducts.com) with a
band pass filter of 0.1–30 Hz and digitalized at 500 Hz for offline
analyses. Data were referenced offline to the two inactive elec-
trodes.

DATA ANALYSIS
Behavioral data
Data obtained for each participant in the first stage was repre-
sented as a psychometric function. It represents the probability of
correct responses against the values of the stimulus variable that
is being studied. In this case, the stimulus variable is the differ-
ence in length between S1 and S2. Data were fitted to a logistic
Bolztmann equation:

pb(a) = A1 − A2

1 + e
−

(
a−a0

a1

) + A2

where pb(a) represents the probability of a “longer than” judg-
ment (S2 > S1); A1 and A2 represent, respectively the maximum
and minimum values of pb(a); a0 is the value of size of S2 for
which pb(a) = (A1 − A2)/2 and a1 represents the width of the
function. These adjustments were performed using Graph Pad
Prism 5.0 (www.graphpad.com/prism), which provided statistical
information about the goodness of fit. With this function, average
probability values for “longer than” responses were obtained, for
each value of S2. This allowed us to include, in the second stage,
easy and difficult trials by choosing those S2 that provoked 60 and
90% correct responses. This selection was performed for S2 < S1
and S2 > S1 comparisons separately.

Behavioral data from the second stage (two recording ses-
sions) was analyzed to assess the adequacy of stimuli selection
and the effect of task difficulty in participants’ performance both
in terms of speed (RTs) and accuracy (percentage of correct
judgments).

Event related potential analysis
Application of filters, ocular correction artifacts, segmentation
and EEG data exportation were performed using Brain Vision
Analyzer 2.0. Feedback-locked epochs of 900 ms were extracted
from continuous data beginning 100 ms prior to feedback onset
for all conditions: correct trials, incorrect trials, and correct and
incorrect trials for easy and difficult discriminations. Correction
for ocular artifacts was applied using the standard methods
(Gratton et al., 1983). In order to perform trial-by-trial analyses,
individual segments were exported for each subject and chan-
nel. Baseline correction (−100 to 0 ms) was applied and trials
whose voltages were lower than −50 µV or higher than 50 µV
were eliminated.

ROC analyses were conducted to compare the ERPs recorded
in two experimental conditions (e.g., correct vs. incorrect tri-
als). This analytical method, based on Signal Detection Theory

(SDT, Green and Swets, 1966), has been successfully used to reveal
the complex relations between single-neuron activity and dif-
ferent components of the decision process (Romo et al., 2004;
Pardo-Vazquez et al., 2008, 2009). It allows the experimenter to
estimate the degree of overlap between two response distribu-
tions. Each point of the ROC curve represents the proportion
of hits (pHits, i.e., the proportion of trials of one condition—
e.g., incorrect trials—in which the voltage reached or surpassed
a criterion) against the proportion of false alarms (pFAs, i.e.,
the proportion of trials of the other condition—e.g., correct
trials—whose voltage reached or surpassed the same criterion).
The criterion varied between the minimum and maximum val-
ues of both distributions and a total of 100 criteria were used.
As a result of applying these criteria, we constructed a curve
and estimated the area under it (area under the ROC curve,
AUC ROC; see Supplementary Figure 2). An AUC ROC of 0.5
means that the two distributions are completely overlapped. AUC
ROC values above 0.5 indicate higher voltages after incorrect
trials (i.e., pHits > pFAs) and AUC ROC values below 0.5 indi-
cate higher voltages after correct trials (i.e., pFAs < pHits). An
AUC ROC of 0 or 1 means that the two distributions are com-
pletely separated. The analysis was applied to every recorded
time point, beginning 100 ms before the feedback onset and end-
ing 800 ms after the response. To establish when the AUC ROC
value significantly deviates from 0.5, we performed a permuta-
tion test, also as a function of time. The trials were randomly
assigned to the two conditions being compared and AUC ROC
values for each permutation (n = 200) were estimated. Minimum
and maximum ROC intervals were computed as the values of
the AUC ROC histogram for which the probability of find-
ing random smaller and greater values, respectively, was less
than 0.01. This stage produces temporal AUC ROC margins
that change as the voltage does. These margins were approxi-
mately in the range of 0.4 and 0.6 (Wallis and Miller, 2003).
The criterion for ROC significance was defined as the point at
which the ROC index exceeded the limits obtained with the
permutation test. We used this methodology to compare the
voltages recorded after positive and negative feedback at each
electrode and, therefore, to determine whether the ERPs covary
with the outcomes of current decisions trial-by-trial. Similar
comparisons (between correct and incorrect trials) were also per-
formed for easy and difficult trials separately. These analyses
were performed using custom-made programs in Matlab R2009b
(www.mathworks.com).

RESULTS
BEHAVIORAL RESULTS
Selection of stimuli sets
The psychometric functions for one participant (upper panel)
and for the sample (lower panel; N = 12; Mean ± SD) are shown
in Figure 1C. The fitting of every psychometric function was
very good (R2 = 0.99). The mean differences between S2 and
S1 used during the recording sessions were: (1) for S2 < S1
trials, 0.27◦(SD = 0.09◦) and 0.06◦(SD = 0.04◦) for easy and dif-
ficult discriminations, respectively, and (2) for S2 > S1 trials,
0.23◦(SD = 0.1◦) and 0.02◦(SD = 0.04◦) for easy and difficult
discriminations, respectively.
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Performance during the recording sessions
The behavioral performance of the participants was clearly differ-
ent as a function of the difficulty of the discriminations, both in
terms of accuracy and speed. In Figure 1D we have represented
the percentage of correct decisions as a function of the difficulty
of the discriminations (easy and difficult) and of the sign of the
difference between S2 and S1 [sign(S2-S1); S2 < S1 and S2 >

S1] for one participant (upper panel) and for the sample (lower
panel; N = 12; Mean ± SD). For the S2 < S1 trials, the mean
percentages of correct decisions for easy and difficult discrimi-
nations were 87.2 (SD = 8.7) and 62.6 (SD = 6.6), respectively;
for the S2 > S1 trials, the mean percentages of correct decisions
for easy and difficult discriminations were 89.9 (SD = 8.1) and
66.4 (SD = 6.8), respectively. These differences were significant
(p < 0.001, t-test for dependent samples) and no significant dif-
ferences were found as a function of sign(S2-S1). Note that these
percentages are very close to the 90 and 60% that we used to select
the stimuli sets for each participant.

The same pattern was found for the RTs obtained in cor-
rect trials: for the S2 < S1 trials, the mean RTs for easy and
difficult discriminations were 464 ms (SD = 64 ms) and 490 ms
(SD = 76 ms), respectively; for the S2 > S1 trials, the mean
RTs for easy and difficult discriminations were 473 ms (SD =
59 ms) and 501 ms (SD = 79 ms), respectively. Both differences
were significant (p < 0.01, t-test for dependent samples) and
no significant differences were found as a function of sign(S2-
S1). The cumulative distributions of the RTs as a function of
difficulty and sign(S2-S1), for one participant (upper panel)

and for the sample (lower panel; N = 12), are represented in
Figure 1E.

ERP RESULTS
Average voltage and grand mean voltage
Most studies on the relationship between performance monitor-
ing and EEG activity are based on the comparison of the grand
mean ERPs, averaged across subjects, after correct and incor-
rect trials. In Figure 2A we have represented the feedback-locked
grand mean ERPs averaged across the 12 participants, as a func-
tion of the outcome of the current trial, for the principal electrode
positions. This representation shows two time periods during
which the ERPs are different as a function of the correctness of
the trial. During the first period (about 300–400 ms after feedback
onset) there is a negative deflection whose amplitude is higher
(i.e., more negative) after negative than after positive feedback
(see Figure 2A, electrode Fz, arrow a). During the second period
(about 400–500 ms after feedback onset) there is a positive deflec-
tion whose amplitude is higher (i.e., more positive) after negative
feedback (see Figure 2A, electrode Fz, arrow b).

The amplitude of the negative deflection was computed as the
difference between the most negative peak following feedback
onset in a 300–400 ms time window and the preceding positive
peak between 200 and 300 ms [see Figure 2D; this method is
similar to that used in previous works, e.g., (Schuermann et al.,
2012)]. The amplitude of the positive deflection was computed
as the difference between the most positive peak in a 400–500 ms
time window and the preceding negative peak between 300 and

FIGURE 2 | Scalp distribution of the EEG activity after feedback

presentation. (A) Grand mean, averaged across the sample (N = 12), for
correct (green traces) and incorrect (red traces) trials in the principal electrode
positions. Time (y-axis) is from −100 to 800 ms with respect to feedback
onset (signaled by the x-axis). Arrows labeled “a” and “b” signal the negative
and positive deflections, respectively. Negative voltages are plotted upwards

by convention. (B,C) Scalp distributions of the amplitudes of the negative and
positive deflections, respectively, averaged across the sample (N = 12) after
correct (left panels) and incorrect trials (right panels); color code, from blue to
red, indicates the mean voltage. (D) Graphical explanation of the method
followed to calculate these amplitudes; numbers, from 1 to 4, correspond to
each of the panels in (A,B).
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400 ms (see Figure 2D). The amplitude of both components is
higher after incorrect trials and show a clear fronto-central dis-
tribution, although the negative deflection (Figure 2B) is slightly
more anterior than the positive (Figure 2C).

Although this methodology has been successful in revealing
the existence of error-related (or performance-related) differences
in ERPs, it does not allow us to study whether these compo-
nents covary with the outcomes of the current decisions on a
trial-by-trial basis. This is a fundamental issue as most theories
on the functional meaning of ERN (or FRN) and Pe are based
on the assumption that these components reflect performance-
monitoring processes that are only useful if they provide a reliable
index of the outcomes of current behavior. Therefore, if these
components are the neural correlates of performance monitoring
(irrespective of the exact role they play in this executive process)
it is expected that they will differentiate correct from incorrect
decisions trial-by-trial, i.e., there will be a significant covariation
between the voltage recorded and the accuracy of decisions.

Trial-by-trial covariation between ERPs and correctness of current
decisions
Trial-by-trial analyses were conducted to compare the voltages
obtained after correct (positive feedback) and incorrect (negative
feedback) trials. Single-trial voltages and mean voltages recorded
from one participant are represented, for one example electrode,
in Figures 3A,B, respectively (see also Supplementary Figure 3A).
In order to apply ROC analyses, the proportion of correct trials
for which the voltage surpassed different criteria (see Materials
and Methods) is considered as the proportion of hits (pHits,
Supplementary Figure 3B) and the proportion of incorrect trials
that surpassed the same criteria is considered as the proportion
of false alarms (pFAs, Supplementary Figure 3C). These propor-
tions, whose differences (pFAs-pHits) are shown in Figure 3C
(also Supplementary Figure 3D), were used to estimate the area
under the ROC curve (AUC ROC) at each time during the first
800 ms after the feedback presentation (Supplementary Figure
3E). These single point data were then used to give an estimation
of the AUC ROC as a function of time (Supplementary Figures
3D,F). The significance thresholds of the AUC ROC (upper and
lower black dashed lines in Supplementary Figures 3D,F) were
obtained by using a permutation test (n = 200 iterations).

This analysis was applied to data recorded in 12 participants
using 60 EEG electrodes (see Supplementary Figure 1 for elec-
trode positioning). For each electrode of each participant we
looked for the minimum and the maximum significant values
of the AUC ROC, i.e., the best discriminations between incorrect
and correct trials (see Supplementary Tables 1, 2). Minima values
correspond to PM-N and maxima values to PM-P (Figure 3D).
We also calculated the latencies at these minima and maxima (see
Supplementary Tables 3, 4). The mean of the minima AUC ROC
values (PM-N) across the sample (irrespective of the electrode)
was 0.28 (SD = 0.07). The mean of the maxima AUC ROC values
(PM-P) across the sample (irrespective of the electrode) was 0.78
(SD = 0.06).

The scalp distribution of PM-N (Figure 3E) shows a spread
distribution of values throughout the electrode positions.
The mean latency averaged across the electrodes was 295 ms

(SD = 62 ms) from feedback onset; the mean latencies at the 60
electrode positions are shown in Figure 3F. The scalp distribution
of PM-P (Figure 3G) shows a fronto-central distribution with its
maximum at C2A. The mean latency averaged across the elec-
trodes was 441 ms (SD = 48 ms) from feedback onset; the mean
latencies at the 60 electrode positions are shown in Figure 3H.

The PM-P discriminates correct from incorrect trials better than the
PM-N
To compare the capability of PM-N and PM-P to discriminate
between correct and incorrect trials, we calculated the distance
from the maxima (PM-P) and minima (PM-N) AUC ROC to 0.5
and we compared those values for every electrode. We found sig-
nificant differences in 27 electrode positions (Figures 3I,K; see
Supplementary Table 5); in 24 out of 27 the PM-P showed a
higher discrimination capability. We also compared the discrimi-
nation capability averaged across the 60 electrode positions and
we found that PM-P is significantly better than PM-N in dis-
criminating correct from incorrect trials [0.17 and 0.13, respec-
tively; t(59) = −5.54, p < 0.001]. Furthermore, we compared the
latency at PM-N and PM-P for each electrode position and we
found that PM-N peaks significantly earlier at most electrodes
(Figures 3J,K; see Supplementary Table 6). The mean latency at
PM-P (441 ms; SD = 48), averaged across the 60 electrode posi-
tions, was significantly [t(59) = −13.15, p < 0.001] larger than
the mean latency at PM-N (295 ms; SD = 62).

Until now, we have focused this description in the maxima and
minima values of the AUC ROC, i.e., the most reliable differences
between the ERPs following correct and incorrect trials. However,
it is also possible that the ERPs covariate with the outcomes dur-
ing other time periods, as it seems to be the case during the
first 100 ms after feedback in the electrode shown in Figure 2D.
Therefore, we looked at the temporal profile of the differences
between the ERPs after correct and incorrect trials, for each elec-
trode and across the sample. For one example electrode (C1), the
mean of the difference between pFAs and pHits as a function of
time and criterion and the mean of the AUC ROC as a func-
tion of time, both averaged across the sample, are represented
in Figures 4A,B, respectively (see Supplementary Figures 4, 5 for
more example electrodes). Looking at the sample-averaged data,
two negative periods (Figures 4A,B, arrows 1 and 2) followed by
a positive one (Figures 4A,B, arrow 3) are observed. These two
negative periods could represent two different ERP components
or, alternatively, one component that shows a different timing
depending on some behavioral variable. Note that when referring
to the AUC ROC we use the terms “positive” and “negative” for
values that are higher and lower than 0.5, respectively.

Effects of task difficulty on PM-N and PM-P
Different theories on the functional role of FRN and Pe predict
that the timing and/or the amplitude of these components would
depend on different behavioral variables, e.g., the difficulty of
the task (Pailing and Segalowitz, 2004; Krigolson and Holroyd,
2006; Holroyd and Krigolson, 2007; Masaki et al., 2007; Endrass
et al., 2012). Therefore, we included two levels of task difficulty
to study its influence on performance-related components. As we
were interested in the information conveyed by the EEG activity
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FIGURE 3 | Trial-by-trial results. (A) Voltage, as a function of time,
recorded in the electrode located at CZ of one example participant; each
line represents a trial and the color code, from blue to red, the voltage;
vertical black line indicates the presentation of the feedback; horizontal
white line separates correct (upper) from incorrect (lower) trials.
(B) Voltage averaged across correct and incorrect trials, as a function of
time, in the same electrode location. (C) Difference between pFAs and
pHits, as a function of time and criterion, calculated from data in (A).
(D) AUC ROC as a function of time, for the same electrode. (E,G) Minima
(PM-N) and maxima (PM-P) values of the AUC ROC comparing correct vs.
incorrect trials averaged across the sample (N = 12 participants). Color
code, from blue to red, indicates the AUC ROC values. (F,H) Latencies at
minimum and maximum of the AUC ROC averaged across the sample

(N = 12). Color code, from blue to red, indicates latency in ms.
(I) Comparison of the capability to discriminate (distance from 0.5 in the
AUC ROC values) of the PM-N and the PM-P, for 9 example electrodes;
dots represent individual data; horizontal lines, and error bars, Mean ± SD
(N = 12 participants). (J) Comparison of the latencies at the PM-N and the
PM-P for 9 example electrodes; dots represent individual data; horizontal
lines and error bars, Mean ± SD (N = 12 participants). (K) Scalp
distribution of the differences between PM-N and PM-P in their capability
to discriminate correct from incorrect decisions, averaged across the
sample (N = 12) and scalp distribution of the differences in the latencies at
the PM-N and the PM-P, averaged across the sample (N = 12); black halos
indicate electrode positions where the differences were significant (thin
and thick halos for p < 0.05 and p < 0.01, respectively).

in each trial, ROC analysis was conducted to study the effect of
task difficulty on performance-related ERPs (i.e., PM-N and PM-
P). This analysis was performed only for those participants (9 out
of 12) for whom we had at least 20 trials for each condition.

We calculated two AUC ROCs as a function of time, compar-
ing the ERPs after correct and incorrect decisions, for easy and
difficult trials separately. The mean of these AUC ROCs, averaged
across the sample, is shown in Figure 4C for the same electrode
as in Figures 4A,B (more example electrodes are represented in
Supplementary Figure 6). Visual inspection of these results shows
that: (a) the first negative period (during the first 200 ms after
feedback onset; see Figure 4C, arrow 1) is significant only for the

easy trials; (b) the second negative period (about 350 ms after
feedback onset; see Figure 4C, arrow 2) appears only after diffi-
cult trials and (c) the positive period (about 450 ms after feedback
onset; see Figure 4C, arrow 3) reaches higher values after easy tri-
als. Grand mean ERPs, averaged across the sample (N = 9), show
the same pattern (Figure 4D). This was confirmed by compar-
ing, for each electrode, the magnitude and the latency of PM-N
and PM-P for easy and difficult trials. There were no significant
differences in the magnitude of PM-N at any electrode position
(Supplementary Table 7) and, at most electrode positions, the
latency at maxima of PM-N was significantly lower after easy than
after difficult trials (Supplementary Table 8; see also Figure 4E
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FIGURE 4 | Differences in PM-N and PM-P components as a function of

the difficulty of the decisions. (A) Difference between pFAs and pHits
averaged across the sample (N = 12), as a function of time and criterion,
estimated at electrode C1. Arrows 1 and 2 signal the two negative and arrow
3 the positive relevant periods. (B) AUC ROC (Mean ± 2 s.e.m.), comparing
the voltage recorded at electrode C1 after correct and incorrect trials,
averaged across the sample (N = 12), as a function of time. (C) AUC ROC
curves (Mean ± 2 s.e.m.), comparing the voltage recorded at different
electrodes after correct and incorrect trials, averaged across the sample
(N = 9) as a function of time and difficulty of the discriminations; blue and red
lines represent the AUC ROC for easy and difficult discriminations,
respectively. (D) Mean voltage as a function of time, recorded at electrode
C1, averaged across the sample (N = 9), for easy correct (green solid line),
easy incorrect (red solid line), difficult correct (green dashed line) and difficult

incorrect (red dashed line) trials. (E) Comparison of the latencies at minima
values of the AUC ROCs (PM-N) after easy and difficult discriminations for 9
example electrodes; dots represent individual data; horizontal lines and error
bars, Mean ± SD (N = 9 participants). (F) Scalp distribution of the difference
between the latencies at minima of the AUC ROCs (PM-N) obtained after
easy and difficult comparisons, averaged across the sample (N = 9); black
halos indicate significant locations (thin and thick halos for p < 0.05 and
p < 0.01, respectively). (G) Comparison of the maxima values of the AUC
ROCs (PM-P) after easy and difficult discriminations for 9 example
electrodes; dots represent individual data; horizontal lines and error bars,
Mean ± SD (N = 9 participants). (H) Scalp distribution of the difference
between the maxima values of the AUC ROCs (PM-P) obtained after easy
and difficult comparisons, averaged across the sample (N = 9); black halos
indicate significant locations (thin and thick halos for p < 0.05 and p < 0.01).
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for nine example electrodes). Regarding PM-P, we found that the
difficulty affects this component in a completely different way:
the magnitude of PM-P was significantly higher for easy trials
at most positions (Supplementary Table 9; see also Figure 4G
for nine example electrodes) but the timing of this component
was not significantly different as a function of the task difficulty
(Supplementary Table 10).

The scalp distributions of the differences in latency (PM-N)
and magnitude (PM-P) are represented in Figures 4F,H, respec-
tively. The higher difference in the latency at PM-N (334 ms)
was found at frontal position F1 and the higher differences in
the value of PM-P (0.13) were found at central positions C3P
and C1P. The mean PM-N values, averaged across the 60 elec-
trodes, were 0.34 (SD = 0.02) for easy discriminations and 0.35
(SD = 0.02) for difficult discriminations; the mean latencies at
PM-N were 191 ms (SD = 136 ms) for easy discriminations and
341 ms (SD = 37 ms) for difficult discriminations. The mean
PM-P values were 0.72 (SD = 0.04) for easy discriminations and
0.65 (SD = 0.03) for difficult discriminations; the mean latencies
at PM-P were 420 ms (SD = 50 ms) for easy discriminations and
428 ms (SD = 59 ms) for difficult discriminations.

Frequency of stimuli cannot explain PM-N and PM-P
There is evidence that the ERPs elicited by frequent and infre-
quent stimuli can be different (Sutton et al., 1965; Courchesne
et al., 1975; Squires et al., 1975; Johnson and Donchin, 1979;
Fitzgerald and Picton, 1983; Eimer, 1993; Picton et al., 2000;
Holroyd et al., 2008). Therefore, because in this work incorrect
trials are less frequent than correct ones, PM-N and PM-P could
be related to difference in stimuli frequency. To rule out this possi-
bility we conducted, with five participants, a control experiment
in which the difficulty was adjusted so as to provoke the same
proportion of correct and incorrect discriminations. The results
of this control experiment were equivalent to those previously
described: a negative deflection whose magnitude was higher (i.e.,
more negative) after incorrect trials (PM-N) followed by a posi-
tive deflection whose magnitude was higher (i.e., more positive)
after incorrect trials (PM-P). Furthermore, we found a signifi-
cant trial-to-trial covariation between these components and the
outcomes of current decisions (Supplementary Figure 7).

DISCUSSION
In this work we show, using ROC analysis, evidence of a trial-by-
trial covariation between ERPs and correctness of decisions in a
visual discrimination task. Two ERP components represent, trial-
by-trial, the outcomes of recent decisions. The first component
(PM-N) peaks about 300 ms after feedback, is more negative after
negative than after positive feedback and it has a spread distribu-
tion throughout the scalp. The second component (PM-P) peaks
about 450 ms after feedback, is more positive after negative than
after positive feedback and it is maximal at fronto-central elec-
trode positions. The control experiment allowed us to rule out
stimuli frequency as an alternative explanation for the differences
in the ERPs after positive and negative feedback.

The main goal of this work was to determine whether it is
possible to discriminate correct from incorrect decisions by look-
ing at the EEG activity trial-by-trial. In order to do this, it was

fundamental that trials were equivalent, except for the variable to
be compared (i.e., the correctness of the choice). In sensory dis-
crimination tasks without feedback, one of the main sources of
variability across trials is the detection of errors as a result of inter-
nal monitoring processes. Correct detection of incorrect choices
is more likely to happen in easy trials compared to difficult ones,
but even within these categories there might be differences across
trials. Therefore, we decided to give feedback immediately after
the behavioral response in order to maximize the homogeneity of
the participants’ awareness about their performance in each trial.
That is, we ensured that if the ROC analysis failed to classify one
trial as correct or incorrect, it was not due to the participants’ fail-
ure to identify it. Another advantage of immediate feedback is that
it matches many natural situations in which the outcomes follow
behavior without any delay, as it is the case for many sensorimotor
tasks. However, the temporal proximity between the behavioral
response and the feedback presentation imposes some limitations
in the interpretation of our results. The EEG activity recorded
during the analyzed epoch (from 100 ms before to 800 ms after
feedback presentation) is most likely reflecting not only feedback,
but also motor and response-related processes. Given that perfor-
mance is symmetric (participants made approximately the same
number of errors in both directions) there were no systematic dif-
ferences between incorrect and correct trials with respect to the
motor actions performed and, therefore, motor-related activity
cannot explain the differences found in EEG activity as a function
of the outcomes. The current design was aimed at analyzing how
performance monitoring is represented in the EEG activity when
feedback closely follows behavioral responses. It did not allow us
to disentangle the contribution of response and feedback-related
processes to the recorded activity, but the behavioral task can be
easily adapted to use the traditional delayed feedback and address
this point in future experiments.

Given that the feedback messages for correct and incorrect tri-
als had different visual properties, it is possible that PM-N and
PM-P are a reflection of this sensory difference. If this were the
case, it would be expected that same feedback stimuli would evoke
similar EEG responses. Our results suggest that this is not the
case, since we observed significant differences in both compo-
nents, as a function of the difficulty, while the visual properties
of the feedback were exactly the same.

Performance-related components (i.e., ERN, FRN, and Pe)
have been measured using different methods (e.g., peak-to-peak
or area under the component curve). Thus, it has always been
difficult to compare the results obtained in different studies
(Gehring et al., 2012). Moreover, all these methods are based
on averaging large number of trials and, therefore, they do not
allow the experimenter to study trial-by-trial relations between
EEG activity and behavior. Here we have applied a novel method-
ological approach, ROC analysis, which has been successful in
revealing single-neuron representations of different behavioral
variables on a trial-by-trial basis (Romo et al., 2004; Pardo-
Vazquez et al., 2008, 2009) and that has been recently applied
in studying other ERP components (Philiastides and Sajda, 2006;
Bandt et al., 2009; Philiastides et al., 2010). The principal advan-
tages of ROC analysis are that it takes into account the informa-
tion conveyed by the EEG activity in each trial, it requires almost
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no pre-processing of the EEG data and it can be easily interpreted
(Bandt et al., 2009). This approach allows the experimenter to
describe performance-related components in terms of their capa-
bility to discriminate correct from incorrect outcomes and it is
closely related to the functional utility of performance monitor-
ing in decision-making: to represent the consequences of each
of our choices to adjust future behavior accordingly. Previous
works have addressed the relation between ERN and behav-
ioral adjustments, with inconsistent results (Gehring et al., 2012).
For example, in an experiment in which EEG and fMRI data
were analyzed, Debener et al. (2005) found a systematic relation
between single-trial ERN and behavior in the subsequent trial.
Similar results were found in other studies (Gehring et al., 1993;
Rodriguez-Fornells et al., 2002; Ladouceur et al., 2007). In other
cases, however, the amplitude of this negativity showed no sig-
nificant effect in post-error performance (Gehring and Fencsik,
2001; Hajcak et al., 2003; Dudschig and Jentzsch, 2009). With
some modifications in the task design, our approach may shed
light to our understanding of the relation between performance
monitoring and behavioral adjustments. Firstly, by adding tem-
poral structure to the sensory stimulus to be discriminated (so
that integration in time will improve participants’ accuracy), it
would be possible to study the covariation between RTs and trial-
by-trial representations of the outcomes; i.e., whether participants
allocate more time for processing the sensory information after
incorrect trials. Secondly, by giving the participants the possibil-
ity to change their initial choice, it will be possible to analyze the
relation between EEG representations of the outcomes and choice
corrections; i.e., whether an early ERP component can predict
these corrections.

The timing of the PM-N that we have found is equivalent
to that previously reported, for FRN, in behavioral tasks in
which feedback is presented (Miltner et al., 1997; Gehring and
Willoughby, 2002; Holroyd et al., 2004; Nieuwenhuis et al., 2004;
Donkers et al., 2005; Bellebaum et al., 2010). Regarding its scalp
distribution, although the negative deflection is higher (more
negative) next to the midline, ROC analysis has shown that the
higher covariation between PM-N and outcomes is observed at
lateral electrode positions.

In experiments in which no feedback was presented, ERN was
often followed by a positive deflection (Pe) that is higher (more
positive) after error trials (Gehring et al., 1993; Falkenstein et al.,
1996, 2000; Nieuwenhuis et al., 2001). This pattern of EEG activ-
ity has not been consistently found after feedback informing the
participants about their performance. In some cases, a positive
component (designated as P300) has been described but, unlike
the Pe, it showed higher voltages after positive feedback (Hajcak
et al., 2005; Holroyd et al., 2006; Zhou et al., 2010; San Martin,
2012). In other cases, however, the amplitude of the positive
deflection was higher after negative feedback (Frank et al., 2005;
Crowley et al., 2009; San Martin et al., 2010; Schuermann et al.,
2012). In the present work we have found more positive voltage
values after negative feedback, resembling the Pe component that
follows ERN when no feedback is presented. Moreover, the con-
trol experiment shows that PM-P discriminates incorrect from
correct trials even when they are equally frequent. Interestingly,
although previous works have focused on the FRN (Falkenstein

et al., 1995; Luu et al., 2000; Gehring and Willoughby, 2002;
Holroyd and Coles, 2002; Holroyd et al., 2004; Hajcak et al., 2005;
Nieuwenhuis et al., 2005), our results show a higher covariation
between the PM-P and the accuracy of recent decisions; i.e., it has
better capability to discriminate correct from incorrect trials.

Regarding the functional meaning of this positive deflection,
different theories have been proposed (Falkenstein et al., 2000). It
has been suggested that ERN and Pe are part of a single, oscillatory
potential (Endrass et al., 2007), but there is evidence supporting
that this component is functionally independent from the ERN
and it is involved in additional processing of the error. Three
hypotheses have been proposed to concretize the meaning of this
additional processing (Falkenstein et al., 2000; Overbeek et al.,
2005). Firstly, this component may be involved in the emotional
evaluation of the error and its consequences. The effect of task
difficulty on the PM-P is consistent with this hypothesis: the
amplitude of this component is significantly higher after easy tri-
als, in which participants are expected to have stronger emotional
responses to errors. Secondly, the positivity may be related to
behavioral adjustments aimed at correcting errors. As previously
discussed in relation to PM-N, some features of our task make it
difficult to test this hypothesis with the current design. Finally, it
has been suggested that these positive components (Pe and P300)
depend on the participants’ awareness of the outcomes of current
decisions (Nieuwenhuis et al., 2001; Hajcak et al., 2004; Endrass
et al., 2007; O’Connell et al., 2007; Ridderinkhof et al., 2009;
Hughes and Yeung, 2011). This is consistent with our results, as
in the present work we provided feedback to the participants and,
therefore, they knew the outcome of each decision. However, we
have found that the trial-by-trial covariation between the voltage
and the outcome of the current trial can be different, as a func-
tion of task difficulty, even when participants receive feedback
informing them about their performance and, therefore, they
were equally aware of the outcome of every trial. This suggests
that PM-P is affected by other variables besides the participants’
awareness of the outcomes.

Difficulty affects the timing of PM-N, which peaks earlier after
easy trials, and the magnitude of PM-P, which is higher after easy
trials. This pattern of results suggests that PM-N and PM-P rep-
resent two different processes. Firstly, PM-N could be the brain
correlate of a fast error-detection system that represents the out-
come of ongoing behavior as soon as possible in order to execute
corrective actions within the same trial. Therefore, our results are
consistent with the idea of an early negative component related
to on-line error correction that has been previously suggested
(Burle et al., 2008). This could explain our results regarding PM-
N latency as far as errors are detected earlier after easy trials (in
which the errors are more evident). Moreover, this could also
explain the difference in the discrimination capability of PM-
N and PM-P in our task, since participants cannot correct their
decisions within the same trial, and therefore this fast-correction
system is not useful. The effect of difficulty on PM-N may be the
due to differential contribution of response and feedback moni-
toring processes; in easy trials, participants can be aware of errors
even before they execute the behavioral response, while in diffi-
cult trials the detection of wrong choices may relay in feedback
information and, therefore, it would be delayed with respect to
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the easy trials. This interpretation is consistent with the short
PM-N latencies (<100 ms) observed in some electrodes after easy
trials. Recently, it has been found that difficulty affects the ERN,
whose amplitude is lower after difficult trials (Endrass et al., 2012;
Kaczkurkin, 2013). Regarding the temporal evolution of this com-
ponent as a function of task difficult, no difference has been
described. Therefore, it seems that difficulty has different effects
on the PM-N and the ERN, suggesting a differentiation of these
components. Alternatively, task differences with previous works
could explain this differentiation. Secondly, PM-P could reflect
the difference between the expected and the actual outcomes
because its magnitude is larger in the easy than in the difficult
trials. This difference could be useful for improving the decision
process in future trials. This could be accomplished by increas-
ing the attentional resources devoted to the task after errors or by
changing one or more components of the decision process (e.g.,
decision variable or decision rule, see (Gold and Shadlen, 2007).
Consistent with our interpretation of PM-P, in previous works
it has been suggested that the positive component observed after
the behavioral response (Pe) could be related to post-error cor-
rection strategies (Falkenstein et al., 2000; Overbeek et al., 2005).
The present work was not aimed at understanding this process
and future studies will be necessary to describe the influence of
performance-related ERPs on long-term changes in the decision-
process. The pattern of results described in the present work
is coherent with a recent proposal by Philiastides et al. (2010).
These authors suggest that feedback information is processed in
two sequential stages. The first one, between 180 and 380 ms
after feedback onset, is described as a categorical evaluation of
the valence (positive vs. negative) of the outcomes. The second
one, which takes place about 300 ms after feedback, would be a
quantitative representation of the valence and magnitude of the
prediction error (i.e., the difference between the expected and the
actual outcomes).

In this work we provide evidence on the existence of a reli-
able, trial-by-trial relationship between two ERP components,
PM-N and PM-P, and the outcomes of current decisions. Using
ROC analyses we were able to accurately categorize correct and
incorrect trials by looking at the EEG activity. This gives strong
evidence supporting that PM-N and PM-P represent cognitive
processes related to performance monitoring. Since these com-
ponents are influenced differently by the difficulty of the task
in progress, they seem to reflect different cognitive processes.
The PM-N could be related to an automatic error detection sys-
tem because its latency is shorter after easy than after difficult
trials; this system could be responsible for fast behavioral correc-
tions of ongoing actions. The PM-P could reflect the difference
between expected and actual outcomes because its magnitude is
larger after easy than after difficult discriminations; it could be
related to long-term changes in the decision process and could
be useful for improving future decisions. These results are con-
sistent with those interpretations that defend a differentiation
in the functional significance of the positive and the negative
performance-related ERP components (Overbeek et al., 2005;
Hughes and Yeung, 2011; Philiastides et al., 2011). Furthermore,
the results of the AUC ROC indicate that the EEG data can be ana-
lyzed trial-by-trial in relation with performance monitoring. This

provides the experimenter with a powerful tool for complement-
ing the traditional analyses based on the grand average and for
providing a description of the information conveyed by the EEG
activity during single trials. This has potential relevance for study-
ing the normal function of performance monitoring and also for
further understanding of the factors that in some diseases provoke
deficits in performance monitoring. The capacity to learn from
outcomes differs among people; however, in some diseases like
schizophrenia patients have deficits in a variety of executive con-
trol processes (Cohen et al., 1999; Laurens et al., 2003; Lee and
Park, 2005; Kerns et al., 2008; Kerns, 2009). Among them, they
persist in their erroneous behavior repeatedly, unable to change
their strategy, due to deficits in the prediction of error likelihood
that result in disturbance in evaluating outcomes (Malenka et al.,
1982; Krawitz et al., 2011). ROC analysis can be useful for study-
ing deficits in using performance monitoring processes to shape
future behavior; for example, by identifying those trials in which
the outcomes are adequately encoded in the EEG, it would be
possible to know whether these deficits are mainly related to dif-
ficulties in discriminating correct from incorrect trials or in using
this information to modify future behavior.
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