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Language is an essential higher cognitive function supported by large-scale brain
networks. In this study, we investigated functional connectivity changes in the left
frontoparietal network (LFPN), a language-cognition related brain network in aphasic
patients. We enrolled 13 aphasic patients who had undergone a stroke in the left
hemisphere and age-, gender-, educational level-matched controls and analyzed the
data by integrating independent component analysis (ICA) with a network connectivity
analysis method. Resting state functional magnetic resonance imaging (fMRI) and clinical
evaluation of language function were assessed at two stages: 1 and 2 months after
stroke onset. We found reduced functional connectivity between the LFPN and the
right middle frontal cortex, medial frontal cortex, and right inferior frontal cortex in
aphasic patients as compared to controls. Correlation analysis showed that stronger
functional connectivity between the LFPN and the right middle frontal cortex and medial
frontal cortex coincided with more preserved language comprehension ability after
stroke. Network connectivity analysis showed reduced LFPN connectivity as indicated
by the mean network connectivity index of key regions in the LFPN of aphasic patients.
The decreased LFPN connectivity in stroke patients was significantly associated with
the impairment of language function in their comprehension ability. We also found
significant association between recovery of comprehension ability and the mean changes
in intrinsic LFPN connectivity. Our findings suggest that brain lesions may influence
language comprehension by altering functional connectivity between regions and that the
patterns of abnormal functional connectivity may contribute to the recovery of language
deficits.
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INTRODUCTION
Stroke-related aphasia is a significant clinical problem persisting
in one third of acute stroke patients and one fifth of chronic
stroke patients (Wade et al., 1986; Berthier, 2005). Identifying
the brain mechanisms underlying stroke-related aphasia is critical
for understanding its prognosis and developing new therapeu-
tic methods to treat it. In addition to local dysfunction, stroke
injury to certain locations of the brain can produce specific as
well as local and network dysfunction. In order to understand the
influence of an individual cortical lesion, we must consider not
only the loss of local neural function, but also the lesion-induced
changes in the larger network interactions in the brain.

Functional segregation and integration are two major organi-
zational principles of the human brain. An optimal brain requires
a balance between local specialization and global integration
of brain functional activity. However, recent work has mainly
focused on defining the contribution of individual elements (e.g.,
inferior frontal gyrus, anterior temporal lobe) in the network.
Understanding connectivity within a whole network is critical
both to understanding its normal function and to explaining

brain recovery (Catani et al., 2005). The function of any brain
region cannot be understood in isolation but only in conjunc-
tion with the regions with which it interacts (Seghier et al.,
2010).

Language is an essential higher cognitive function supported
by large-scale brain networks. The superior temporal cortex
(Wernicke’s area) and the inferior frontal cortex (Broca’s area)
have been classically associated with language comprehension and
production. Saur et al. (2008) identified two routes connecting
the frontal and temporal language regions; a dorsal route associ-
ated with phonological processing and a ventral route associated
with semantic processing. Additionally, lesion and fMRI studies
(Dronkers et al., 2004; Price, 2010) have identified additional tem-
poral, parietal, and prefrontal regions, supporting the involve-
ment of a more extended language network (Mesulam, 1990;
Turken and Dronkers, 2011). Damage to these networks (e.g., the
frontal-temporal network and the frontal-parietal network) often
leads to the impairment of language function, but patients fre-
quently recover some or all of their abilities. The recovery time
of aphasia varies from months to years, suggesting that recovery
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of language function following stroke is unpredictable (Pedersen
et al., 1995).

In this study, we investigated the LFPN in aphasic patients
by integrating an ICA approach and a network connectivity
analysis method to explore how network embedding influences
a region’s functional role and the consequences of its being
damaged. We focus on this network due to its strong associa-
tion with language-cognition paradigms that are consistent with
Broca’s and Wernicke’s areas (Smith et al., 2009). We aimed to
assess the significance of functional connectivity by measuring
the relationship between functional connectivity of the LFPN
and performance deficits in stroke patients. More specifically, we
investigated whether the degree of disruption in LFPN functional
connectivity correlated with the severity of behavioral deficits at
the acute stage and whether this correlation was maintained over
the course of recovery.

We also aim to investigate the role of functional connectiv-
ity changes of LFPN in the recovery process following stroke.
In a recent study, Park et al. (2011) reported dynamic changes
in the lateralization of functional connectivity of motor net-
works in the first 6 months post stroke, where measures of
functional connectivity at stroke onset were found to be posi-
tively correlated with motor outcomes. Studies from other groups
also suggest that functional connectivity can be associated with
treatment-induced behavioral changes in aphasia (Price et al.,
2006; Marcotte et al., 2013). Overall, investigating the dynamic
changes of functional connectivity and its association with the
clinical outcomes will enhance our understanding of the rela-
tionship between human brain function and behavior (Corbetta
et al., 2005; Thiebaut de Schotten et al., 2005; Sharp et al.,
2010b).

METHODS
SUBJECTS
We recruited 14 right-handed patients [13 males, age ranging
from 34 to 67 years with mean (SD): 49.4 (10.7) years] with
a diagnosis of aphasia following left hemisphere stroke from
the Department of Neurology at Dongzhimen Hospital over the
course of 14 months (March 2012–April 2013). Experienced neu-
rologists performed clinical assessments to confirm the diagnoses
of aphasia. These assessments were based on a comprehensive
evaluation, including neurological history and examination, lan-
guage assessment, and structural routine MRI. The local Medical
Ethical Review Board approved the protocol and we obtained
written consent from all subjects prior to all experimental
proceedings.

FIGURE 1 | The left frontoparietal network identified by independent

component analysis.

The patients we enrolled were native Chinese speakers
who were right handed, as determined by the Edinburgh
Handedness Inventory (EHI) score ≥50 (Oldfield, 1971). All
patients had single unilateral left-hemisphere stroke and a diag-
nosis of aphasia based on a standardized language test from
the Chinese Rehabilitation Research Center Standard Aphasia
Examination (CRRCAE) (Zhang et al., 2005). All patients
received a score of ≥2 on the Boston Diagnostic Aphasia
Examination (BDAE) severity rating scale, which indicated
that they could converse about familiar topics with help from
the listener, but had trouble conveying their ideas (Love and
Oster, 2002) and a score of <3 on the modified Rankin
scale, which indicated that they were moderately disabled, but
able to walk without assistance (van Swieten et al., 1988).
Patients were excluded from the study if they had a history
of other neurological or psychiatric disorders and/or an inabil-
ity to enter the MRI scanner because of non-MRI compatible
prostheses.

We recruited 14 participants matched in age, gender and edu-
cational level as controls from communities near the hospital [13
males, age ranging from 34 to 67 years with mean (SD): 49.4
(10.7) years]. All subjects in the control group reported no history
of neurological or psychiatric illness and were not taking regular
medication.

We invited all patients to participate in two fMRI scan ses-
sions and all healthy controls to participate in one fMRI scan
session. We collected the patients’ first fMRI scan (time point
one) 1 month after stroke onset and the second scan (time point
two) 2 months after stroke onset. We administered the CRRCAE
tests before each scan.

LANGUAGE ASSESSMENT
Prior to each fMRI scan, we administered the CRRCAE to evalu-
ate the degree of language impairment for each patient. This scale
was developed for clinical evaluation and therapy, combining the
syntactic and lexical characters in Chinese. The reliability and
validity of this scale has been tested in a previous study (Zhang
et al., 2005). The CRRCAE includes nine tests and 30 subtests pro-
ducing a standardized score based on correct responses. The scale
can test three aspects of language ability: comprehension, produc-
tion, and other abilities related to language skills. In this study, we
focused on the absence of comprehension and production abili-
ties; thus, we included only comprehension (auditory and reading
comprehension) and production scores (repetition, naming, and

Table 1 | The left frontoparietal network regions.

Regions MNI Coordinates

x y z

Left precuneus −40 −70 46

Left middle frontal gyrus −32 20 46

Right superior parietal gyrus 42 −66 50

Right middle frontal gyrus 38 20 44

Posterior cingulate gyrus −2 −34 30

Left medial frontal gyrus −4 38 34
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FIGURE 2 | Distribution of the lesion areas of all patients with aphasia, on the average patients’ structure brain template. The intensity scale refers to
the maximum number of patients with lesions at a particular voxel.

overt reading) in the correlation analysis. We used SPSS for corre-
lation analysis. For those groups with small sample sizes (n < 10),
we applied Spearman correlation, a nonparametric method.

DATA ACQUISITION
We performed all brain imaging on a 3T Siemens TRIO sys-
tem. We used a 12-channel head coil with foam padding to
restrict head motion. For resting state fMRI, we used a gradient-
echo echo-planar sequence sensitive to blood oxygenation level-
dependent (bold) contrast (TR/TE = 2000/30 ms, FOV = 225 ×
225 mm2, flip angle = 90◦, voxel size = 3.5 × 3.5 × 3.5 mm3).
We collected 31 slices with 3.5 mm thickness and a 0.7 mm
gap. Each fMRI scan lasted 6 min and 6 s. The first 8 s were
dummy scans, discarded from data analysis. Thus, we collected
179 image volumes in total. In addition, we used a high-
resolution T1-weighted scan [repetition time (TR)/echo time
(TE) = 1900/2.13 ms, field-of-view (FOV) = 256 × 256 mm2,
flip angle = 9◦, acquired voxel size = 1.0 × 1.0 × 1.0 mm3] for
anatomical localization.

PATIENT LESION MAPPING
We constructed a lesion overlap image for all 14 patients. A man-
ually drawn outline of the lesion on the T1 image of each patient

was used to overlap on the average structure image using Turtleseg
(http://www.turtleseg.org/).

ICA ANALYSIS OF RESTING STATE DATA
We performed data analyses using MELODIC of FMRIB Software
Library (FSL version 5.0.1; www.fmrib.ox.ac.uk/fsl) to iden-
tify large-scale patterns of temporal signal-intensity coherence,
interpreted as functional connectivity, in the population of
subjects (Beckmann et al., 2005). Preprocessing of functional
images consisted of the removal of non-brain tissue, motion
correction, temporal band-pass filtering at 0.01 to 0.1 Hz, spa-
tial smoothing using a 8 mm full-width at half-maximum
Gaussian kernel, and 8-parameter nuisance signal extraction.
To coregister fMRI images to a standard space, we first regis-
tered functional images to each individual’s high-resolution T1
anatomical scan, and further registered them to the MNI152
template using linear affine transformations with 12 degrees of
freedom.

We performed probabilistic independent component analy-
sis (PICA) at low dimensionality (20 components) to derive the
group’s (n = 26) resting state networks. We based the network
identification on their spatial similarity to functional networks
described in earlier studies (Damoiseaux et al., 2006; Smith et al.,
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Table 2 | Patient characteristics and subtest results of the CRRCAE at time point one and two.

Patient Gender Age Handedness Aphasia Comprehension Production Type of stroke Site of lesion BDAE Modified

number profile score score severity Rankin

rating scale scale

1 M 41 100 Broca’s 60/80 80/90 Ischemia Frontal, parietal 4 0

2 M 35 100 Broca’s 70/75 53/83 Hemorrhage Striatocapsular 3 2

3 M 55 100 Anomic 40/71 51/81 Ischemia Striatocapsular 2 2

4 M 34 100 Broca’s 65/75 35/66 Hemorrhage Striatocapsular 3 2

5 M 59 100 Global 10/54 43/72 Ischemia Frontal, temporal, insular 2 1

6 M 51 100 Global 32/72 55/84 Ischemia Frontal, parietal 2 2

7 M 58 90 Global 20/NA 60/NA Ischemia Parietal, occipital 2 1

8 M 36 100 Global 33/NA 75/NA Ischemia Frontal, parietal, temporal 3 1

9 M 44 90 Broca’s 64/NA 82/NA Ischemia Striatocapsular 3 1

10 M 63 100 Broca’s 68/NA 90/NA Ischemia Frontal, temporal, parietal 4 0

11 M 56 100 Broca’s 75/80 85/90 Ischemia Striatocapsular 4 0

12 M 48 100 Broca’s 80/NA 90/NA Ischemia Striatocapsular 4 0

13 M 44 100 Broca’s 70/80 65/85 Hemorrhage Striatocapsular 2 2

14 F 67 100 Global 27/NA 50/NA Ischemia Frontal, temporal 2 2

M, male; F, female; Handedness: 0 = left-handed in 10 items, 100 = right-handed in 10 items; Site of lesion is based on clinical report; Comprehension and production

score are based on CRRCAE test at two time points separated by “/”, NA indicate the data is not available; BDAE severity rating scale: 0 = no usable speech or

auditory comprehension, 5 = minimal discemible speech handicaps, patient may have subjective difficulties that are not apparent to listener; Modified Rankin scale:

0 = no symptoms at all, 6 = dead.

2009; Biswal et al., 2010) and calculated the cross correlation
between our group-level networks and the LFPN template net-
works derived from 1414 healthy subjects (Biswal et al., 2010).
We assigned the group-derived networks that showed the high-
est spatial overlap with the template network to that particular
functional network.

In this study, we identified the LFPN as the a priori network
for further analysis. We chose this network because it is associated
with language-cognition function (Smith et al., 2009). We carried
out a voxel-wise comparison of the resting functional connectivity
using a regression technique, referred to as the “dual-regression”
approach (Filippini et al., 2009).

We used spatial maps of the group ICA in a linear model
fit against each individual fMRI data set (spatial regression)
to create matrices that described the temporal dynamics for
each component and subject separately. We used these matri-
ces in a linear model fit against the associated subject’s fMRI
data set (temporal regression) to estimate subject-specific spa-
tial correlation maps. After this dual regression, we collected
spatial maps of all subjects into single 4-dimensional files for
each original independent component. We used nonparamet-
ric permutation tests to detect statistically significant differences
between the groups within the boundaries of the spatial maps
obtained with MELODIC. We performed all analyses with a
voxel-wise cluster forming threshold of Z > 2.3 and a corrected
cluster significance threshold of P < 0.05. We used the regions
that showed significant differences between groups [spherical
regions of interest (ROIs) were centered on the MNI coor-
dinate of the cluster peaks, and with a radius of 4 mm] to
extract mean z-values from each individual spatial map, includ-
ing time points one and two (FWE-corrected P < 0.05) for the
correlation analysis using SPSS (version 16.0; SPSS, Chicago, IL,

USA). Then we performed correlation analyses to assess asso-
ciation between the ROIs within the LFPN and language test
results.

NETWORK CONNECTIVITY ANALYSIS OF LEFT FRONTOPARIETAL
NETWORK
To better understand the impact of network connectivity
differences on whole-brain intrinsic connectivity, we employed
network connectivity analysis to LFPN changes. We used stan-
dard image processing methods with SPM8 (http://www.fil.
ion.ucl.ac.uk/spm) and the conn toolbox (http://www.nitrc.org/
projects/conn) for functional connectivity and network connec-
tivity analysis. Our pre-processing steps included correcting for
motion, coregistering with the anatomic scan, normalizing into
the Montreal Neurological Institute space, resampling at 2 mm3,
and smoothing with a Gaussian kernel of 6 mm3 full-width at
half maximum. We extracted the bold time series data for six
ROIs within the LFPN obtained from the ICA analysis men-
tioned above. The ROIs were derived from the LFPN (centered
on the MNI coordinate of the cluster peaks, and with a radius of
4 mm) (Figure 1). Prior connectivity studies have employed sim-
ilar approaches to the investigation of the default mode network
(DMN) (Dosenbach et al., 2007; Fair et al., 2008; Posner et al.,
2013). The LFPN ROIs and their coordinates are delineated in
Table 1. We correlated the time series data for each ROI region
by region for each subject, producing a single 6 × 6 correlation
matrix for each subject. We calculated the mean index of the
LFPN by reducing each subject’s 6 × 6 correlation matrix from
the overall mean into a single variable that indexed the global
connectivity for the LFPN including all edges. We compared the
mean network connectivity index across the patient and control
groups using a two-sample t-test. We also performed correlation
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FIGURE 3 | The LFPN identified by group-level ICA in patients and controls groups.

analyses to assess the relationship between the mean connectivity
of the LFPN and the language test results.

RESULTS
DEMOGRAPHICS AND LANGUAGE PERFORMANCE
The locations of the patients’ infarcts are shown in Figure 2.
Of the total 28 subjects (14 patients) enrolled in the study, we

dropped one control subject due to technical issues in brain
structure and one patient due to failure in the pre-processing
of the ICA and network connectivity analysis. We included 13
patients and 13 controls in the ICA and network connectivity
analyses. Of all 13 patients, eight patients completed the second
scan. Six patients could not participate in the second scan due
to their inability to return to the hospital. For characteristics of
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FIGURE 4 | (A) Red-white heat map represents results of decreased
functional connectivity within left frontoparietal network in patients
compared with controls. (B,C) Scatter plots depict the relationship between

abnormal regions functional connectivity and severity of comprehension
deficit at time point one in patient group. FC, Frontal cortex; LFPN, left
frontoparietal network.

these patients and scores from all subtests of the CRRCAE, see
Table 2.

The comprehension subtest scores that we calculated consist
of the combined auditory and reading comprehension scores of
each subject and the production subtest score consists of the
combined repetition, naming, and overt reading scores of each
subject. At time point one (n = 14), the scores on the comprehen-
sion and production subtests were 51 (23) [mean (SD)] and 65
(18), respectively. At time point two (n = 8), the scores for com-
prehension and production were 73 (9) and 81 (8), respectively.
The nonparametric rank test showed that at time point two, there
was a significant increase in the comprehension (z = −2.527,
P = 0.012) and production (z = −2.527, P = 0.012) score as
compared to that at time point one. The average improvement
of the CRRCAE scores of the patients on the comprehension and
production subtests between the two time points were 21 (16) and
23 (10), respectively.

All patients received conventional stroke treatment, which
involved a 30-min language therapy session that involved listening
comprehension, reading comprehension, and verbal production
training at least three times per week throughout the entire period
of observation.

RESULTS FROM ICA ANALYSIS
The LFPN that we obtained from our cohort of sub-
jects includes the bilateral parietal cortex, bilateral frontal
cortex, medial frontal cortex and posterior cingulate cortex

Table 3 | Decreased FC clusters in aphasic patients compared with

controls (P < 0.05, using FWE correction at cluster level).

Contrast Brain region Cluster MNI coordinates z-value

size
x y z

Control >

patient
Right middle
frontal cortex

199 36 34 42 3.82

Medial frontal
cortex

149 0 30 42 3.8

Right inferior
frontal cortex

5 58 30 4 3.45

(Figure 1). We obtained 20 spatial and temporal compo-
nents from the ICA analysis and noted that the results
from previous ICA analyses support the selection of the
LFPN (Smith et al., 2009; Biswal et al., 2010). The group-
level ICA was performed separately in patients and controls
(Figure 3).

When we compared the patients to the matched healthy
controls, we found significantly reduced functional connectivity
between the LFPN and the right middle frontal cortex, the medial
frontal cortex, and the right inferior frontal cortex (Figure 4A,
Table 3) in aphasic patients. No regions showed significantly
increased functional connectivity in patients as compared to
controls.
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FIGURE 5 | (A,B) Graphical presentation of the left frontoparietal
network in aphasic patient and healthy control groups separately
identified by network connectivity analysis analysis. A threshold of

FDR-corrected P < 0.05 was applied. (C) The mean network
connectivity index in two groups. The error bars indicate standard
errors.

To explore the association between language impairment and
lower regional functional connectivity within the LFPN, we
applied a Pearson correlation between the regions that showed
significant differences in the language production and com-
prehension scores separately at time point one. The results
showed a significant association between the medial frontal cor-
tex and comprehension score (r = 0.555, P = 0.049; Figure 4B)
and strong correlation between the right middle frontal cor-
tex and comprehension score (r = 0.781, P = 0.002; Figure 4C),
such that lower intrinsic functional connectivity between the
LFPN and right middle frontal cortex and medial frontal cortex
coincided with greater impairment of comprehension ability in
aphasic patients. To test whether this correlation was maintained
over the course of recovery, we also measured the association
between LFPN functional connectivity and the above two regions
and the comprehension score at time point two using a Spearman
correlation for eight patients. Our results showed a marginally
significant association between the LFPN and the right middle
frontal cortex connectivity and comprehension score (r = 0.728,
P = 0.064). We found no significant association between these
three regions and production score.

RESULTS FROM NETWORK CONNECTIVITY ANALYSIS
The results from our network connectivity analysis suggest that
patients and controls are associated with two different sets of
network connectivity. At time point one, the network of the
controls was considerably more intact than that of the patients
(Figures 5A,B). The network showed a different pattern at time
point one as compared to time point two (Figures 6A,B). At time
point one, we observed significantly weaker LFPN connectivity
in patients as compared to controls (mean network connectivity
index of patients: 0.213 and controls: 0.379; t = 3.104, P = 0.005)
(Figure 5C).

The Pearson correlation analysis showed a significant associa-
tion between mean LFPN connectivity and comprehension score

at time point one (r = 0.781, P = 0.002) in aphasic patients, indi-
cating that decreased LFPN connectivity coincided with more
severe the loss of comprehension ability.

For the eight patients that completed the two fMRI scans, the
Spearman correlation analysis showed that the change in mean
network connectivity index was marginally associated with the
improvement of comprehension ability (r = 0.655, P = 0.078;
Figure 6C). That is, patients who exhibited the highest level of
comprehension improvement also showed the highest increase in
mean LFPN network connectivity.

DISCUSSION
In this study, we integrated ICA and network connectivity analysis
methods to investigate the association between resting state func-
tional connectivity and language function in aphasic patients.
We found reduced functional connectivity between the LFPN
and the right middle frontal cortex and medial frontal cortex
in aphasic patients. Stronger functional connectivity coincided
with more preserved language comprehension ability after stroke.
This strengthening in connectivity could be maintained over the
course of recovery in the right middle frontal cortex. In addi-
tion, we found reduced LFPN connectivity in aphasic patients, as
indicated by the mean network connectivity index of key regions
in the LFPN. We associated the decreased LFPN connectivity
with the impairment of language function in the comprehension
ability of stroke patients. We also found significant association
between the recovery of comprehension ability and the mean
improvement in intrinsic LFPN connectivity.

Speech comprehension ability reflects a complex cognitive
process, including attention, working memory, comprehension
monitoring, and strategic behavior. In aphasic patients, we found
decreased functional connectivity between the LFPN and the
right middle frontal cortex, the medial frontal cortex, and the
right inferior frontal cortex. Previous studies found that the
medial prefrontal cortex is activated during task switching and
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FIGURE 6 | (A,B) Graphical presentation of the left frontoparietal network in
aphasic patient in time point one and two separately identified by network
connectivity analysis analysis. A threshold of FDR-corrected P < 0.05 was

applied. (C) Scatter plots depict the relationship between the mean left
frontoparietal network connectivity change and the comprehension score
change in patient group between time point one and two.

performance monitoring and/or adjustments (DiGirolamo et al.,
2001; Rushworth et al., 2002; Ridderinkhof et al., 2004; Wager
et al., 2004; Crone et al., 2006). More specifically, using rest-
ing state connectivity over more than 1000 subjects, investigators
have found that both subdivisions in the medial frontal cor-
tex and posterior cingulate cortex are strongly connected to
the inferior parietal lobe, a key region in language processing
(Lambon Ralph, 2010). Historically, investigators have defined
the dorsal, rather than the ventral, medial frontal cortex by its
connection to the inferior parietal cortex (Luciana, 2001). This
was not part of the LFPN we defined in this study. Our results
showed that LFPN showed a significant association with dorsal
medial prefrontal cortex, we speculate these regions may inter-
act rather strongly during task-related processes (Tomasi and
Volkow, 2012). Results from previous studies have also suggested
that the medial prefrontal cortex is involved in coherence process-
ing in language comprehension (i.e., establishing the pragmatic
connection between successively presented sentences) (Ferstl and
von Cramon, 2002). Our results support the idea that the medial
prefrontal cortex plays an important role in language processing.

The left middle frontal cortex and the inferior frontal cortex
are also critical components of language processing. Investigators
have interpreted the involvement of the inferior frontal cortex
in aphasic patients as reflecting the impairment of a working
memory system for semantic information, whereas the middle
frontal cortex has been attributed to deficits in the general cog-
nitive control process (Turken and Dronkers, 2011). We believe
that comprehension ability in patients could reflect the seman-
tic cognition process. Results from a previous study suggest that
lesions located in the left hemisphere after stroke can cause the
right hemisphere to selectively contribute to the reorganization
of language (Crinion and Price, 2005). This may be due to the
disinhibition of the right hemisphere in the presence of left hemi-
sphere lesions. Other studies have suggested that a relationship
exists between lesion size and the success of hemispheric transfer,
where larger lesions may result in a complete transfer of functions

to the contralateral hemisphere. Conversely, in the presence of
a smaller lesion, intact areas of the damaged hemisphere may
inhibit complete transfer (Grafman, 2000). We speculate that
in our study, the lesions of patients may have not been large
enough, so that the right hemisphere was still inhibited by the
intact remains in the left hemisphere. This may explain why
we found decreased functional connectivity in the homologous
parts of these two regions in the LFPN. We also found decreased
connectivity in the middle frontal cortex to be associated with
cognitive function and patients maintained this correlation over
the course of a 1-month recovery. This finding is consistent with
prior literature on the reorganization of language recovery after
stroke.

Overall, we have found a multitude of evidence supporting
our finding that the LFPN may be especially relevant to under-
standing cognitive impairment in aphasic patients. Considering
the complexity of language processing, which includes seman-
tic, lexical and phonological levels, motor programming, and
access to visual and memory representations in oral naming,
the network analysis approach seems particularly suitable for
characterizing post-stroke recovery. Under the assumption that
disconnection between the distal frontoparietal areas may under-
lie primary cognitive deficits, recent fMRI studies have explored
the frontoparietal network and its association with performance
in attention and working memory tasks (Sharp et al., 2010a,b). In
our study, aphasic patients showed a significant decrease in mean
LFPN connectivity as compared to controls and the magnitude of
this decrease was correlated with language comprehension abil-
ity. This result may suggest that there was disrupted functional
connectivity in the LFPN, which induced cognitive deficits at the
acute stage of lesion to the left hemisphere.

After 1 month of recovery following stroke, mean LFPN
connectivity seems to be associated with the recovery of lan-
guage comprehension function. Increasing LFPN connectivity
is likely to be a natural, intrinsic, and plastic neural mecha-
nism for increased cognitive function and can be regarded as
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early language recovery. Specifically, investigators have found that
increased frontoparietal integration during language task pro-
cessing in patients who are in recovery following aphasia can be
associated with the recovery of cognitive function (Sharp et al.,
2010b). Reorganization of the functional network is essential to
the recovery of language function. We found that increased LFPN
connectivity corresponded with greater improvement in language
function after 1 month of recovery following stroke. This result
suggests that promoting this connectivity should be an important
target for future research aimed at restoring language deficits.

Our study was not without limitations. The patients com-
pleting two fMRI scans received a conventional therapy, so we
remain unsure about whether to attribute the changes in network
functional connectivity to the medication or the natural recov-
ery of language function. Additionally, many aphasic patients
had multifocal brain lesions in the left hemisphere, which may
have potentially complicated the interpretation of our results.
Brain damage to the left hemisphere regions—the frontal or pari-
etal cortex, this may cause functional network abnormalities that
induce language function deficit. In all 13 patients, only two
patients had wide lesions spreading to the frontal and parietal cor-
tices and no more than three patients had a lesion in the same area
of the left frontoparietal network. Still, it is reasonable to believe
that the function of the LFPN was preserved in our sample of
patients. Thus, studies with larger sample sizes that only enroll
patients with unifocal lesions are necessary to verify our findings
in the future.

In summary, we found functional connectivity abnormalities
in the LFPN in aphasic patients. Our results suggest that brain
lesions may influence language comprehension ability by causing
impairment of both functionality in affected regions and func-
tional connectivity with other regions. Identifying the patterns
of abnormal functional connectivity may contribute to thera-
pies that enhance the recovery of language deficits and cognitive
function following stroke.
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