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INTRODUCTION

Autism-spectrum disorders (ASD) are heterogeneous, highly heritable neurodevelopmen-
tal conditions affecting around 0.5% of the population across cultures, with a male/female
ratio of approximately 4:1. Phenotypically, ASD are characterized by social interaction and
communication deficits, restricted interests, repetitive behaviors, and reduced cognitive
flexibility. Identified causes converge at the level of the synapse, ranging from mutation of
synaptic genes to quantitative alterations in synaptic protein expression, e.g., through com-
promised transcriptional or translational control. We wondered whether reduced turnover
and degradation of synapses, due to deregulated autophagy, would lead to similar pheno-
typical consequences. Ambra1l, strongly expressed in cortex, hippocampus, and striatum,
is a positive regulator of Beclin1, a principal player in autophagosome formation. While
homozygosity of the Ambra1 null mutation causes embryonic lethality, heterozygous mice
with reduced Ambral expression are viable, reproduce normally, and lack any immediately
obvious phenotype. Surprisingly, comprehensive behavioral characterization of these mice
revealed an autism-like phenotype in Ambrait/~ females only, including compromised
communication and social interactions, a tendency of enhanced stereotypies/repetitive
behaviors, and impaired cognitive flexibility. Reduced ultrasound communication was found
in adults as well as pups, which achieved otherwise normal neurodevelopmental mile-
stones. These features were all absent in male Ambra1t/~ mice. As a first hint explaining
this gender difference, we found a much stronger reduction of Ambra1l protein in the cor
tex of Ambra1t/~ females compared to males. To conclude, Ambra1 deficiency can induce
an autism-like phenotype. The restriction to the female gender of autism-generation by a
defined genetic trait is unique thus far and warrants further investigation.

Keywords: Ambra1, autophagy, heterozygous null mutant mice, autism composite score, social interaction,
ultrasound communication, repetitive behavior, cognitive rigidity

introducing the term “synaptopathy” for ASD (Zoghbi and Bear,

Autism-spectrum disorders (ASD) are heterogeneous neurodevel-
opmental disorders of yet poorly understood etiology that are
characterized by severe socio-communicative deficits, restricted
interests, stereotypies, and repetitive behaviors (Kanner, 1943;
Asperger, 1944; American Psychiatric Association, 2013). Males
are affected 4.3 times more frequent as compared to females
(Kirkovski et al., 2013). Over the past decade, evidence has accu-
mulated indicating that synaptic dysfunction, including changes
in neurotransmission, plays a crucial role in the pathophysiology
of ASD. In fact, mutations of genes encoding for synaptic pro-
teins including neuroligins, neurexins, CNTNAP2, and SHANK3
have been associated with monogenic heritable ASD (Kumar and
Christian, 2009; Huguet et al., 2013). Knockout of the eukary-
otic translation initiation factor 4E-binding protein 2, an eIF4E
repressor, or elF4E overexpression leads to an increase in neuroli-
gins and ASD-like phenotypes (Gkogkas et al., 2013). Essentially,
the etiology of ASD directly or indirectly converges at the synapse,

2012; Delorme et al., 2013).

Since causes of synaptic protein disbalance can be multifactor-
ial, we wondered whether deregulated autophagy would also lead
to ASD-like features. Autophagy is a self-degradative process con-
trolling basal turnover of cellular components including synapses.
It is involved in both pro-survival and pro-death mechanisms
in different physiological and pathological conditions (Wirawan
etal., 2012).

Ambral (activating molecule in Beclinl-regulated autophagy)
is a positive regulator of a principal mediator of autophagosome
formation, Beclinl. In the postnatal mouse brain, strong Ambral
expression is found in cortex, hippocampus, and striatum (Fimia
et al.,, 2007). Even though Ambral has been visualized in the
cytoplasm of pyramidal neurons of the hippocampal formation
(Sepe et al., 2014), the exact cellular and subcellular localization
of Ambral remains to be determined. In line with its impor-
tant function in neurodevelopment, Ambral null mutation causes
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autophagy impairment, neural tube defects, accumulation of ubig-
uitinated proteins, unbalanced cell proliferation, excessive apop-
totic cell death, and ultimately embryonic lethality (Fimia et al.,
2007).

Interestingly, a recent genome-wide association study on schiz-
ophrenia identified a genetic risk variation in a region on chromo-
some 11 (11p11.2) containing AMBRA1 (Rietschel et al., 2012). In
this region, five single nucleotide polymorphisms were associated
with schizophrenia at odd ratios ranging from 1.24 to 1.25.

Autism-spectrum disorders and schizophrenia show a consid-
erable syndromic overlap, including deficits in social cognition
and communication, and like ASD, at least a subgroup of schizo-
phrenia is regarded as a disease of the synapse (Eack et al., 2013).
However, any potential role of Ambral mutations in the expression
of a complex behavioral phenotype reminiscent of schizophrenia
or ASD as classical neurodevelopmental disorders has not been
explored yet.

The present paper has therefore been designed to comprehen-
sively characterize at the behavioral level mice with a heterozy-
gous mutation of Ambral, leading to a truncated, non-functional
Ambral protein (via insertion of a gene-trapping vector into the
mouse Ambral gene) (Fimia et al., 2007). Indeed, we show here
that (1) Ambral™'~ mice display autism-like symptoms, including
social interaction and communication deficits, repetitive behav-
iors, and cognitive rigidity. (2) Surprisingly, this autism-like phe-
notype is strongly observable only in female but not in male mice,
and becomes evident before puberty. (3) Analysis of cortical brain
tissue revealed a more prominent relative reduction of Ambral
protein from WT level in Ambral*'~ females as compared to
males. Thus, Ambralt/~ partial loss-of-function mutation is the
first monogenic animal model of a predominantly female ASD.

MATERIALS AND METHODS

GENERATION, GENOTYPING, AND HOUSING OF AMBRA1+/~ AND WT
MICE

All experiments were approved by the local animal care and use
committee in accordance with the German animal protection law.
The generation of functional Ambral null mutant mice via inacti-
vation of the Ambral gene has been described in detail elsewhere
(Fimia et al., 2007). Ambral™'~ and wildtype (WT, Ambral*’*)
littermates of both genders with a >99% C57BL/6N genetic back-
ground were used for behavioral and biochemical studies. They
were obtained from male Ambral™’~ x female WT C57BL/6N
breeding pairs. Genotypes of the offspring were analyzed by PCR
of tail genomic DNA using the following primers: Ambral for-
ward primer 5'-GAA AAG CTC CCC ATC TTT TCT T-3/, Ambral
reverse primer 5 -ATC CCA AGG GCA GTA GAG TTC-3' (yield-
ing a 3kb product in Ambral*/™), interleukin-2 (IL-2) forward
primer 5'-CTA GGC CAC AGA ATT GAA AGA TCT-3', and IL-
2 reverse primer 5'-GTA GGT GGA AAT TCT AGC ATC ATC
C-3' (yielding 350 bp product in all samples for an internal con-
trol). PCR amplification of the DNA was carried out with Failsafe
enzyme with PreMix D (Epicentre, Madison, W1, USA) under the
following conditions: 3 min, 94°C (1 cycle); 30, 94°C; 455, 57°C;
2min 30s, 72°C (40 cycles), followed by final extension at 72°C
for 5 min. Final PCR products were run on a 1.5% agarose gel and
stained with ethidium bromide.

BEHAVIORAL CHARACTERIZATION OF MICE

For behavioral testing, mice were housed in groups of 3-5 (except
where otherwise specified) in standard plastic cages, with food and
water ad libitum. The temperature in the colony room was main-
tained at 20-22°C, with a 12 h light—dark cycle (lights on at 7:00
a.m.). All behavioral experiments were conducted by investiga-
tors, unaware of the genotype (“blinded”), during the light phase
of the day (between 8:00 a.m. and 5:00 p.m.). Basic behavioral
functions were assessed in two large consecutive cohorts of male
and female mice (genders tested separately), always using litter-
mate controls in a most balanced fashion. Tests were performed
in the following order: elevated plus-maze, open field, hole board,
rotarod, pre-pulse inhibition (PPI) of the startle response, hearing
(startle curve upon random presentation of stimulus intensities
from 65 to 120 dB), visual cliff, marble burying, Y-maze, a mod-
ified version of social interaction in the tripartite chamber (Moy
et al., 2004), olfaction (buried food finding), sucrose preference,
social interaction in pairs, Morris water-maze, hot plate, LABO-
RAS home cage activity, novel object recognition, forced swim test,
nest building, and vocalization. The age of mice at the beginning
of testing was 11-12 weeks. Inter-test interval varied depending
on the degree of “test invasiveness” but was at least 1 day. Com-
prehensive description of all tests used has been provided earlier
(Radyushkin et al., 2010; Bodda et al., 2013; El-Kordi et al., 2013).
In the following, only the most relevant tests for the autism-like
behavioral phenotype are described in detail. After completion of
the behavioral test battery, the mice were sacrificed at the age of
59-60 weeks. The cortex was dissected out and for biochemical
analyses stored at —80°C.

SENSORY FUNCTIONS

Visual cliff test — vision

Visual integrity was tested in an apparatus consisting of a Perspex
box (70 cm x 35cm x 30 cm) with a transparent floor. The box
was placed on the edge of a laboratory bench, in a way that 50% of
the base was positioned on the bench (“ground” side), while the
other half was extended over the edge of the bench, suspended 1 m
above the floor (“air” side). Mice were then individually placed into
the center of the base. The animal’s behavior was registered over
a period of 5min using a video-tracking system (Viewer2, Biob-
serve, Germany). The percentage of time spent on the “ground”
versus “air” side of the box was calculated for each mouse. The
animals were tested at the age of 11-12 weeks.

Buried food finding test — olfaction

The animals were first habituated to the transparent testing cages
(29.5cm x 18.5cm x 13 cm) for 3 days with two trials of 20 min
duration per day. Starting on day 3 of habituation, mice were
deprived of food for 24 h before testing and received a piece of
chocolate cookie (1.6 g) during each habituation trial and three to
five cookies in their home cage after testing. After the daily habit-
uation trials in the test cages, the animals received access to food
in their home cages for 1 h. This procedure was continued until
day 6. The test trials were performed on day 7. The mice had to
locate a piece of chocolate cookie that was hidden approximately
1.5 cm below fresh bedding close to the wall at one end of the cage.
The mouse was placed into the right corner at the opposite end of
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the cage, and the latency to locate the cookie and to start burying
for it was measured with a cut-off time of 3 min. The animal was
removed from the test cage after the cookie had been discovered
and before it was consumed. In order to test whether Ambral defi-
ciency had altered the motivation to approach and consume the
cookie, a visible test trial was performed after the hidden test. Here,
the cookie was placed on top of the bedding. Generally, the latency
to locate the cookie is significantly lower under the visible as com-
pared to the hidden condition. Fresh cages and bedding were used
for every habituation and test trials. Animals were tested at the age
of 19-20 weeks.

Acoustic startle response — hearing

In this test, the startle reaction to an acoustic stimulus (pulse) that
induces a movement of a force-sensitive platform was recorded
over a period of 100 ms, beginning with the onset of the pulse. An
experimental session consisted of a 2 min habituation period to
a 65 dB background white noise (continuous throughout the ses-
sion), followed by a baseline recording for 1 min at this background
noise. After baseline recording, stimuli of different intensity and
a fixed duration of 40 ms were presented. Stimulus intensity was
varied between 65 and 120 dB, such that 19 intensities (in steps
of 3dB) from this range were used. Each stimulus intensity was
presented 10x in a pseudorandom order with an inter-stimulus
interval of 8-22 s. The amplitude of the startle response (expressed
in arbitrary units) was defined as the difference between the max-
imum force detected during a recording window and the force
measured immediately before stimulus onset. For each mouse,
the amplitudes of the startle responses were averaged for every
stimulus intensity. Animals were tested at the age of 11-12 weeks.

Hot plate test — pain perception

The hot plate test was used as a measure of pain perception. Mice
were placed on a metal plate (Ugo Basile Srl, Comerio, Italy) that
was preheated up to 55°C. The latency to show hind paw licking or
jumping was recorded. Immediately after showing the response,
the mice were removed from the platform. A cut-off time of 40s
ensured that the mice were not injured. Animals were tested at the
age of 27-28 weeks.

SPONTANEOUS AND NOVELTY-INDUCED ACTIVITY

LABORAS - spontaneous home cage behavior

The LABORAS system consists of a triangular shaped sensor plat-
form (Carbon Fiber Plate 1000 mm x 700 mm x 700 mm x 30 mm,
Metris B.V., Hoofddorp, Netherlands), positioned on two orthog-
onally placed force transducers (Single Point Load Cells) and
a third fixed point attached to a heavy bottom plate (Corian
Plate 980 mm x 695 mm x 695 mm x 48 mm). The whole struc-
ture stands on three spikes, which are adjustable in height and can
absorb external vibrations. Mice are housed in clear polycarbon-
ate cages (Makrolon type II cage, 22 cm X 16 cm x 14 cm) with a
wood-chip bedding covered floor. The cage is placed directly onto
the sensing platform, with the upper part of the cage (includ-
ing the top, food hopper, and drinking bottle) suspended in
a height-adjustable frame separate from the sensing platform.
Resulting electrical signals caused by the mechanical vibrations
of the movement of the animal are transformed by each force

transducer, amplified to a fixed signal range, filtered to eliminate
noise, digitized, and stored on a computer. The computer then
processes the stored data using several signal analysis techniques to
classify the signals into the behavioral categories of eating, drink-
ing, scratching, circling, climbing, immobility, locomotion, and
grooming. The behavior that dominates is scored. Spontaneous
mouse behavior was assessed from 5:00 p.m. until 9:00 a.m., with
1h habituation to the cages before the initiation of recording.
Animals were tested at the age of 27-28 weeks.

Open field — exploratory activity

Exploratory activity in a novel environment was tested in a gray
circular Perspex arena (120 cm in diameter, surrounded by a wall
of 25 cm height). Individual animals were placed into the center of
the open field and allowed to explore it for 7 min. The exploratory
behavior of the mouse was recorded using a tracking-software
(Viewer2, Biobserve, Germany). The distance traveled (millime-
ter) and the time spent (second) in the central, intermediate, and
peripheral zones of the open field was analyzed. Animals were
tested at the age of 11-12 weeks.

Hole board — exploratory activity

Individual mice were placed into the center of the hole board
(transparent Perspex chamber (50 cm x 50 cm x 36 cm), with a
non-transparent floor raised 3 cm above the bottom of the cham-
ber with 16 equally spaced holes of 2.2 cm diameter), and allowed
to explore the chamber for 5 min. The number of holes explored
(head dips) was monitored by two layers of infrared photo beams
connected to a computer with the AKS software (TSE Systems,
Bad Homburg, Germany). Animals were tested at the age of
11-12 weeks.

MOTOR COORDINATION, MOTOR LEARNING, AND SENSORIMOTOR
GATING

Rotarod — motor coordination and learning

The rotarod (Ugo Basile Srl, Comerio, Italy) consists of a horizon-
tal rotating drum that was accelerated from 4 to 40 rpm over the
course of 5min. Individual mice were placed on the drum, and
once they were balanced, the drum was accelerated. The time (sec-
ond) at which the animal fell from the drum was recorded using
a trip switch. Each animal was tested on two consecutive days.
Animals were tested at the age of 11-12 weeks.

Pre-pulse inhibition of the startle response — sensorimotor gating

Animals were placed in small metal cages (82 mm x 40 mm x
40 mm) to restrict major movements and exploratory behavior.
The cages were equipped with a movable platform floor attached
to a sensor that recorded vertical movements of the floor. The
cages were placed in four sound attenuating cabinets (TSE Systems,
Bad Homburg, Germany). Startle reflexes were evoked by acoustic
stimuli delivered by a loudspeaker that was suspended above the
cage and connected to an acoustic generator. The startle reaction to
an acoustic stimulus that induces a movement of a force-sensitive
platform was recorded over a period of 260 ms beginning with the
onset of the pulse. An experimental session consisted of a 2-min
habituation period to a 65 dB background white noise (continuous
throughout the session), followed by a baseline recording for 1 min
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atbackground noise. After baseline recording, six pulse-alone trials
using startle stimuli of 120 dB intensity and 40 ms duration were
applied to decrease the influence of within-session habituation.
These data were not included in the 120 dB/40 ms analysis of the
PPI. For tests of PPI, the startle pulse was applied alone or after a
pre-pulse stimulus of 70, 75, or 80 dB intensity and 20 ms duration.
A delay of 100 ms with background noise was interposed between
the presentation of the pre-pulse and pulse stimulus. The trials
were presented in a pseudorandom order with a variable inter-
val ranging from 8 to 22s. The amplitude of the startle response
(expressed in arbitrary units) was defined as the difference between
the maximum force detected during the recording window and the
force measured immediately before the stimulus onset. For each
animal, the amplitudes were averaged separately for the two types
of trials (i.e., stimulus alone or stimulus preceded by a pre-pulse).
PPI was calculated as the percentage of the startle response using
the following formula: % PPI = 100— [(startle amplitude after pre-
pulse)/(startle amplitude after pulse only) x 100]. Animals were
tested at the age of 12—13 weeks.

EMOTIONALITY

Elevated plus-maze — anxiety-like behavior

Individual animals were placed on the central platform facing
an open arm of the plus-maze (made of gray Perspex with a
5cm x 5cm central platform, two open and two walled arms
with the following dimensions: 30 cm x 5cm X 15 cm; illumina-
tion density 135 1x). The animal’s behavior was recorded for 5 min
by an overhead video camera and a computer equipped with
automated tracking-software (Viewer2, Biobserve, Germany) to
calculate the time the animal spent in open or walled arms. The
time spent on walled versus open arms was used as an index of
anxiety- versus anxiolytic-like behavior. Animals were tested at the
age of 11-12 weeks.

Sucrose preference test — anhedonia

The sucrose preference test was performed using a two-bottle
choice setting, during which mice had free access to both water
and a sucrose solution. Animals were first habituated for 48 h to
consume water from the two small (100 ml) bottles. After habit-
uation, mice were deprived of water, and the sucrose preference
was measured over three consecutive days. The first 2 days served
as a habituation to sucrose solution. The results of d3 were used
for the evaluation of sucrose preference. Each day, group-housed
mice were placed individually into small plastic cages and two bot-
tles were presented to them for 60 min — one filled with tap water
and another one containing a 2% sucrose solution. The amount
of consumption of water or sucrose solution was determined by
weighing the bottles before and after the session. The position
of the bottle containing the sucrose solution was counterbalanced
across the left and the right side of the cage, and for individual ani-
mals its position was alternated between tests. Sucrose preference
(%) was calculated as follows: preference = 1/4[sucrose solution
intake (ml)/total fluid intake (ml)] x 100. Animals were tested at
the age of 23-24 weeks.

Forced swim test — depression-like behavior
The forced swim test was performed as initially described by (Por-
solt et al., 1977). The mouse was placed for 6 min into a glass

cylinder (height: 25 cm, diameter: 10 cm) filled with water (23—
25°C) up to a height of 10 cm. A mouse was judged to be immobile
when it floated in an upright position and made only minor move-
ments to keep its head above the water level. After a habituation
period of 2 min, the time spent immobile was measured during
the last 4 min of the 6 min testing period. Animals were tested at
the age of 39—40 weeks.

COGNITIVE PHENOTYPING

Novel object recognition — object memory

This test consists of a sample trial that is followed by a test
trial. The mice were first habituated for 10 min to an open field
(40 cm x 40 cm x 40 cm) made of gray plastic. During the sam-
ple trial, a novel object was introduced to the open field. There
were two possible locations where the object could be positioned.
The position of the novel object during the sample trial was coun-
terbalanced over the animals tested. The mouse was allowed for
10 min to explore the novel object. Immediately after the sample
trial, the mouse was subjected to a test trial. Here, the mouse was
presented with the familiar object in its original position already
known from the sample trial and a novel object and was allowed to
freely explore the two objects for 10 min. Exploration of an object
was assumed when the mouse approached an object and had phys-
ical contact with it, either with its vibrissae, snout, or forepaws.
Vicinity to an object, at a distance <2 cm, was not considered as
exploratory behavior. For each retention delay, the proportion of
time exploring the novel object, relative to the total time spent
exploring both objects, was taken as a measure of object recogni-
tion: recognition index = time novel/(time novel 4 time familiar).
Novel object recognition index values higher than 0.5 suggest a
preference for the novel object, values close to 0.5 would suggest
no recognition, while values well below 0.5 suggest a preference for
the familiar object. Animals were tested at the age of 29-30 weeks.

Y-maze continuous alternation — working memory

Spontaneous alternation performance was assessed in a Y-maze.
The apparatus had an open roof and was constructed of gray Plex-
iglas with three arms (7.5 cm x 18 cm x 23.5 cm) radiating from
a triangle-shaped central platform. Each animal received one trial
in the Y-maze. Each trial lasted 5min and began by placing the
animal on the central platform, allowing it to freely explore the
three arms. The entire apparatus was cleaned with 75% ethanol
solution after each trial. An arm entry was scored when the mouse
entered an arm with all four paws. The following parameters were
calculated: (i) total number of entries, (ii) number of triplets: the
number of consecutive choices of each of the three arms, with-
out re-entries during the last three choices, and irrespective of the
order of the chosen arms, and (iii) alternation-ratio: number of
triplets divided by total number of entries minus 2. Animals were
tested at the age of 15-16 weeks.

Morris water-maze - spatial learning and memory

A circular tank (diameter 1.2 m, depth 0.4 m) was filled with
opaque water (25=+1°C, depth 0.3 m) and the escape platform
(10 cm x 10 cm) was submerged 1 cm below the water level. The
animals swim patterns were registered with a video-tracking sys-
tem (Viewer2, Biobserve GmbH, Germany). Escape latency, swim
speed, and path length were recorded for each trial.
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Hidden platform acquisition: for 8 days, mice were trained to
find a hidden platform which was submerged 0.5 cm below water
level and positioned in the center of one of the four quadrants
of the pool. For each mouse the location of the platform was
fixed throughout the days of acquisition. Mice had to locate the
hidden platform by using extra-maze cues placed on the walls of
the testing room. Each mouse was subjected to four trials with
an inter-trial interval of 5 min. Mice were released into the water
facing the pool wall at one of four start locations and allowed
to search for the platform for a maximum of 90s. A mouse that
failed to find the platform within 90s was guided to the plat-
form and remained there for 20s before being removed from
the pool.

Spatial probe (hidden platform): the day after the comple-
tion of the hidden platform training, a probe trial was conducted
in order to determine whether the mice had developed a spa-
tial bias for the former platform quadrant. The platform was
removed from the pool and mice were allowed to swim for 90s.
The percentage of time spent in each quadrant of the pool was
recorded.

Reversal learning: in order to investigate cognitive flexibility, a
reversal learning task was performed. The experimental procedure
was identical to the one used for the hidden platform training with
the exception that the escape platform was moved from the orig-
inal position to a different quadrant. Reversal learning was tested
for 4 days followed by a probe trial. Animals were tested at the age
of 23-24 weeks.

AUTISM-RELATED BEHAVIORS

Communication — ultrasound vocalization

Ultrasonic vocalizations (USVs) of mice were recorded with a
microphone, connected to a preamplifier, and analyzed at a sam-
pling frequency of 300 kHz using the Avisoft Recorder 4.2 software
(Avisoft Bioacoustics, Berlin, Germany). Prior to recordings, mice
(males and females) were housed for 24 h in single cages. Record-
ings were made from a resident mouse (male or female) that was
vocalizing in its home cage (3 min test duration) upon exposure to
a female intruder mouse (Hammerschmidt et al., 2012). Male and
female resident mice were tested with unfamiliar females anes-
thetized with an i.p. injection of 0.25% tribromoethanol in a
volume of 0.1 ml/10 g. Number of calls per recording session was
counted and USVs were separated from other sounds using the
whistles detection algorithm of Avisoft-SASLab5.2 (Avisoft Bioa-
coustics, Berlin, Germany) with following selection criteria: pos-
sible changes per step =4 (4687 Hz), minimal continuity = 8 ms,
and possible frequency range =35-150 kHz. These criteria had
been tested in former studies of mouse USVs (Hammerschmidt
et al., 2012; El-Kordi et al., 2013). Animals were tested at the age
of 39—40 weeks.

Social competence - nest building

It is well known that nest construction is impaired in mouse mod-
els of ASD (Satoh etal., 2011; El-Kordi et al., 2013). Group-housed
mice were transferred to single-housing 1 h before beginning of the
dark phase. Cages for single-housing contained wood-chip bed-
ding and nesting towels. After two nights of habituation, nesting

towels were replaced by nestlets (pressed cotton squares weighing
approximately 3 g). Nest building was assessed in the next morning
by weighing the leftover material and using a rating scale ranging
from 1 to 5 with lower scores indicating aberrant nest building
behavior. Animals were tested at the age of 43—44 weeks.

Social approach — social interaction in pairs

The social interaction in pairs was performed in a neutral test-
ing cage (gray Plexiglas box, 30 cm x 30 cm x 30 cm). Each mouse
was habituated to the testing cage for 10 min on two consecutive
days. One day after the last habituation trial, pairs of unfamil-
iar mice of the same genotype were placed into the testing cage
for 10min. The time the animals spent in close contact was
recorded by a trained observer. Animals were tested at the age
of 23-24 weeks.

Social interaction in the tripartite chamber

Sociability and social memory were tested in a rectangular box that
was divided into three chambers (40 cm x 20 cm x 22 cm). The
dividers were made from transparent Plexiglas and had rectangular
entries (35 mm x 220 mm). The floor of the box was covered with
wood-chip bedding that was exchanged between trials. The test
mouse was introduced into the middle chamber, with the entries
to the other two chambers closed, and allowed to acclimatize for
5 min. Thereafter, a small wire cage (140 mm x 75 mm x 60 mm)
containing an unfamiliar male C57BL/6N mouse of the same age
and weight (stranger 1) was placed in one outer chamber. An
empty wire cage was positioned in the other outer chamber. The
location (outer left or right chamber) of stranger 1 was alter-
nated between trials. The stranger mice had been habituated to
the wire cages for several days. After unblocking the entries to
the outer chambers the test mouse was allowed to freely move
between chambers for 10 min. Time spent in and number of
entries into each chamber were recorded by a video-tracking sys-
tem (Viewer2, Biobserve GmbH, Germany). Each mouse received
a second and third trial. The second trial was identical to the first
trial except that the stranger mouse was placed into the other
outer chamber in order to control for a possible side bias. On
the third trial, the test mouse was presented with the familiar
stranger 1 and an unfamiliar stranger 2. A significant preference
for the unfamiliar stranger 2 over the familiar stranger 1 indi-
cates an intact social memory. A sociability and a social memory
index were calculated as follows: sociability index = (time inves-
tigating stranger/time investigating stranger + time investigating
empty cage) x 100; Memory index = (time investigating unfamil-
iar mouse/time investigating unfamiliar 4 familiar mouse) x 100.
Animals were tested at the age of 19-20 weeks.

Stereotypic and compulsive behavior — marble burying test

This test is used to assess stereotypies and obsessive—
compulsive behavior in mice. Mice were tested in plastic cages
(34.5cm x 56.5cm x 18 cm) filled with 5cm deep wood-chip
bedding. Twenty-four glass marbles were placed on the surface
of the bedding. The marbles were arranged in six rows with four
marbles per row at a distance of 4 cm. Each mouse was placed
into the cage (illumination 6 Ix) and could freely manipulate the
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marbles for 30 min. The number of buried marbles (at least to
2/3 their depth) was scored. Animals were tested at the age of
15-16 weeks.

Stereotypic and repetitive behavior — circling

Frequency of circling was measured with the LABORAS homecage
observation system as described in detail previously (Van de Weerd
et al., 2001; El-Kordi et al., 2013).

NEONATAL TESTING

Ambral*/~ male mice were mated with C57BL/6N female mice
that had never given birth before (primipara). Approximately
2 weeks after pairing, females were individually housed and care-
fully inspected twice daily for pregnancy or delivery. The day of
birth was noted as postnatal day (PND) 0. To identify individual
pups, they were labeled using non-toxic tattoo ink on PND3. The
ink was inserted subcutaneously through a 30 gage hypodermic
needle tip into the center of the paw. As with adults, experi-
ments were always performed by a trained observer, unaware of the
genotype of the animals (“blinded”). Litters used for experiments
contained 6-10 pups. For the assessment of developmental mile-
stones and neurological reflexes, pups (male Ambralt/* n=23,
male Ambralt’~ n=22, female Ambral™’t n=27, and female
Ambral*'= n=25) were tested daily between PND4 and PND21
(weaning at PND23). Each subject was tested at approximately
the same time of day. The battery of tests performed provides
an assessment of physical and neurodevelopmental milestones as
well as neuromotor coordination throughout the neonatal period.
The parameters measured are expressed and maturing at different
periods throughout the first 21 days of life. Neonatal assessments
comprise (i) maturation readouts describing physical develop-
ment, (ii) neurodevelopmental measures based on neurological
reflexes, and (iii) the achievement of neuromotor coordination
(Vorhees et al., 1979; Heyser, 2004; Hill et al., 2008; Bodda et al.,
2013).

Maturation readouts
Body weight development and the opening of eyes and ears are
monitored daily.

Neurodevelopmental measures

Placing response. Pups are suspended in the air by grasping the
pup gently around the trunk, making sure that none of the paws
touched a solid surface. A thin metal bar is put in contact with
the back of a paw. Starting from PNDA4, it is monitored with one
trial per day whether the paws are raised (proper response). Cri-
terion is reached when pups show the proper response on two
consecutive days.

Surface righting reflex. Animals are placed on their back on a
surface and then released. The time needed for each pup to right
itself is recorded and the performance is monitored twice daily,
starting from PNDA4. Criterion is reached when the pup can right
itself within 2 s in both trials on two consecutive days.

Cliff avoidance. The pups are observed daily with one trial from
PND6 until pup shows retraction (cliff avoidance reflex) within

10 s after being placed on an edge, with forepaws and nose just
over the edge. Criterion is reached when pups show cliff avoidance
reflex within 10 s on two consecutive days.

Negative geotaxis reflex. The pups are observed daily with one
trial from PND7 by placing them on an inclined plane (30° angle)
with head facing downwards. The time needed for the pup to
change its orientation, so that its head faced up the incline (proper
response) is measured. Response of each pup is observed for 30s.
Criterion is reached when the proper response appears before 30's
on two consecutive days.

Tactile startle. A puff of air (e.g., experimenter’s breath) is gently
applied to the pups, starting on PND10. Criterion is reached when
the proper response (jumping or running) is observed on three
consecutive days.

Ear twitch. The cotton tip of an applicator is pulled out and the
tip twisted to form a fine filament. The filament is gently brushed
against the tip of the ear for three times. Criterion is reached when
pups show the proper response of flattening the ear against the
side of the head on three consecutive days.

Airrighting reflex. The pup is held upside down with two fingers
holding either side of the head and two fingers holding the hind
quarters approximately 10 cm over a cage containing 5 cm of shav-
ings. The pup is released and its position upon landing observed
for one trial, starting from PND10 until criterion is reached, when
the pup is able to turn around and land on the four paws over
three consecutive days.

Neuromotor coordination measures

Open field traversal. The pup is placed in the center of a 13-
cm circle and the time needed to escape off the circle is recorded,
starting from PND10. The trial is terminated when after 30 s the
pup remained in the circle. Criterion is reached when the time to
move off the circle is <30 s on two consecutive days.

Wire suspension. Pups are forced to grasp a 3-mm wire and hang
from it on their forepaws. Testing starts on PND10 onward until
pups are able to hold the wire for 30s. Criterion is reached when
the pup is able to hang for 30 s on two consecutive days.

NEONATAL VOCALIZATION

Ultrasonic vocalizations of pups in response to the separation
from their mothers were recorded on PND8-9 (isolation-induced
vocalization). For recording, pups were selected randomly from
their litter, weighed and placed in a sound-proof custom-made
plasticbox (diameter 13.5 cm). An ultrasound microphone (Ultra-
SoundGate CM16) fixed in the lid of the box 12 cm above the
bottom was connected to a preamplifier (UltraSoundGate 116)
coupled to a notebook computer. Similar to the recordings made
in adult mice (described above), USVs were separated from other
sounds using the whistles detection algorithm of Avisoft-SASLab
5.2 with same selection criteria, except that the minimum continu-
ity was set to 5 min for the neonatal recording. The total number
of calls and calling duration were measured during an observation
period of 3 min.
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BIOCHEMICAL ANALYSES

Real-time quantitative reverse transcription-PCR

Total RNA was isolated from cortex tissue of mice using miRNeasy
Mini Kit (Qiagen, Hilden, Germany). The cDNA was synthesized
from 1 pg of RNA using the SuperScript III Reverse Transcriptase
(Life Technologies, Darmstadt, Germany), oligo-dT, and random
N6 primers in a total volume of 20 pL. For quantitative reverse
transcription-PCR (qPCR), 4.1 cDNA were used as template
with 6 ] of Power SYBR Green PCR Master Mix (Life Technolo-
gies, Darmstadt, Germany) and 5 pmol of primers. The following
primers were used: Ambral forward primer: 5-AGG CTC CAG
TGG TGG GAC TTC AC-3’, Ambral reverse primer: 5'-GCC AGG
AGC TGA CCA TCT GCA G-3/, B-actin forward primer: 5'-CTT
CCT CCC TGG AGA AGA GC-3/, B-actin reverse primer: 5'-
ATG CCA CAG GAT TCC ATA CC-3'. qPCR reactions were run
on LightCycler 480 System (Roche, Mannheim, Germany) with
three technical replicates. Relative expression levels of Ambral
were calculated using the threshold cycle method (LightCycler®
480 Software release 1.5.0 SP3, Roche, Mannheim, Germany) and
normalization to B-actin.

Protein extraction and Western blot

Total protein was extracted from cortex tissue. In brief, frozen tis-
sue was homogenized in RIPA-lysis buffer (150 mM NaCl, 1.0%
Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris,
pH 7.4) with Halt Protease Inhibitor Single-Use Cocktail (Thermo
Scientific, Waltham, MA, USA) using tissue ultra-mixer. The
supernatant was collected after centrifugation at 12,000 rpm for
45 min at 4°C. The protein concentration was measured by Lowry
assay. Protein lysates were denatured by boiling in a Laemmli buffer
at 95°C for 5min and stored at —80°C. For Western blot, 50 ug
of protein was loaded on 8% SDS-PAGE and transferred onto
nitrocellulose membrane (GE Healthcare, Buckinghamshire, UK)
with 235 mA for 3 h. The membranes were blocked in 5% non-fat
milk in Tris-buffered saline-Tween (TBST; 50 mM Tris, 150 mM
NaCl, 0.5% Tween 20, pH 7.4) for 1 h at room temperature and
incubated with primary antibodies diluted in 5% milk in TBST:
anti-Ambral (1:1000; Merck Millipore, Darmstadt, Germany) and
anti-actin (1:1000; Sigma-Aldrich, Taufkirchen, Germany) at 4°C
overnight. After incubation with horseradish peroxidase conju-
gated secondary antibody diluted in 5% non-fat milk in TBST
(1:5000; Sigma-Aldrich, Germany) for 1h at room temperature,
visualization was performed with an Immobilon Western Chemi-
luminescent HRP Substrate (Merck Millipore, Germany), followed
by exposure to Amersham Hyperfilm ECL (GE Healthcare, UK).
Densitometrical analysis of bands was performed using the public
domain of the Image] program. Bands were measured by Image].
Ambral signals were all normalized to their respective actin signals
and were expressed in % male WT. For the analysis of the A-value,
male and female animals were expressed in %WT to the respective
gender and 100% was subtracted (A-value = %WT—-100%).

STATISTICAL PROCEDURES

All data were analyzed separately for males and females. Between-
group comparisons were made by either one-way analysis of vari-
ance (ANOVA) with repeated measures or ¢-test for independent
samples. Within-group tests of chance level performance using

ratio or percentage calculations were performed via single-group
t-tests against a chance level of either 0.25 or 0.5 when indi-
cated. Mann—Whitney U, Wilcoxon, and Chi-square tests were
used if the normality assumption was violated (as assessed by
the Kolmogorov—Smirnov test) or in cases where between-group
comparisons of z-transformed data were made. All statistics were
performed using SPSS v.17 (San Diego, USA) or Prism Graph Pad
software. The search and exclusion of significant outliers from
single data sets (indicated from the visual inspection of the corre-
sponding scatter plots) was performed using the Grubbs’ test. Data
presented in the figures and text are expressed as mean &= SEM;
p-values <0.05 were considered significant.

Autism composite score

For the autism composite score, selected single readouts measur-
ing autism-like symptoms were z-standardized and presented such
that higher values represent higher symptom severity. The Z-score
transformation was performed to standardize single readouts to
the same scale, generating variables with a mean of 0 and a stan-
dard deviation of 1. Z-standardization was performed for genders
separately, but always included both genotypes, i.e., Ambral™/~
and WT mice. The standard operating procedure (SOP) for the
score calculation is given in Box 1. For calculating the composite
score, relevant items are selected based on statistically signifi-
cant (or close to significant) between-group comparisons. Social
preference and social memory performance were included in the
composite score as delta values or difference scores (time spent
in mouse compartment—time spent in empty compartment; time
spent with unfamiliar mouse—time spent with familiar mouse).
A reliability analysis of the composite score was performed on
the selected items by calculating Cronbach’s alpha as a measure
of internal consistency. Gender-specific composite scores were
obtained by integrating the means of the z-transformed behavioral
readouts. Animals with missing values in the behavioral readouts
selected for the composite score were excluded from data analy-
sis. This exclusion concerned three males (+/+: n=1; +: n=2)
and four females (+/4: n=3; £: n=1). Genotype-dependent
group comparisons of composite scores and z-transformed read-
outs were conducted by Mann—Whitney U-tests. Intercorrelation
patterns (pairwise Spearman correlations) were based on avail-
able sets of z-standardized raw scores. To see whether the autism
composite score could be used to reliably predict the genotype
of a given mouse (probability of a correct genotype assignment
or diagnosis) a binary logistic regression analysis was performed
separately for males and females.

RESULTS

ADULT AMBRA1*/~ MICE SHOW ESSENTIALLY NORMAL BASIC
BEHAVIOR

Sensory functions, i.e., vision [females: ¢(28) = 1.157, p=0.257;
males: #(28) =1.131, p=0.268], hearing [females: genotype:
F(1, 28)=10.689, p=0.414, dB: F(18, 504) =41.974, p < 0.001,
genotype x dB: F(18, 504)=0.717, p=0.795; males: geno-
type: F(1, 28)=0.562, p=0.460, dB: F(18, 504)=49.680,
p <0.001, genotype x dB: F(18, 504) =0.578, p=0.916], olfac-
tion [females: #(28)=1.261, p=0.218; males: #(28)=0.138,
p=0.891],and pain perception [females: (28) = 0.771, p = 0.447;
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Box 1| Standard operating procedure for calculating the autism composite score with SPSS v.17.

Select Readouts
Select autism-relevant readouts from your behavioral test battery. Readouts should cover all three general symptom categories, including
communication, social functions, and stereotypic/repetitive behaviors.

Recode Data

If necessary, single readouts have to be recoded in a way that higher values correspond to higher levels of symptom severity, e.g., vocaliza-
tion: number of calls. For example: animal 1: 10, animal 2: 45, animal 3: 97 — animal 1: 10 x —1, animal 2: 45 x —1, and animal 3: =97 x —1.
Now animal 1 that exerted the lowest number of calls has the highest value of —10 and thus the highest degree of symptom severity (as
compared to values of —45 or —97).

Imputation of Missing Values

If there are missing values, e.g., animal X has only valid values for tests 1, 2, 3, 4, 5, 6, 7, 9, and 10 but not 8, the missing value can be
imputed in order to have a complete data set and one value for each readout and animal. However, missing values should not exceed
30% of the total number of values possible (e.g., animal X: 10 readouts and 3 missing values — imputation; animal Y: 10 readouts and 5
missing values — animal is excluded). In the SPSS program, the imputation procedure can be found under “Analyze” — “Analyze missing
values” — “Multiple imputation” — “Impute missing values.” Enter “Imputation: 10" and then select the variables to be imputed and enter

AmbraT deficiency induces female ASD

data-set name “Imputation.”

Z-Transformation

Composite Score

The z-transformation procedure can be found under “Analyze” — “Descriptive statistics” — “Descriptives.” Then select the read-
outs/variables to be z-transformed and click “save standardized values as variables.”

To calculate the composite score go to “Transform” — “Compute variable.” Enter “Composite score” in the field “Target variable” and enter
“mean (X1, X2, X3 ... Xp)" under “Numeric expression.” Here X refers to one of the z-transformed variables. Then click on OK and your
composite score will appear in your SPSS-Matrix under the heading “Composite score.”

males: #(28)=1.630, p=0.114] were all found compara-
ble in WT and Ambralt/~ mice (Figure 1). Sponta-
neous and novelty-induced activity as observed in LAB-
ORAS, ie., spontaneous home cage behavior [females:
locomotion: #(28)=1.351, p=0.188, velocity: ¢(28)=1.404,
p=0.171, climbing: #(28)=1.589, p=0.123; males: locomo-
tion: #(28) =0.573, p=0.572, velocity: #(28) =0.374, p=10.711,
climbing: #(28)=1.369, p=0.182] (Figures 2A-F), and time
spent in different zones of the open field [females: time
in zones: periphery: #(28)=0.204, p=0.840, intermediate:
1(28) =0.627, p=0.535, center: #(28) =1.798, p = 0.083; males:
time in zones: periphery: #(28) = 1.071, p =0.293, intermediate:
t(28) =1.053, p=0.301, center: #(28) =0.626, p=0.537], were
essentially comparable between genotypes (Figures 2G,H). Loco-
motion and running velocity in the open field (Figures 2LK),
as well as holes visited in hole board (Figure 2M) were
slightly higher in female Ambral*’~ [locomotion: £(29) =2.084,
p=0.0461, velocity: #(28)=2.050, p=0.0498, hole board:
t(28) =2.127, p=0.042] but not in male Ambralt’~ mice
(Figures 2J,L,N) [locomotion: #(28) = 0.051, p = 0.960, velocity:
£(28) =0.064, p=0.950, hole board: £(28)=1.317, p=0.198],
suggesting that general activity is slightly increased in female
Ambral*'~ mice.

The LABORAS readout “circling” that has been proposed
as a measure of stereotypic behavior in the mouse is pre-
sented separately under the section autism-specific behaviors (see
below). Body weight [females: ¢(28) =1.368, p=0.182; males:
t(28) =1.744, p=10.092] (Figures 3A,B) and motor coordina-
tion and balancing, i.e., performance on rotarod, including motor
learning [females: genotype: F(1, 28) =0.204, p=0.655, day:
F(1, 28)=9.117, p=0.005, genotype x day: F(1, 28) =0.006,

p=0.940; males: genotype: F(1, 28)=0.006, p=0.937, day:
F(1, 28) =11.854, p=0.002, genotype x day: F(1, 28) =1.019,
p=0.321], as well as startle response [females: #(28)=0.622,
p=0.539; males: #(28)=1.140, p=0.172] and sensorimo-
tor gating (measured by PPI) were again similar in both
genotypes [females: genotype: F(1, 28) =0.529, p=0.473, dB:
F(2, 56) =48.374, p <0.001, genotype x dB: F(2, 56) =1.420,
p=0.250; males: genotype: F(1, 28)=0.0001, p=0.991, dB:
F(2, 56) =45.917, p <0.001, genotype x dB: F(2, 56) =0.211,
p=0.810] (Figures 3C-H).

Finally, elevated plus-maze, a test of anxiety [females:
time in zones: walled arms: #(28)=0.079, p=0.937, center:
t(28) =0.809, p=0.425, open arms: #(28)=1.022, p=0.315,
arm entries: #(28) =1.635, p =0.113, locomotion: #(28) = 1.627,
p=0.115, velocity: #(28)=1.615, p=0.117; males: time in
zones: walled arms: £(28) = 0.779, p = 0.443, center: ¢(28) = 0.161,
p=0.873, open arms: #(28)=0.748, p=0.460, arm entries:
£(28)=0.512, p=0.613, locomotion: #(28)=0.082, p=0.935,
velocity: #(28) =0.007, p=0.994] (Figures 4A-H), and other
determinants of emotionality, i.e., sucrose preference {anhe-
donia: [females: #(28) =0.124, p =0.902; males: #(28) =1.267,
p=0.216]} (Figures 41,J) and forced swim test (depression;
Figures 4K,L), were essentially comparable in both genotypes
[females: genotype: F(1, 28)=0.078, p=0.782, interval: F(2,
56) =10.501, p <0.001, genotype X interval: F(2, 56)=0.200,
p=0.819; males: genotype: F(1, 27) =0.034, p =0.856, interval:
F(2,54) =3.860, p =0.027, genotype X interval: F(2,54) = 3.860,
p=0.027]. In sum, these results suggest that Ambral deficiency
has no impairing effect on sensory functions, overall activity, and
motor performance, the motivation to explore novel environments
and emotionality in mice.
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FIGURE 1 | Normal sensory function is found in male and female
AmbraT+'- versus Ambra1+’+ mice. The upper row presents results
for female, the lower row for male mice. (A,B) Visual cliff test;

(C,D) hearing curve; (E,F) buried food finding; and (G,H) hot plate test.
Mean + SEM presented; respective sample sizes are indicated in the
figures.
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FIGURE 2 | Spontaneous and novelty-induced activity of Ambra1+/~
versus Ambra1*’* mice are widely comparable. The upper row presents
results for female, the lower row for male mice. (A-F) LABORAS standard

readouts; (G-L) open field; and (M,N) hole board. Female Ambra1*/- appear
slightly more active. Mean + SEM presented; respective sample sizes are
indicated in the figures.
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COGNITIVE TESTING OF AMBRA1+/~ MICE REVEALS IMPAIRED
REVERSAL LEARNING IN FEMALES ONLY

Novel object recognition (no-delay condition) [females: #(28) =
0.939, p =0.356; males: #(28) = 1.180, p = 0.248] (Figures 5A,B),
as well as spatial alternation in the Y-maze [females: #(28) = 0.255,
p=0.801; males: t(28) =0.518, p=0.608] (Figures 5C,D), were
found to be comparable between genotypes. In Morris water-maze,
hidden platform acquisition [females: genotype: F(1,21) = 2.695,
p=0.116, days: F(7, 147) =11.192, p < 0.001, genotype x days:
F(7, 147) =0.672, p =0.696; males: genotype: F(1, 24) =0.201,
p=0.658, days: F(7, 168) =6.687, p <0.001, genotype x days:
F(7, 147)=0.672, p=0.696], as well as probe trial perfor-
mance [females: #(21) =1.065, p =0.299; males: ¢(24) = 0.064,
p=0.949], were not significantly different between Ambral*'~
mice and their WT littermates in both males and females
(Figures 5E,F). However, female, but not male, Ambral™/~
mice exhibited a significant impairment in the subsequently
performed reversal learning test, that is thought to measure
cognitive flexibility [overall reversal performance averaged over
4 days; females: t(21)=2.553, p=0.019; males: #(24)=0.504,
p=0.6187] (Figures 5G,H).

AUTISM-LIKE PHENOTYPE DETECTED IN ADULT FEMALE AMBRA1+/~
MICE ONLY

Communication — USV

To explore whether Ambral deficiency would affect communi-
cation of male or female mice, we recorded the number of calls

during a 3 min test. As compared to male mice with compara-
ble vocalization of both genotypes [latency to call: Ambral*/~:
102.94+18.99 versus WT: 133.56 +20.44, U(28)=92.000,
Z =0.856, p=0.457, number of calls: U(28) =91.000, Z = 0.902,
p=0.432], Ambral*'~ females showed a longer latency to
their first call [Ambralt/~: 178.3 + 1.7 versus WT: 99.2 £21.5,
U(27)=51.000, Z=2.950, p=0.020] and a significantly
reduced number of calls [U(27) =52.000, Z =2.894, p=0.022]
(Figures 6A,B) as compared to their WT littermates. In fact, only
1 out of 16 Ambral*/~ females vocalized at all, in contrast to 7
out of 13 WT females [Chi-square: 6.237, df =1, p=0.013]. We
also investigated whether male Ambral™'~ mice would display a
more pronounced phenotype if exposed to an awake freely moving
female instead of an anesthetized female. However, again no sig-
nificant differences between male Ambral™~ and WT littermates
were obtained (185.9 £ 56.3 versus 199 + 62.6, p = 0.935; Mann—
Whitney U, n= 15 per group). These results suggest that Ambral
deficiency impairs social communication only in female mice.

Nest building

An important domain of mouse social behavior, which has
been found to be disturbed in autism-like phenotypes (Satoh
et al, 2011; El-Kordi et al., 2013), is nest building. Regard-
ing quality of nest building, i.e., nesting scores, both male
and female Ambral*'~ mice differed from their WT litter-
mates [females: #(27) =3.535, p=0.002; males: #(28)=2.288,
p=0.030] (Figures 6C,D). The same was true for the other
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FIGURE 5 | Cognitive testing of male and female Ambra71+'~ versus
AmbraT+’+ mice reveals impaired cognitive flexibility in female
AmbraT*'- mice. The upper row presents results for female, the lower
row for male mice. (A,B) Novel object recognition, no-delay task.

(C.D) Spatial alternation in Y-maze. (E,F) Spatial learning in the Morris
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watermaze; hidden platform acquisition curve presented. Figure
inserts represent time spent searching for the platform in the target
quadrant during the probe trial. (G,H) Reversal learning in the Morris
watermaze. Mean + SEM presented; respective sample sizes are
indicated in the figures.
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FIGURE 6 | Comparison of autism-readouts in Ambra1+'- versus (G,H) social preference tested in the tripartite chamber; (lI,J) social memory
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lower row for male mice. (A,B) Communication: ultrasound vocalization; compulsive behaviors: marble burying. Mean + SEM presented; respective
(C,D) social competence: nesting score; (E,F) social interaction in pairs; sample sizes are indicated in the figures.

nesting readout, weight of leftovers of nesting material [females:
WT: 0.49 +0.14 versus Ambral™—: 1.29 +0.24, U(27) = 59.000,
Z =1.975, p=0.050; males: WT: 0.41 £ 0.10 versus Ambral™/~:
1.3540.29, U(28) = 62.000, Z =2.033, p = 0.043].

Social approach/social interaction in pairs

In the social interaction test in pairs, unfamiliar mice of the same
genotype were placed into a familiar testing cage and observed
for 5 min. Whereas there was no significant difference in the time
spent with social interactions between pairs of male Ambralt/—
and WT mice [#(13) =0.124, p =0.903], the female Ambralt'—
pairs showed significantly shorter interaction times as compared
to the female WT pairs [#(18) =2.955, p =0.008] (Figures 6E,F).

Social interaction in the tripartite chamber: social preference and
social memory

Whereas WT mice of both genders [females: #(13)=3.233,
p=0.007, males: t(12) =3.519, p = 0.004] and Ambral™'— males
[t(16) =4.165, p<0.001] spent significantly more time in
the compartment in which the stranger mouse was located
as compared to the empty one, no such preference was
observed in the female Ambral*'~ mice [¢(15) = 0.707, p = 0.490]
(Figures 6G,H). As a measure of social memory, we investi-
gated whether male and female Ambral*/~ mice would dis-
criminate between a familiar and an unfamiliar mouse. In this
test, Ambral™’~ mice of both genders failed to discriminate
between familiar and unfamiliar mice [females: #(15) = 1.690,
p=0.112, males: ¢(16) =0.643, p=0.530], whereas WT mice
of both genders preferred the unfamiliar over the familiar
mouse [females: #(13) =3.113, p=0.008, males: #(12) =2.439,

p=0.031] (Figures 6L]). These results suggest that Ambral
deficiency in the mouse impairs social memory in both genders.

Circling and marble burying as equivalents of stereotypic and
repetitive behaviors

As readout of stereotypic/repetitive behavior, frequency of cir-
cling in LABORAS was employed. Circling tended to be higher
in female [#(28) =1.350, p =0.188], but not in male Ambralt/~
mice [#(28) =0.040, p=0.968], as compared to their WT litter-
mates (Figures 6K,L). In order to test whether Ambral deficiency
might have an influence on other readouts of stereotypic-like
behavior, the marble burying test with an additional obsessive—
compulsive component was performed. Once more, male mice did
not show genotype differences [#(28) =0.172, p =0.864], while
the number of marbles buried by female Ambral™~ mice tended
to be higher as compared to their WT littermates [#(28) = 1.862,
p=0.073] (Figures 6M,N). These results suggest that Ambral
deficiency slightly increases stereotypic behavior exclusively in
female Ambral™/~ mice.

Autism severity composite score

Recently, we developed an autism severity composite score that
accounts for individuality of discrete symptom severity in the
autistic syndrome as a whole (El-Kordi et al., 2013). For this
autism severity composite score, selected single readouts, covering
all three main diagnostic domains (communication, social inter-
action, and stereotypies/repetitive behaviors) are z-standardized
and genotype groups contrasted by Mann—-Whitney U-tests
(Figures 7A,B; Tables 1 and 2; Box 1). The composite score reflects
the overall severity of autistic behaviors in a continuous fashion
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integrated into the composite score; mean + SEM presented; respective
sample sizes are indicated in the figures. (C,D) Intercorrelation pattern of the
autism-relevant readouts including Cronbach'’s alpha as a quality measure for
internal consistency of the autism severity composite score.

with higher values indicating higher severity of autistic behaviors.
For both male and female mice, the optimal composite score was
based on vocal calls, nesting, social interactions in pairs, social
preference, social memory, circling, and marble burying. A reli-
ability analysis of the readouts selected for the composite score
yielded Cronbach’s o = 0.75 for female and o = 0.55 for male mice.
The corresponding intercorrelations between single readouts are
displayed in Figures 7C,D. The between-group comparison of
the autism severity composite score, calculated by integrating
the means of all behavioral readouts, was significantly different
between female [U(24) =16.000, Z = 3.452, p =0.0002] but not
male [U(25) = 64.000, Z = 1.245, p = 0.217] mice (Figures 8A,B).
As further depicted in Figures 8C,D, the distribution of the rel-
ative frequency with which a certain score range is evident in
either the Ambral*’~ or Ambral*/* group, discriminates very
well between genotypes in females. There is only a slight overlap
in the frequency distribution in female groups for the intermedi-
ate score range, with Ambral™~ mice showing a right-ward shift
toward higher scores and Ambral*/* mice showing a left-ward
shift toward lower scores. In contrast, the male groups display a
much greater overlap with only a weak right-ward shift evident in
male Ambral*'~ subjects (Figures 8C,D). These findings are also
nicely illustrated by the composite scores achieved by individual
mice (Figures 8E,F).

ASPECTS OF AN AUTISM-LIKE PHENOTYPE ARE ALREADY SEEN IN
FEMALE AMBRA1+/~ PUPS

Physical development, including body weight [females: geno-
type: F(1, 50) =0.900, p=0.347, PND: F(2, 100) = 1464.098,
p < 0.001, genotype x PND: F(2, 100) = 0.390, p = 0.678; males:
genotype: F(1, 43) = 3.935, p = 0.054, PND: F(2, 86) = 1540.385,
p <0.001, genotype x PND: F(2, 86)=2.331, p=0.103], eye
opening [females: U(60) =391.000, Z=1.318, p=0.187, males:
U(45) =208.000, Z=1.162, p=0.245], ear opening [females:
U(60) = 400.500, Z = 1.154, p = 0.248, males: U(45) = 203.000,
Z =1.236, p=0.217], the development of neurological reflexes
[females: genotype: F(1, 60)=0.084, p=0.772, PND: F(6,
360) = 627.766, p <0.001, genotype x PND: F(6, 360) =0.294,
p =0.940; males: genotype: F(1,43) =2.028, p=0.162, PND: F(6,
258) =689.532, p <0.001, genotype x PND: F(6, 258) =1.388,
p=0.220], and the development of neuromotor coordina-
tion [open field traversal, females: U(60) =465.500, Z =0.157,
p=0.875, males: U(45)=218.500, Z=10.957, p=0.339], wire
suspension [females: U(60)=408.500, Z=0.994, p=0.320,
males: U(45) =245.000, Z =0.188, p=0.851] were comparable
in pups of both genders and genotypes (Figures 9A-D). In con-
trast, ultrasound vocalization upon short separation from mothers
on PND 8/9 revealed a reduction in number of calls [U(51) =
231.000, Z=2.037, p=0.042] and a trend for a reduced
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Table 1 | Individual z-standardized values for single readouts of the autism composite score of female Ambra 1+/+ and Ambra1*/— mice (see

Figure 7).

9 ,+/+ Mouse  Vocal calls Nesting score  Social interaction  Social preference  Social memory Circling Marble burying
1 0.34173 —0.09881 0.75491 —0.07682 1.99546 0.01319 0.73121
2 0.34173 —1.05399 —0.18438 0.4353 —0.03264 —0.7934 —1.82447
3 0.34173 —0.09881 0.69136 0.10723 0.45134 —0.97258
4 —2.37401 —0.09881 0.75491 0.4353 —0.562218 0.16007 —0.7596

5 0.32267 —0.09881 —0.18438 0.94742 1.08632 —1.22408 —0.12068
6 —4.26074 —1.05399 —1.49938 —1.61317 —0.80192 —0.99754 0.30526
7 —1.14478 —2.00916 —1.49938 —0.71697 —0.562218 —0.87058 —1.18555
8 0.34173 0.85636 —1.22908 —1.57119 0.35177 —0.33366
9 —0.40153 —1.05399 0.00348 0.17924 0.31704 0.21733 0.73121
10 0.34173 —1.05399 —1.82814 —0.46091 —0.80192 0.50611 —1.61149
n 0.09397 —1.05399 —1.45242 —0.20485 —1.01172 0.18497 —0.33366
12 0.34173 —1.05399 —1.82814 —1.48514 0.73664 —1.15687 —0.97258
13 0.28455 —0.09881 —1.45242 —0.07682 —1.01172 0.01319 —0.54663
14 0.70795 —0.568894 —1.29146 —0.49217 2.00904
Mean —0.417653 —0.61314 —0.642283 —0.26886 —0.237446 —0.25976 —0.34887
+SEM 0.375968 0.197575 0.290571 0.204794 0.25797 0.163004 0.265641
9 ,+/— Mouse Vocal calls Nesting score  Social interaction  Social preference  Social memory Circling Marble burying
1 0.34173 —0.09881 1.31848 —1.61317 —0.66205 0.8646 0.51823
2 0.34173 0.85636 1.22455 —0.46091 —0.94178 —2.1676 —0.97258
3 0.34173 0.85636 1.31848 2.09969 0.87651 —0.36521 0.51823
4 0.34173 —0.09881 1.22455 1.20348 1.22618 1.50689 1.568310
5 0.34173 0.85636 0.61402 —1.10105 0.0373 2.08943 0.30526
6 0.34173 —0.09881 0.566705 1.58757 2.4850 —0.25816 0.30526
7 0.34173 1.81154 0.61402 0.81939 —0.03264 1.73841 1.79607
8 0.34173 1.81154 0.566705 —0.20485 —0.03264 1.51187 0.73121
9 0.30361 —0.09881 —0.04349 0.17924 —0.87185 0.08539 —0.33366
10 0.34173 0.85636 —0.04349 0.30727 —0.24244 0.25716 —0.33366
M 0.34173 —0.09881 0.61402 0.56333 1.36605 1.08865 0.09229
12 0.34173 1.81154 0.61402 —0.20485 —0.80192 —0.96518 1.156715
13 0.34173 —1.05399 —0.27831 2.09969 0.17717 —0.11377 0.94418
14 0.34173 —1.05399 —0.32527 0.17924 0.0373 0.13767 —0.7596
15 0.34173 0.85636 —0.27831 —0.46091 1.29612 —0.03162 0.73121
16 0.34173 0.85636 —1.22908 —0.5921 —1.7419 —1.39852
Mean 0.339348 0.498172 0.513825 0.235255 0.207763 0.227289 0.305261
+SEM 0.002307 0.221368 0.148043 0.271585 0.23780 0.293291 0.216275

duration of calls [U(51)=237.500, Z=1.550, p=0.121] in
female Ambral*/~ mice compared to their WT littermates.
In the males, no such genotype differences were observed
[number: U(44) =215.500, Z=1.037, p=0.300; duration:
U(44) = 210.000, Z = 1.158, p = 0.247] (Figures 9E-H).

STRONGER REDUCTION FROM WT LEVELS OF AMBRA1 PROTEIN IN THE
CORTEX OF AMBRA1+/~ FEMALES COMPARED TO MALES

Together, the results of autism-like phenotype testing are in
line with the observation of a marked female autistic pheno-
type in Ambral*/~ mice, and only mild subthreshold autistic
symptoms (nesting score, social memory) in male Ambral™’~
mice. In a first approach to understand this sexual dimorphism,

Ambral mRNA and protein levels were quantified in the cor-
tex of male and female mice. As shown in Figures 10A-C, both
mRNA [females: #(23) =9.165, p < 0.0001; males: #(22) =7.068,
p < 0.0001] and protein levels [females: £(10) = 7.993, p < 0.0001;
males: £(10) =3.996, p=0.0025] were distinctly reduced in
Ambral*'~ mice of both genders as compared to WT mice.
Interestingly, Ambral protein (but not mRNA) expression in
female WT mice was higher as compared to males [#(10) = 3.288,
p=0.0082], and the relative reduction in females from their
respective WT control level was much more pronounced than in
males [females: £(10) =4.743, p = 0.0008] (Figure 10D). This dif-
ference may give a first explanation on why females but not males
display the autism-like phenotype.
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Table 2 | Individual z-standardized values for single readouts of the autism composite score of male Ambra1 +/+ and Ambra1t'~ mice (see

Figure 7).

Cg\, +/+ Mouse  Vocal calls Nesting score Social interaction Social preference Social memory Circling Marble burying
1 0.51868 0.05421 0.95404 —0.2625 0.91895 0.60432 1.00313
2 0.51868 —0.7589 —1.0660 —1.6322 0.13044 0.23803
3 0.51868 0.05421 0.95404 1.02312 —0.3978 —-0.11M 1.25816
4 0.51338 0.05421 0.31274 1.50522 —0.4801 —1.0160 —-0.2720
5 0.51868 0.05421 —1.5399 0.38032 —0.3155 —0.4535 —1.2922
6 —2.5107 —0.7589 0.31274 —1.2267 0.75436 —1.1444 —0.0170
7 0.51868 0.05421 —1.5399 1.02312 1.08354 —0.9029 —0.5271
8 —2.6804 —1.5720 —0.9699 0.54102 —0.4801 —0.5269 0.49306
9 0.51868 —0.7589 —0.5780 0.21962 —1.3030 —0.0102 1.00313
10 0.51868 0.86728 —0.9699 —0.1018 —0.3978 1.83333 —0.0170
" 0.51868 —0.7589 —0.5780 —2.0302 —0.7269 —0.2303 0.23803
12 —0.5477 —1.5720 0.84716 —0.7446 —1.7145 1.02316 —2.3123
13 0.51868 —0.7589 0.88279 0.54102 0.91895 0.69298 —0.2720
Mean —0.0429 —0.4461 —0.1593 —0.0152 —0.2901 —0.0085 —0.0366
+SEM 0.31198 0.18843 0.25944 0.2723 0.25564 0.23045 0.25946
6\, +/— Mouse Vocal calls Nesting score Social interaction Social preference Social memory Circling Marble burying
1 0.51868 0.86728 1.80912 —0.5839 0.1783 0.65935 1.00313
2 —1.4231 —0.7589 0.20585 0.54102 0.09601 0.20076 0.23803
3 0.51868 0.86728 1.80912 1.02312 1.41271 1.09042 —0.5271
4 0.51868 0.05421 0.20585 0.21962 —0.2332 —1.7895 —0.0170

5 0.42849 1.68036 —1.1837 —0.7446 0.67207 0.48203 —1.5472
6 0.51868 —0.7589 —1.1837 2.46942 1.90647 0.19159 —0.0170
7 0.51868 0.86728 0.81153 0.05892 —1.7968 —0.585 0.23803
8 0.51868 —0.7589 0.95404 0.38032 —0.3978 0.356974 0.49306
9 0.51868 1.68036 —0.2929 0.70172 0.91895 —0.5941 0.74810
10 0.20036 —0.7589 0.81153 0.38032 —0.2332 —-1.6122 1.00313
" —0.4416 0.86728 0.95404 —0.9053 0.34289 0.5340 1.76823
12 —0.6485 0.05421 —0.2929 0.21962 1.74189 0.93144 —0.0170
13 0.38605 —0.7589 —0.8274 —1.7088 —1.5499 —0.9793 —1.2922
14 0.06243 —1.6720 —1.0411 —1.2267 0.01372 —0.3801 —1.2922
15 0.51868 1.68036 —0.8274 0.70172 0.34289 2.61905 —0.0170
16 —2.6645 0.86728 —-0.1018 0.75436 0.4484 —1.8022
17 0.50807 1.68036 —1.2267 —0.3978 —1.4654 1.56132
Mean 0.03278 0.34117 0.12747 0.01166 0.22187 0.00653 0.0280
+SEM 0.20805 0.25255 0.24214 0.23868 0.23548 0.26322 0.24672
DISCUSSION (ultrasound) communication, and repetitive behaviors/restricted

In the present study, we show an autism-like phenotype in
a mouse line, deficient of a central protein, Ambral, in the
autophagy cascade. Importantly, we find that this phenotype
is essentially restricted to female Ambral™~ mice, both adults
and neonates, and only marginally present in Ambral™/~
males (nesting score, social memory). Moreover, we identify
features of reduced cognitive flexibility exclusively in female
Ambral™'~ mice.

The observed multifaceted autism-like syndrome in females
consists of distinctive symptoms for all three lead features of
the disorder: disturbed social interactions, compromised verbal

interests. Based on these typical behavioral symptoms, we cal-
culated for Ambral™~ mice an autism severity composite score,
as it had originally been developed for autism severity estima-
tion in ngn4_/_ mice (El-Kordi et al., 2013). This score allowed
again a highly significant discrimination between autistic and
non-autistic mice.

Since autism is usually diagnosed in children before the age of
3 years, assessment of neurobehavioral developmental milestones
and early ultrasound communication in neonatal mice up to the
age of 3—4 weeks has been important for further characterization
of the Ambral™~ mouse model of autism. Indeed, an autistic
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FIGURE 8 | Autism composite score results for Ambra1+'- versus
Ambrat+’+ mice of both genders underline the female autism-like
phenotype in Ambra1+'-. The upper row presents results for female, the
lower row for male mice. (A,B) Highly significant genotype-dependent score
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difference in female but not male mice; mean £+ SEM presented.

(C,D) Frequency distribution of autism composite score bins dependent on
genotype; (E,F) Composite score presentation of all individual animals reveals
a clear discrimination between genotypes in female but not male mice.
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FIGURE 9 | Neonatal development and pup vocalization in AmbraT+'-
versus Ambra1+’* mice uncover early ultrasound communication deficits
in females. The upper row presents results for female, the lower row for male
mice. (A,B) Body weight over time is comparable between genotypes;

(C,D) no genotype differences in physical development, neurodevelopment
(PR, placing response; SRR, surface righting reflex; CA, cliff avoidance; NGR,

coordination

negative geotaxis reflex; TS, tactile startle; ET, ear twitch; ARR, air righting
reflex), and neuromotor coordination (OF, open field traversal; WS, wire
suspension). Overall test results are expressed as days to reach criterion.
(E-H) Ultrasound vocalization of pups briefly separated from their mother on
postnatal day 8/9. Mean + SEM presented; respective sample sizes are
indicated in the figures.
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male Ambra1*~ mice. M, male; F, female; Mean £ SEM presented; respective
sample sizes are indicated in the figures.

phenotype as revealed by reduced vocalizations was uncovered in
pups and again found restricted to the female gender.

As a first clue to why females might be more severely affected by
autism-like features, we detected a more pronounced reduction in
Ambral protein from WT level in females as compared to males. In
fact, basic Ambral expression in female WT mice is higher as com-
pared to males, potentially indicating a greater requirement of this
protein in females for fully functional autophagy. Along these lines,
arecent paper reported that neonatal female rats have higher basal
autophagy activity in the brain as compared to males (Weis et al.,
2014). This hint of a sexual dimorphism regarding autophagy, and
thus basal turnover of cellular components including synapses, is
definitely worth pursuing. It may even help to explain certain basic
male/female differences regarding synapse function and synap-
topathies. However, at this point, it cannot entirely be excluded
that as yet unknown Ambral functions exist to explain the gender
difference that are unrelated to autophagy.

Of note, the overall male/female ratio in autism is about 4:1. So
far, to our knowledge, no genotype has been reported to cause an
autism-like phenotype exclusively in females even though gender-
specific findings have been described in several other mouse mod-
els of autism (e.g., Laarakker et al., 2012; Schmeisser et al., 20125
Tilotetal.,2014). For example, it has been reported that a knock-in
of a cytoplasm-predominant Pten protein (Ptenm>™#m3m4 mjce)
induces increases in social preference and memory selectively in

homozygous male but not female Ptenm>"#m3m4 mice. These

gender-specific differences in social behavior were associated with
impaired motor coordination but normal recognition memory
(Tilot et al., 2014). However, although a number of morphologi-
cal, cellular and biochemical changes were detected in the brains
of the Ptenm>#/m3m4 mice, none of these changes turned out to be
gender-dependent. Although the gender differences in ASD may
have a genetic basis, the identification of mechanisms that lead
to gender-specific symptoms remains a challenging task for the
future.

In humans, corresponding to mice, autistic symptom sever-
ity and distribution show gender differences (Hartley and Sikora,
2009; Baron-Cohen et al., 2011; Bolte et al., 2011; Rinehart
et al., 2011; Beacher et al., 2012; Zwaigenbaum et al., 2012).
But not only gender, also individuality is an important issue in
autism. ASD are multifaceted conditions, composed of severe
socio-communicative deficits, restricted interests, stereotypies,
and repetitive behaviors. Like humans, also individual mice vary
considerably in the relative severity of the respective symptom cat-
egories. When looking at the standard deviations in autism tests
obtained with our test battery, there is clear interindividual varia-
tion in the expression of distinct symptoms. The application of the
autism severity score may therefore deliver a more robust ground
for future experimental treatment studies than single readouts.
The score integrates all relevant symptoms in the evaluation of
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individual syndrome severity. This way;, it also provides a measure
for future comparison of “autistic mouse lines” with each other.
Such comparison will go hand in hand with an extended validation
of the score in other established mouse models of autism.

In the mouse model studied here, a single gene aberration,
Ambral*'~, causes an autism-like syndrome in females. Therefore,
ideally, a causal treatment should also combat all features of the
disorder. First experimental therapeutic approaches may involve
a targeted modulation of autophagy, assuming that the pheno-
typical consequence of a deficiency in Ambral is predominantly
related to its involvement in autophagy. Even then, it will remain
to be determined if autophagy-related mechanisms can be effi-
ciently influenced by non-toxic pharmacological tools such that
a permanent rescue from the autism-like symptoms in female
Ambral™'~ mice will ensue and open ways for later application
in human ASD.

On the other hand, the subthreshold phenotype found in males
may stimulate experimental work trying to illuminate modify-
ing environmental factors that might lead to the development of
an overt autistic syndrome in Ambral™~ males as well. Such
knowledge on environmental and thus perhaps avoidable risk
could facilitate the initiation of preventive measures in endangered
individuals.
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