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Cathodal transcranial direct current stimulation (c-tDCS) is usually considered an inhibitory
stimulation. From a physiological perspective, c-tDCS induces hyperpolarization at the
neural level. However, from a behavioral perspective, c-tDCS application does not always
result in performance deterioration. In this work, we investigated the role of several
important stimulation parameters (i.e., timing, presence of pauses, duration, and intensity)
in shaping the behavioral effects of c-tDCS over the primary visual cortex. In Experiment
1, we applied c-tDCS at two different times (before or during an orientation discrimination
task). We also studied the effects of pauses during the stimulation. In Experiments
2 and 3, we compared different durations (9 vs. 22 min) and intensities (0.75 vs.
1.5 mA) of stimulation. c-tDCS applied before task execution induced an improvement of
performance, highlighting the importance of the activation state of the cortex. However,
this result depended on the duration and intensity of stimulation. We suggest that the
application of c-tDCS induces depression of cortical activity over a specific stimulated
area; but to keep reactivity within given limits, the brain react in order to restore the
equilibrium and this might result in increased sensitivity in visual performance. This is a
further example of how the nervous system dynamically maintains a condition that permits
adequate performance in different environments.

Keywords: transcranial direct current stimulation, perceptual learning, metaplasticity, facilitation, cathodal tDCS,

homeostasis, NIBS, neural noise

INTRODUCTION
Transcranial direct current stimulation (tDCS) is a technique that
allows the modulation of cortical excitability. A direct current
of low-level intensity (∼2 mA) is applied to electrodes that sit
on the subject’s scalp. This current passes through the scalp and
crosses the extra cortical layers to reach the cortex, modulating
the membrane polarity of neurons within a region of underly-
ing neural tissue. The low strength of the current is not able to
induce depolarization at a threshold level of “inactive” neurons
(i.e., inducing an action potential). However, if there is ongoing
activity (i.e., background activity determined by state or task-
induced activity), the change in membrane potential induced by
tDCS can promote more effective “excitation” or “inhibition” in a
polarity-specific manner (Creutzfeldt et al., 1962; Bindman et al.,
1964; Stagg and Nitsche, 2011). These tDCS-induced changes in
the neuronal threshold during stimulation result from changes in
membrane permeability, including depolarization of the soma by
anodal stimulation (a-tDCS) and hyperpolarization by cathodal
stimulation (c-tDCS) (Liebetanz et al., 2002; Nitsche et al., 2003b,
2004a,b). Polarization effects outlast the tDCS period (Nitsche
and Paulus, 2000, 2001), and these after-effects are due to changes
in receptor activity at the synaptic level, in addition to membrane
polarity shifts (Nitsche et al., 2003a, 2004a,b).

From a behavioral standpoint, strong a priori assumptions
are often made in neuromodulation studies using tDCS where

physiological effects are directly mapped on to behavioral effects.
The application of a-tDCS during a task is thought to induce
facilitation, while c-tDCS is assumed to induce inhibition of
performance. While the concept of a-tDCS facilitating and c-
tDCS worsening performance seems well established, these effects
are mainly valid for tDCS in the motor system (Nitsche et al.,
2008, but see Wiethoff et al., 2014). Behavioral effects of tDCS
have been identified in several functional areas, but the relation-
ship between facilitation and inhibition is often quite complex
(Jacobson et al., 2012; Miniussi et al., 2013). tDCS is thought
to prime the behavioral system by increasing/decreasing corti-
cal excitability and producing behavioral effects in the cognitive
system. Nevertheless, the final effect depends on the stimulated
area and on its involvement in a given task (i.e., the type of pro-
cess and the final goal of the task) (Dockery et al., 2009; Nitsche
and Paulus, 2011; Vallar and Bolognini, 2011; Berryhill and Jones,
2012; Jacobson et al., 2012; Tseng et al., 2012; Weiss and Lavidor,
2012; Filmer et al., 2013; Hsu et al., 2014; Nozari et al., 2014).

Several examples of contradictory final behavioral outcomes
for c-tDCS can be found at different processing levels (Jacobson
et al., 2012). Monti et al. (2008) found facilitation in a naming
task using c-tDCS over Broca’s area. Antal et al. (2004b) found
that c-tDCS applied to the visual middle temporal area improved
performance in a visuomotor coordination task. In a different
study from the same group (Antal et al., 2001) using a Gabor
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patch stimulus, only c-tDCS showed a significant change in static
and dynamic contrast sensitivities. Vicario et al. (2013) showed
that c-tDCS applied to the posterior parietal cortex enhanced
temporal accuracy in a time reproduction task compared to sham
stimulation (see also Dockery et al., 2009; Moos et al., 2012;
Weiss and Lavidor, 2012; Filmer et al., 2013). Moreover, sev-
eral studies reported no effect of c-tDCS on task performance
(e.g., Kincses et al., 2004; Iyer et al., 2005; Sparing et al., 2008;
Cerruti and Schlaug, 2009; Fertonani et al., 2010; Kraft et al.,
2010). Contrasting effects of c-DCS have also been found at the
neurophysiological level (see Matsunaga, 2004; Pellicciari et al.,
2013). A magnetoencephalography study has reported that the
two tDCS polarities induce the same cortical EEG power den-
sity (Venkatakrishnan et al., 2011). Antal et al. (2004a) showed
that c-tDCS over the primary visual cortex (V1) decreased the
amplitude of an early visual evoked potential (N70), whereas
Accornero et al. (2007) reported the opposite result with an
increased amplitude of the early P100 potential.

This complex pattern of results may be explained by the
fact that the ability or the efficacy of tDCS to induce modi-
fications of membrane polarity—and consequently behavioral
performance—depends on several methodological and technical
parameters: current density, duration, timing of application, and
pauses between stimulations (for a review, see Brunoni et al.,
2012). Clearly, all these methodological aspects will determine
the “reaction of the brain” to the DC stimulation in relation to
the subject’s state and task/protocol. As an example, the impor-
tance of duration and of the presence of pauses during the
period of stimulation has been recently demonstrated by Fricke
et al. (2011). These authors measured the motor evoked poten-
tial (MEP) amplitude after repeated tDCS. The authors found
that 5 or 10 min of c-tDCS decreased excitability and suppressed
MEP amplitude for 5 and 30 min, respectively, indicating the
importance of tDCS duration. However, if a pause of 3 min was
inserted between two stimulations of 5 min, there was an inver-
sion of the effect, resulting in MEP amplitude enhancement (see
also Monte-Silva et al., 2010). The stimulation intensity is also
an important factor. Batsikadze et al. (2013) showed that 1 mA
c-tDCS decreased MEP amplitude, but the application of 2 mA
resulted in increased cortical excitability (see also Teo et al., 2011;
Moos et al., 2012; Hoy et al., 2013). In addition, behavioral per-
formance induced by tDCS depends on the timing of application
in relation to task execution (Stagg et al., 2011; Pirulli et al., 2013;
Fertonani et al., 2014). Several studies have shown that the same
type of stimulation may have different behavioral effects (facil-
itation vs. inhibition vs. null-effect) depending on whether it is
applied before or during the task execution.

Given the heterogeneity of the effects induced by c-tDCS, the
aim of this work was to explore the outcome of applying c-tDCS
on V1. We chose an orientation discrimination task (ODT)
because it is a well established task to study visual perceptual
learning (Vogels and Orban, 1985; Shiu and Pashler, 1992), and it
has been showed to involves primarily V1 (Schoups et al., 2001; Li
et al., 2004). Nevertheless it should be considered that we cannot
be totally sure that stimulation delivered by tDCS is focalized only
under the stimulation electrode (Miranda et al., 2006; Wagner
et al., 2007). We applied c-tDCS before or during the execution

of ODT, with or without pauses during stimulation, and at dif-
ferent intensities and durations. Based on the previous reports,
our expectation was that the final outcome of the tDCS in terms
of response facilitation or inhibition would depend on the inter-
action between the brain state and when and how c-tDCS was
applied. Therefore, c-tDCS would not necessarily induce a uni-
vocal behavioral inhibition. Given that the brain is constructed
to keep certain important parameters within given limits, the
brain would react proportionally when it is shifted from these
limits in order to restore the equilibrium, as suggested by the
concept of homeostasis (see Bernard, 1878 and Cannon, 1929 in
Cooper, 2008). Therefore, an initial down-regulation induced by
an inhibitory stimulation, given for a longer time, at higher inten-
sity can be reverted, rendering the involved neurons more easily
responsive. Nevertheless to explain the effects of tDCS during a
behavioral task it has been proposed that a neural noise frame-
work should be consider (see non-linear systems and stochastic
resonance; Miniussi et al., 2013), suggesting that the outcome of
applying tDCS depends on the noise present in the system and the
level of tDCS and task -induced activity, rather than solely on the
stimulation polarity.

MATERIALS AND METHODS
ORIENTATION DISCRIMINATION TASK
We chose an ODT that is a widely studied VPL task and involves
V1 neurons (Vogels and Orban, 1985; Shiu and Pashler, 1992).
This task has been previously described in detail by our group
(Fertonani et al., 2011; see Pirulli et al., 2013). Given the ODT
characteristics, is likely that a local (i.e., V1) circuit of neuronal
populations is dedicated to execute the task, nevertheless we can-
not exclude that tDCS effects are due to a more complex neuronal
network, involving others parietal areas. Briefly, throughout the
experiment, participants were comfortably seated in an armchair
in a quiet, dimly illuminated room. The subjects had to decide as
quickly and accurately as possible whether the presented stimulus
(a target line) was tilted clockwise or counter clockwise relative
to the previously presented stimulus (reference line) (see trial
structure in Figure 1). After each response an auditory feedback
informed the subjects about the correctness of their responses (an
high tone indicated the right response while a low tone the wrong
response).

Each block of the ODT consisted of 64 trials and lasted approx-
imately 4 min. The ODT consisted of 5 experimental blocks plus
a training block. The training block contained 8 trials and an
increased rotation angle between the two stimuli (10◦ clockwise
or counter clockwise). In Experiments 1 and 2, the angular dif-
ference between the reference and the target was ±1.10, 1.21,
1.33, and 1.46◦. All of the experimental parameters were bal-
anced and randomized between blocks. In Experiment 3 (control
experiment), the task was made easier by replacing the smallest
degree of rotation (1.10◦) with 1.60◦ (1.21, 1.33, 1.46, and 1.60◦).
All of the other task characteristics were unchanged, except for the
presence of a baseline block before the stimulation.

TRANSCRANIAL DIRECT CURRENT STIMULATION
tDCS was delivered by a battery-driven current stimulator
(Eldith-Plus, NeuroConn GmbH, Ilmenau, Germany) through
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FIGURE 1 | Example of an ODT trial with the reference and target

stimuli presented in the upper right hemifield. The line can turn
clockwise or counter clockwise. The subjects were asked to decide
whether the presented stimulus was tilted clockwise or counter clockwise
relative to the previously presented stimulus.

a pair of saline-soaked surface sponge electrodes. The “active”
electrode (16 cm2) was placed over the occipital cortex in the
area corresponding to V1, which was defined as 10% of the
nasion-inion distance above the inion (mean position = 3.5 ±
0.2 cm above the inion). The reference electrode (60 cm2) was
fixed extra-cephalically on the right arm. The electrodes were kept
in place with elastic bands, and an electro-conductive gel was
applied under the electrodes to help reduce impedance to the elec-
trical current. When tDCS was applied, the polarity of the active
electrode over V1 was always cathodal. For active tDCS, the cur-
rent was ramped up over 8 s (fade-in phase), held constant for
the experimental time, and then ramped down over 8 s (fade-out
phase). In the sham c-tDCS, the current was ramped up (8 s) and
down (8 s) and stayed at level for 15 s.

Experiment 1—“Timing and pauses”
In this experiment, we investigated the effect of the timing of
stimulation during task execution, either online or offline (before
task execution), and the presence of pauses during the stimulation
(intervals of 2 min between blocks). In all conditions, we applied
c-tDCS for 22 min at 1.5 mA (current density of the active elec-
trode 0.094 mA/cm2 of the reference 0.025 mA/cm2) as shown in
Figure 2A. In the continuous stimulation, current was adminis-
tered without pauses, while in the paused stimulation condition,

FIGURE 2 | Experimental procedure. (A) Experiment 1: in the top panel,
the green lines represent the online conditions. In the bottom panel, the
blue lines represent the offline conditions. The dashed lines represent the
paused stimulations, whereas the continuous lines the continuous
stimulations. The sham condition is shown in black lines. (B) Experiment 2
(offline conditions): the short turquoise line represents 1.5 mA for 9 min, and
the double blue line represents 0.75 mA for 22 min. (C) Experiment 3
(offline conditions): the blue line represents 1.5 mA for 22 min, the double
blue line represents 0.75 mA for 22 min, and the black line represents sham
for 22 min.

the stimulation was turned on at the beginning of each experi-
mental block and maintained until the end of the block. c-tDCS
was applied for approximately 4 min during each of the 5 experi-
mental blocks, with 2 min of pauses between blocks (i.e., 4 min
of stimulation—2 min of pause—4 min of stimulation, and so
on). In the online condition, the stimulation was applied dur-
ing the task execution. In the offline condition, stimulation was
applied before task execution while the subjects were listening
to an audio book played on an audio device, maintaining the
same time intervals used in the online condition. The duration
of the entire experimental session was approximately 30 min for
the online conditions and approximately 60 min for the offline
conditions. The procedure is described in Figure 2A.

Experiment 2—“Duration and intensity”
In this experiment, we investigated the effect of the duration
and intensity of stimulation for the offline condition, as shown
in Figure 2B. Subjects were stimulated for 9 min at an inten-
sity of 1.5 mA or for 22 min at an intensity of 0.75 mA (current
density of the active electrode 0.047 mA/cm2 of the reference
0.013 mA/cm2). Data were compared with those for 22 min of
stimulation at an intensity of 1.5 mA in the offline condition
collected in Experiment 1 (see Figure 2B).

Experiment 3—Control experiment
In Experiment 3, we corroborated the effects of the stimulation
intensity for the offline protocol with a modified experimental
design (see the description of the ODT task, above). We facilitated
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the ODT and added a baseline block before the beginning of the
offline stimulation. The stimulation was applied continuously for
22 min with an intensity of 1.5 or 0.75 mA (see Figure 2C).

Sensation questionnaire
In all of the experiments, at the end of the experimental session,
we asked all subjects to complete a questionnaire (Fertonani et al.,
2010) about the tDCS-induced sensations that they experienced
during the different conditions so that we could evaluate if differ-
ent stimulation protocols (e.g., active vs. sham) induced different
sensations.

SUBJECTS
A total of 139 healthy subjects participated in the three exper-
iments. All of the participants were right-handed except for 6
subjects tested in Experiment 3, who were equally distributed
in the experimental groups. All participants had normal or
corrected-to-normal vision. Subjects with a history of seizures,
implanted metal objects, heart problems or any neurological
disease were not recruited. Moreover, subjects who had a task
performance below chance (no learning) were excluded from the
study. Based on these criteria, 17 participants were excluded. The
remaining 122 subjects (61 males, mean age ± standard devi-
ation 22.0 ± 2.9 years; range 19–33 years) participated in the
experiments.

Experiment 1—“Timing and pauses”
Seventy-two subjects were assigned to one of the five groups stim-
ulated for 22 min at 1.5 mA: online paused (14 subjects, 7 males;
21.7 ± 2.6 years), offline paused (14 subjects, 7 males; 21.6 ±
2.6 years), online continuous (10 subjects, 5 males; 21.7 ± 0.8
years), offline continuous (10 subjects, 5 males; 23.0 ± 3.6 years)
and placebo stimulation (sham, 24 subjects, 12 males; 21.7 ± 3.6
years). In the sham group, 14 subjects were stimulated online and
10 subjects were stimulated offline. The data for the online con-
ditions were collected in a previous experiment (Fertonani et al.,
2011; for details see Pirulli et al., 2013).

Experiment 2—“Duration and intensity”
We tested two additional groups (20 Subjects): 10 subjects (5
males; 22.1 ± 2.0 years) stimulated for 9 min at 1.5 mA (offline-
9 min) and 10 subjects (5 males; 21.4 ± 2.0 years) stimulated
for 22 min at 0.75 mA (offline-0.75 mA). We compared these two
groups with the offline and sham groups of Experiment 1.

Experiment 3—Control experiment
We tested three new groups (30 Subjects) stimulated for 22 min at
0.75 mA (10 subjects, 5 males, 23.0 ± 4.4 years), 1.5 mA (10 sub-
jects, 5 males, mean age 20.8 ± 1.8 years) and sham (10 subjects,
5 males; 23.6 ± 4.1 years).

The study was approved by the Ethics Committee of the
IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
Safety procedures were used in accordance with non-invasive
brain stimulation indications (Iyer et al., 2005; Poreisz et al.,
2007; Rossi et al., 2009), and written informed consent was
obtained from all participants prior to the beginning of the
experiments.

DATA ANALYSIS
The average orientation sensitivity was calculated as a d prime
value (d′) from measurements of the hit rate and false-alarm
rate, for each subject and each block separately for each stimula-
tion condition. We have chosen the d′ as a measure of accuracy
because it is roughly invariant when response bias is manipu-
late, whereas simple indexes such as proportion correct don’t
have this property. As a first index of learning rate, we analyzed
the relationship between d′ values and block numbers using lin-
ear regression analysis. This analysis allowed us to associate a
slope value with each subject. A second index called the “learn-
ing index” was calculated, for Experiment 3, by subtracting the
mean baseline d′ value from the mean d′ value of block 5 for each
subject.

The Kolmogorov-Smirnov test confirmed the normality of the
distribution of all data (d′ values, slope, learning index), and sub-
sequently data were analyzed using a repeated-measures analysis
of variance (ANOVA). The data sphericity was tested using the
Mauchly test, where appropriate. When the test results were statis-
tically significant, the data were corrected using the Huynh-Feldt
correction. The effect size is reported using the partial Eta squared
value. A p-value < 0.05 was considered significant for all statis-
tical analyses. For multiple comparisons, we used Fisher’s Least
Significant Difference (LSD) method to test our specific “a pri-
ori” hypotheses (i.e., to compare different timings of application,
intensities and durations). For all other comparisons, the p-values
were corrected using a Tukey correction.

Data from the sensations induced by c-tDCS were analyzed
using the Kruskal–Wallis one-way analysis of variance and, sub-
sequently, with multiple comparisons.

RESULTS
ORIENTATION SENSITIVITY—d′

Experiment 1—“Timing and pauses”
We performed a repeated-measure ANOVA with block (from 1
to 5) as a within-subjects factor and stimulation (online paused,
online continuous, offline paused, offline continuous, and sham)
as a between-subjects factor. We observed a significant main effect
for block [F(4, 268) = 24.105; p < 0.001; η2

P = 0.265] and stimu-
lation [F(4, 67) = 3.272; p = 0.016; η2

P = 0.163]. The interaction
between block and stimulation was not statistically significant
[F(16, 268) = 1.005; p = 0.452].

For block, multiple post-hoc comparisons revealed a statistically
significant difference between block 1 and blocks 2, 3, 4, and 5 (all
p < 0.01), between block 2 and blocks 4, and 5 (all p < 0.001),
and between block 3 and block 5 (p = 0.043).

For stimulation, multiple post-hoc comparisons revealed that
the offline paused (mean d′ ± standard error of the mean—
s.e.m. = 0.615 ± 0.122) and offline continuous (0.623 ± 0.114)
conditions were significantly different from the online paused
(0.304 ± 0.121), online continuous (0.346 ± 0.118), and sham
(0.368 ± 0.083) (all p < 0.05) conditions (see Figure 3).

These results support the initial hypothesis that c-tDCS,
applied before the ODT, modulates behavior, while c-tDCS
applied during the task does not modify the final outcome. We
found an improvement in the subject’s accuracy when c-tDCS was
applied offline.
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FIGURE 3 | Results of Experiment 1. Data are presented as the mean d′
values. The lines represent the fit of each condition. The blue lines
represent the offline conditions, and the green lines represent online
conditions. The dashed lines represent the paused stimulations, whereas
the continuous lines represent the continuous stimulations. The sham
condition is shown in black.

These data highlight the absence of a difference between the
conditions with or without pauses. Confirmation was obtained
with an ANOVA with block (from 1 to 5) as a within-subjects fac-
tor and timing (online vs. offline) and presence of pauses (paused
vs. continuous) as between-subjects factors. We observed a sig-
nificant main effect of block [F(4, 176) = 18.438; p < 0.001; η2

P =
0.295] and timing [F(1, 44) = 11.026; p = 0.002; η2

P = 0.200].
The factor pauses was not statistically significant [F(1, 44) = 0.077;
p = 0.782]. No interaction was statistically significant. For block,
multiple post-hoc comparisons revealed a statistically significant
difference between block 1 and blocks 3, 4, and 5 (all p < 0.001)
and between block 2 and block 3 (p = 0.042), 4 (p < 0.001), 5
(p < 0.001) (see Figure 3).

Having verified that the presence of pauses during stimulation
does not influence the effect of stimulation, we collapsed the two
online conditions (continuous and paused) and the two offline
conditions (continuous and paused) into one online and one
offline condition (hereafter, all conditions with the initial param-
eters, i.e., 22 min duration and 1.5 mA intensity, will be called
“online” and “offline”).

Experiment 2—“Duration and intensity”
We performed a repeated-measure ANOVA with block (from 1
to 5) as a within-subjects factor and stimulation (online, offline,
offline-9 min, offline-0.75 mA, and sham) as a between-subjects
factor. We observed a significant main effect for block [F(4, 348) =
20.286; p < 0.001; η2

P = 0.189] and stimulation [F(4, 87) = 4.727;
p = 0.002; η2

P = 0.163]. The interaction between block and
stimulation was not statistically significant [F(16, 348) = 1.512;
p = 0.092].

For block, multiple post-hoc comparisons revealed a statistically
significant difference between block 1 and blocks 2, 3, 4, and 5 (all
p < 0.001), between block 2 and blocks 4, and 5 (all p < 0.001),
and between block 3 and block 5 (p = 0.003).

FIGURE 4 | Results of Experiment 2. Data are presented as the mean d′
values. The lines represent the fit of each condition. The blue
line represents the offline 1.5 mA for the 22 min condition, the green line
represents the online 1.5 mA for the 22 min condition, the turquoise line
represents offline 1.5 mA for the 9 min condition, and the double blue
line represents the offline-0.75 mA for the 22 min condition. The sham
condition is shown in black.

For stimulation, multiple post-hoc comparisons revealed that
offline (0.618 ± 0.085) was different from sham (0.368 ± 0.083),
online (0.321 ± 0.086) and offline-0.75 mA (0.264 ± 0.109).
Moreover, offline-9 min (0.577 ± 0.123) was different from
online and offline-0.75 mA and showed a marginally signifi-
cant difference from sham (p = 0.069, all other p < 0.05) (see
Figure 4).

Experiment 3—Control experiment
We performed a repeated-measure ANOVA with block (from
baseline to 5) as a within-subjects factor and stimulation (offline,
offline-0.75 mA, and sham) as a between-subjects factor. We
observed a significant main effect for block [F(5, 135) = 7.843; p <

0.001; η2
P = 0.225] and an interaction between block and stimu-

lation [F(10, 135) = 1.980; p = 0.128]. The factor stimulation was
not statistically significant [F(2, 27) = 1.434; p = 0.256].

For block, multiple post-hoc comparisons revealed a statistically
significant difference between block baseline and blocks 1, 2, 3, 4,
and 5 (all p < 0.01). The interaction between block and stimula-
tion revealed that stimulation influences the block trend. In the
offline condition, block baseline was different from blocks 1, 2,
3, 4, and 5; block 1 was different from blocks 4 and 5; and block
2 was different from block 5. In the offline-0.75 mA condition,
block baseline was different from block 4. In the sham condition,
block baseline was different from blocks 1 and 5 and block 1 was
different from block 2.

A One-Way ANOVA on block baseline showed that in this
block, d′ was not different between the stimulation conditions
[F(2, 27) = 0.064; p = 0.938].

In Experiment 3, the presence of a block of baseline allowed
us to show a different rate of learning between the stimulation
conditions. For this purpose, we executed two different analyses.
A One-Way ANOVA on slope [F(2, 27) = 4.630; p = 0.019; η2

P =
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0.255] demonstrated that offline was different from sham (p =
0.008) and 0.75 mA (p = 0.027). A One-Way ANOVA on the
learning index [F(2, 27) = 3.658; p = 0.039; η2

P = 0.213] showed
that offline was different from sham (p = 0.034) and 0.75 mA
(p = 0.022) (see Figure 5).

Sensations induced by different conditions
In the tDCS sensation questionnaire (Fertonani et al., 2010),
each participant reported having tolerated the stimulation with-
out discomfort. The results of the questionnaire are reported in
Table 1 (Experiments 1 and 2) and Table 2 (Experiment 3). In
Experiments 1 and 2, the analysis did not reveal any differences

FIGURE 5 | Results of Experiment 3. Data are represented as the mean d′
values. The lines represent the fit of each condition. The blue line
represents the offline 1.5 mA for the 22 min condition. The double blue line
represents the offline 0.75 mA for the 22 min condition. The sham condition
is shown in black.

between the stimulations for pain, burning, heat, iron taste, and
fatigue sensations. The analysis demonstrated a statistically sig-
nificant difference between stimulations with respect to itchiness
[H(6, N = 92) = 17.382, p = 0.008] and pinching [H(6, N = 92) =
18.974, p = 0.004]. Subsequently, multiple comparisons were
performed for these two sensations. For itchiness, offline contin-
uous was significantly different (p = 0.03) from sham, whereas
for pinching, online paused and offline paused were significantly
different from sham (respectively p = 0.03 and p = 0.01). The
subjective influence on performance was equal for all the stimu-
lations. In Experiment 3, the analysis did not reveal any difference
between the stimulation conditions in the perceived sensations.

DISCUSSION
In this work, we demonstrated that c-tDCS, which is often con-
sidered to be inhibitory at the behavioral level, can actually
induce facilitatory effects, enhancing subjects’ performance. In
the Experiment 1, we showed that the effects of c-tDCS are
dependent on the timing of stimulation. Only c-tDCS before the
task induced an improvement of performance. Moreover, in this
experiment, we applied 22 min of stimulation interspersed by
pauses of 2 min and compared this protocol to a continuous pro-
tocol. We found that short pauses do not play any role in shaping
the final outcome. In Experiment 2, we applied offline stimulation
and found that 9 min of c-tDCS facilitated the performance only
slightly less. Instead, current density induced a facilitatory effect
in our protocol. Finally, Experiment 3 confirmed the importance
of current density and showed that the facilitatory effect is not due
to skill differences between subjects (i.e., differences in accuracy)
because all the groups had the same performance at baseline.

The presence of short pauses (2 min) during c-tDCS, both
in the online and in the offline conditions, did not influence
the results. In previous works, it has been shown that inter-
stimulation intervals determine the effects of c-tDCS on the

Table 1 | Transcranial direct current stimulation (tDCS)-induced sensations—Experiments 1 and 2: mean intensity of the sensations reported

by subjects after tDCS and the percentage of subjects who reported each sensation.

Stimulation condition Itchiness Pain Burning Heat Pinching Iron taste Fatigue Effect on performance

Sham Intensity 0.3 0.0 0.2 0.2 0.5 0.0 0.3 –

Subjects (%) 25 0 17 17 38 4 25 –

Online paused Intensity 0.6 0.1 0.3 0.1 1.4 0.1 0.2 0.1

Subjects (%) 50 7 21 7 93 7 14 14

Online continuous Intensity 0.9 0.2 0.3 0.3 1.0 0.0 0.2 0.2

Subjects (%) 50 20 30 30 70 0 20 20

Offline paused Intensity 0.6 0.3 0.6 0.1 1.5 0.1 0.4 –

Subjects (%) 50 14 43 7 93 7 21 –

Offline continuous Intensity 1.1 0.2 0.7 0.2 1.2 0.0 0.1 –

Subjects (%) 90 20 60 20 80 0 10 –

Offline 9 min Intensity 1.2 0.1 0.2 0.1 1.1 0.0 0.1 –

Subjects (%) 80 10 20 10 80 0 10 –

Offline 0.75 mA Intensity 0.7 0.1 0.3 0.3 1.0 0.0 0.0 –

Subjects (%) 70 10 30 30 100 0 0 –

Sensation intensity was evaluated on a 5-point scale: 0 none, 1 mild, 2 moderate, 3 considerable, and 4 strong. The column “Effect on performance” indicates the

subjective feelings of the participants relative to the effect of the tDCS-induced sensation on performance (valid only for the online condition).
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Table 2 | Transcranial direct current stimulation (tDCS)-induced sensations—Experiment 3 (See Table 1 description).

Stimulation condition Itchiness Pain Burning Heat Pinching Iron taste Fatigue

Sham Intensity 0.4 0.0 0.3 0.1 0.6 0.0 0.0

Subjects (%) 40 0 30 10 60 0 0

1.5 mA Intensity 0.6 0.0 0.4 0.3 1.1 0.1 0.0

Subjects (%) 50 0 30 30 90 10 0

0.75 mA Intensity 1.3 0.1 0.1 0.2 0.9 0.0 0.3

Subjects (%) 70 10 10 10 70 0 30

motor cortex (Monte-Silva et al., 2010; Fricke et al., 2011). These
previous studies found that varying the length of the pause
between two stimulations modified the effects on cortex excitabil-
ity. Fricke et al. (2011) demonstrated that short inter-stimulation
intervals (3 min) induced an inversion of the inhibitory effect of
c-tDCS, resulting in MEP amplitude enhancement. Monte-Silva
et al. (2010) showed that the inhibitory effects of c-tDCS were
more efficacious if a second period of stimulation was applied
during the after-effects of the first stimulation with an interval
of 3 or 20 min. However, with long inter-stimulation intervals,
the c-tDCS-induced inhibitory after-effects were diminished. In
Experiment 2 of our study, we confirmed that c-tDCS applied
before the task induces a significant improvement in perfor-
mance, regardless of the presence of pauses during stimulation.
A possible explanation for these partially contrasting data could
be the differences in stimulation parameters (i.e., the intensity
and number of pauses\blocks of stimulation). A higher intensity
of stimulation (1.5 mA) may induce a stable excitability shifts in
relation to the execution of the task, and therefore, the additional
presence of pauses might not further affect the cortical state (see
Batsikadze et al., 2013). Similarly the presence of successive mul-
tiple pauses\blocks of stimulation might decrease further changes
of the cortical state through adaptation.

During the online application of c-tDCS, while the subjects
were performing the ODT, we expected a worsening of perfor-
mance. However, it was difficult to observe a decline in subject
accuracy in our learning task because subjects could not have a
performance level lower than chance (“floor effect”). This result
suggests that the behavioral level of task performance at baseline
is a key factor in determining a null effect of c-tDCS. Additionally,
compensatory networks can be activated during stimulation
(Sack et al., 2005), and therefore, a functional compensation
might intervene, maintaining behavior after neuronal challenge
(O’Shea et al., 2007). Nevertheless, the absence of inhibition by
online c-tDCS is in line with previous data (Jacobson et al., 2012).

Our most important result involves the fact that c-tDCS
applied before the task at 1.5 mA induced a facilitatory effect
on subjects’ accuracy during the ODT (see also Dockery et al.,
2009; Moos et al., 2012; Weiss and Lavidor, 2012; Filmer et al.,
2013). Most studies that have applied 1 mA c-tDCS in the motor
system found decreased cortical excitability; this has also been
shown with a decrease in MEP amplitude (see Nitsche and Paulus,
2011; Medeiros et al., 2012). However, these physiological effects
are not linear, but they seem to depend on several parameters.
In a recently published work, Batsikadze et al. (2013) showed
that 20 min of c-tDCS at 2 mA applied to the motor cortex

significantly increased MEP amplitudes, while 1 mA of the same
stimulation decreased cortico-spinal excitability. This result high-
lights that an increase in intensity (2 mA) and duration (20 min)
of stimulation induces an opposite outcome compared to stan-
dard parameters. Batsikadze et al. (2013) suggested that this result
might be due to the direction of plasticity from the amount
of neuronal calcium influx caused by the stimulation protocol:
whereas low postsynaptic calcium enhancement induced by low-
intensity c-tDCS causes long-term depression, higher intensity
c-tDCS induces a large calcium increase, resulting in long-term
potentiation (LTP) (Cho et al., 2001; Lisman, 2001; Batsikadze
et al., 2013). Our data are in line with this result; neverthe-
less, at a systems level, different intensities of stimulation might
induce different adaptive responses by the brain, as discussed
below.

Importantly, our stimulation was applied before the task exe-
cution. The time at which the stimulation is applied has been
investigated at the behavioral level in the motor (Stagg et al.,
2011) and visual domains (Pirulli et al., 2013). Stagg et al. (2011)
showed that a-tDCS on the motor cortex has opposite effects
if applied during or before a sequence—a motor learning task.
However, the effects of c-tDCS do not seem to be timing depen-
dent. c-tDCS application during or before an explicit motor
learning task induces a slowing in reaction time (Stagg et al.,
2011). Nevertheless, in a previous work (Pirulli et al., 2013), we
demonstrated that the same type of current can induce different
effects on visual performance depending on the state of activation
of the cortex.

Here, we demonstrated that the application of c-tDCS before
the VPL induces an improvement in performance that is not
present if c-tDCS is applied during the execution of the task.
Therefore, c-tDCS causes different effects depending on the state
level of the neurons at the moment of stimulation (Dockery et al.,
2009; Tseng et al., 2012; Weiss and Lavidor, 2012; Filmer et al.,
2013; Hsu et al., 2014; Nozari et al., 2014). While an online effect
would rely mainly on the depolarization or hyperpolarization
induced by tDCS interacting with task execution (see Miniussi
et al., 2013), an offline protocol would rely more on a change
in the state of the stimulated area induced by the stimulation
i.e., a shift in the input strength needed for the final response
(see Figure 5 in Miniussi et al., 2013). Thus, all these aspects,
which can be defined as “relatively simple” technical parameters,
influence brain activity in response to exogenous stimulation.

Artificially altering neuronal function can trigger homeostatic
changes at the synaptic level (Turrigiano and Nelson, 2004). For
example, if a synapse is constantly over-inhibited, there can be
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a compensatory increase in receptor activity at the postsynaptic
membrane, termed up-regulation. Homeostatic plasticity is a
fundamental physiological mechanism that maintains neural
functions within predefined optimal ranges (Bienenstock et al.,
1982; Turrigiano and Nelson, 2004; Abraham, 2008). The basis
of homeostatic plasticity is that the threshold for LTP induction
is not stable but varies depending on previous neuronal activity
induced by non-invasive stimulation (Ziemann and Siebner,
2008; Siebner, 2010). Therefore, the application of tDCS before
and during the task of interest may result in different functional
states. The application of c-tDCS before the execution of the
task would lower the level of postsynaptic neural activity, causing
a decrease in the threshold for the induction of successive
facilitatory mechanisms. The induced neural modification could
then facilitate LTP-like mechanisms and consequently induce
an improvement in behavioral performance (Bienenstock et al.,
1982; Abraham, 2008). Homeostatic mechanisms can stabilize
cortical excitability within a range (Siebner et al., 2004). Thus,
an initial down-regulation induced by c-tDCS can be reverted.
Applying this theory to our data, pre-conditioning the V1 cortex
with 22 min of inhibitory stimulation could render neurons that
are involved in task execution more easily excitable. In classical
studies, a release phenomenon (rebound) has been found at
the end of the cathodal DC (Creutzfeldt et al., 1962). However,
the timing of this inversion might depend, at least in part, on
stimulation parameters like intensity and duration. Indeed,
stimulating offline with a different duration or intensity changes
the behavioral effects. Our data highlighted the fact that the final
behavioral response, obtained by applying tDCS, depends on the
history of the stimulated area (i.e., metaplasticity). This has been
previously demonstrated in animal studies in which the direction
and magnitude of synaptic plasticity depends on the previous
history of postsynaptic activity (Huang et al., 1992; Wang and
Wagner, 1999).

From a physiological perspective, c-tDCS over the scalp can
induce a hyperpolarization at the soma of perpendicularly ori-
ented neurons (Jefferys, 1981; Bikson et al., 2004). However, we
are measuring behavior and therefore should consider a net-
work level of reasoning rather than just a cellular one and
present data testify the complexity of a neural network response.
Indeed, changes in hyperpolarization alter the sensitivity of the
entire system and therefore its response threshold, but these
changes are ultimately expressed on subject performance. The
final response to the task depends on the strength of the signal
and on the signal-to-noise ratio, where the signal is the neural
activity operational to the task and the noise is random neural
activity. Clearly, in this case, the signal-to-noise ratio relies on
a system that has changed its state after c-tDCS, a system that
has adapted to exogenous stimulation. Adaptation occurs when
receptors\neurons change their sensitivity to a stimulus. In the
visual system, adaptation to reduced light intensity increases the
visual system’s ability to detect a stimulus. In the same way, the
reduced cortical activity induced by c-tDCS causes an improved
threshold for orientation sensitivity (d′) by reducing background
noise. Therefore, an inhibitory stimulation may increase the
signal-to-noise ratio in the system and facilitate perceptual learn-
ing (Miniussi et al., 2013).

In conclusion, the present data show that an inhibitory stimu-
lation does not always induce a deterioration in performance. The
effects of c-tDCS should be considered in relation to the timing
and the application parameters that will alter the state of the cor-
tical network carrying out a task. We suggest that when applying
c-tDCS before a task, it is necessary to consider the involvement of
cognitive and non-cognitive adaptation mechanisms. The appli-
cation of a tDCS protocol that induces a depression in cortical
activity over a specific stimulated area might result in increased
sensitivity in visual performance. This is a further example of
how the nervous system maintains a dynamic state to maintain
performance in different environments.
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