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Schizophrenia is thought to arise due to a complex interaction between genetic and
environmental factors during early neurodevelopment. We have recently shown that
partial genetic deletion of the schizophrenia susceptibility gene neuregulin 1 (Nrg1) and
adolescent stress interact to disturb sensorimotor gating, neuroendocrine activity and
dendritic morphology in mice. Both stress and Nrg1 may have converging effects upon
N-methyl-D-aspartate receptors (NMDARs) which are implicated in the pathogenesis
of schizophrenia, sensorimotor gating and dendritic spine plasticity. Using an identical
repeated restraint stress paradigm to our previous study, here we determined NMDAR
binding across various brain regions in adolescent Nrg1 heterozygous (HET) and wild-type
(WT) mice using [3H] MK-801 autoradiography. Repeated restraint stress increased
NMDAR binding in the ventral part of the lateral septum (LSV) and the dentate gyrus (DG)
of the hippocampus irrespective of genotype. Partial genetic deletion of Nrg1 interacted
with adolescent stress to promote an altered pattern of NMDAR binding in the infralimbic
(IL) subregion of the medial prefrontal cortex. In the IL, whilst stress tended to increase
NMDAR binding in WT mice, it decreased binding in Nrg1 HET mice. However, in the
DG, stress selectively increased the expression of NMDAR binding in Nrg1 HET mice but
not WT mice. These results demonstrate a Nrg1-stress interaction during adolescence on
NMDAR binding in the medial prefrontal cortex.
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INTRODUCTION
Schizophrenia is thought to arise due to a complex interac-
tion between genetic and environmental factors during critical
early periods of neurodevelopment that result in disease onset
in late adolescence/early adulthood (Weinberger, 1987; Murray
et al., 1991; Lewis and Levitt, 2002; Van Winkel et al., 2008;
Jaaro-Peled et al., 2009; Van Winkel et al., 2010; Van Os et al.,
2010). Ionotropic N-methyl-D-aspartate receptors (NMDARs)
mediate activity-dependent plasticity of glutamatergic synapses
(Wenthold et al., 2003; Bennett, 2009) and play a key role in
normal brain development through regulation of memory, atten-
tion and learning processes (Hudspith, 1997; Lieth et al., 2001;
Bennett, 2009; Kantrowitz and Javitt, 2010).

Hypofunction of glutamatergic neurotransmission in the form
of abnormal functioning of NMDARs in corticolimbic regions of
the brain may explain the symptoms of schizophrenia (Carlsson
and Carlsson, 1990; Bennett, 2009). For example, the adminis-
tration of NMDAR antagonists such as phencyclidine (PCP) to
humans induces most of the positive and negative symptom, as
well as cognitive impairments observed in schizophrenia patients
(Javitt, 1987). Similarly, administration of NMDAR antagonists

like MK-801 in rodents, particularly during neurodevelopment,
promotes lasting schizophrenia-relevant behavioral phenotypes
such as locomotor hyperactivity, prepulse inhibition of star-
tle (PPI) deficits, social withdrawal and cognitive dysfunction
(Facchinetti et al., 1993; Sircar, 2000; Wang et al., 2001; Harris
et al., 2003; Wiley et al., 2003; Andersen and Pouzet, 2004; Stefani
and Moghaddam, 2005; Du Bois et al., 2008). Furthermore,
post-mortem schizophrenia brain tissue studies have reported an
increased binding of the radiolabelled NMDAR ligand MK-801 in
the frontal cortex and caudate-putamen (Kornhuber et al., 1989;
Newell et al., 2005). Although, reduced NMDAR sub-unit expres-
sion has recently been reported in schizophrenia brains which was
accompanied by a reduced concentration of NMDA (Errico et al.,
2013).

The neurotrophic factor neuregulin 1 (NRG1), is a widely
accepted schizophrenia susceptibility gene which plays a signif-
icant role in normal brain maturation by influencing neuronal
migration, myelination, and synaptic plasticity (Pearce et al.,
1987; McDonald and Johnston, 1990; Stefansson et al., 2002;
Harrison and Law, 2006; Mei and Xiong, 2008; Barros et al.,
2009; Bennett, 2009, 2011). Interestingly, schizophrenia patients
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show altered expression of both the ErbB family of receptors
for NRG1 and NMDARs (Stefansson et al., 2002; Chong et al.,
2008; Alaerts et al., 2009; Hatzimanolis et al., 2013). The shared
regulation of neuronal plasticity through the Nrg1-ErbB recep-
tor and NMDARs systems has been demonstrated through an
interaction in the post synaptic density (PSD) via the anchor-
ing protein PSD-95 (Garcia et al., 2000; Huang et al., 2000;
Bao et al., 2004; Murphy and Bielby-Clarke, 2008). Interestingly
partial genetic deletion of Nrg1 hypophosphorylates NR2B sub-
units of NMDARs (Bjarnadottir et al., 2007) and promotes subtle
changes in NMDAR binding in a number of schizophrenia rele-
vant brain regions in adult rodents (Dean et al., 2008; Long et al.,
2013; Newell et al., 2013).

Schizophrenia etiology also consists of an environmental com-
ponent. Early life stress might be the common denominator
linking several environmental risk factors including urbanicity,
cannabis use, migration, childhood trauma and obstetric compli-
cations (Geddes and Lawrie, 1995; Dalman, 2003; Myin-Germeys
et al., 2003; Corfas et al., 2004; Glaser et al., 2006; Henquet
et al., 2008; Walker et al., 2008; Van Os et al., 2010). Indeed,
adolescence is a period of heightened risk to develop schizophre-
nia (Walker and Bollini, 2002; Costello et al., 2003; Paus et al.,
2008). Increased stress reactivity during adolescence coincides
with normal maturation of cognitive abilities, and rapid devel-
opment of the prefrontal cortex (Leussis et al., 2008; Rahdar
and Galvan, 2014) and stabilization of the hippocampus (Leussis
et al., 2008). Both the prefrontal cortex and hippocampus are
vulnerable to the negative effects of stress (Jinks and McGregor,
1997; Sullivan and Gratton, 1999; Buijs and Van Eden, 2000;
McEwen, 2007). Moreover, these regions display schizophrenia
brain pathology such as a reduced density of dendritic spines,
small protrusions which support excitatory synapses in neuronal
circuits (Weinberger and Lipska, 1995; Velakoulis et al., 1999;
Eichenbaum, 2000; Glantz and Lewis, 2000; Preston et al., 2005;
Von Bohlen Und Halbach et al., 2006; Lawrie et al., 2008; Ebdrup
et al., 2010). Stress hormone exposure during adolescence in
mice, alters the expression of NMDAR subunits in the prefrontal
cortex and hippocampus (Lee et al., 2003; Sterlemann et al., 2010;
Buret and Van Den Buuse, 2014), regions that regulate cognitive
and sensorimotor gating, and are sensitive to stress-induced loss
of dendritic spine density and gray matter losses (Kassem et al.,
2013). No prior study has directly examined the effects of adoles-
cent restraint stress on [3H] MK-801 binding in rodents. In adult
rats chronic variable stress increased [3H] MK-801 binding in
the prefrontal cortex and decreased binding in the hippocampus
(Lei and Tejani-Butt, 2010). Given that both neuregulin and stress
impact upon NMDARs in their own right, this opens the possi-
bility that neuregulin might confer vulnerability to the effects of
stress on NMDAR expression.

Nrg1 confers vulnerability to the effects of environmental chal-
lenges of relevance to schizophrenia. Our laboratory has shown
that partial genetic deletion of neuregulin 1 increases sensitivity
to the neurobehavioral actions of cannabinoids (Boucher et al.,
2007a,b, 2011; Long et al., 2010, 2012, 2013; Spencer et al., 2013)
and methamphetamine (Spencer et al., 2012), both of which are
drugs of abuse known to activate stress systems in the brain
including the HPA axis (Gerra et al., 2003; Huizink et al., 2006;

King et al., 2010; Van Leeuwen et al., 2011). We and others have
also recently demonstrated that genetic variation in Nrg1 confers
vulnerability to the neurobehavioral effects of stress and modifies
neuronal signaling pathways sub serving the stress response. For
example, rats heterozygous for type II Nrg1 display altered expres-
sion of glucocorticoid receptors in the pituitary, hippocampus
and paraventricular nucleus of the hypothalamus (Taylor et al.,
2010). Partial genetic deletion of Nrg1 conferred vulnerability
to the effects of adolescent social defeat stress on spatial work-
ing memory function and modulation of inflammatory cytokines
in the prefrontal cortex and hippocampus (Desbonnet et al.,
2012). We have also recently shown that partial genetic deletion
of Nrg1 altered neurobehavioral responses to repeated adoles-
cent restraint stress (Chohan et al., 2014). Repeated adolescent
stress selectively impaired the development of normal senso-
rimotor gating in Nrg1 heterozygous (Nrg1 HET) mice which
correlated with a dysregulation in stress-induced corticosterone
release. Furthermore, pyramidal neurons in the medial prefrontal
cortex of Nrg1 HET mice exposed to repeated adolescent restraint
stress had shorter dendritic lengths and complexity, as well as
an increased dendritic spine density. Here we hypothesize that
repeated restraint stress, coupled with disrupted Nrg1-ErbB4
signaling during adolescence, might interact to alter NMDAR
binding in the mouse brain.

METHODS
MICE
Adolescent (PND 35-49) male Nrg1 HET mice (C57BL/6JArc
background strain) and wild-type (WT) littermates were used.
The mice were bred in our animal house, sourced from a total
of 9 litters and intermixed at weaning on postnatal day (PND)
21. Genotypes were determined after weaning at PND 21 as
previously described (Karl et al., 2007). The mice were housed
(4–5 animals per homecage) in a room on a 12:12 h light:dark
reverse light schedule with food and water available ad libitum.
Animals had access to environmental enrichment including a
cardboard toilet roll, igloo, sunflower seeds, tissue paper and
running wheels. Environmentally enriched housing is beneficial
when exploring gene and environment interactions (G × E) in
mice because it better approximates human cognitive and sen-
sorimotor development than standard housing (Burrows et al.,
2011). Nrg1 HET mice were generated by Prof Richard Harvey
(Victor Chang Cardiac Research Institute, Sydney) using a target-
ing vector in which most of exon 11, which encodes the trans-
membrane domain, was replaced by a neomycin resistance gene
cassette (Stefansson et al., 2002). All research and animal care
procedures were approved by the University of Sydney’s Animal
Ethics Committee and were in agreement with the Australian
Code of Practice for the Care and use of Animals for Scientific
Purposes.

EXPERIMENTAL DESIGN
Male mice were subjected to 30 min/day of restraint stress for
14 days from PND 36 to PND 49 as described in our previ-
ous study (Chohan et al., 2014). Restraint stress was chosen
as it is a well-characterized physical stressor in rodents that
activates the HPA axis and increases anxiety-related behavior
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(Eiland and McEwen, 2010; Sutherland et al., 2010; Sutherland
and Conti, 2011; Chesworth et al., 2012). Non-stressed animals
(WT and Nrg1 HET) did not receive restraint stress and remained
undisturbed in their homecages, similar to prior methods (Eiland
and McEwen, 2010; Eiland et al., 2012; Hill et al., 2013; Kwon
et al., 2013). Stressed mice were placed in a restraint device
(Harvard Apparatus, Holliston, MA, USA), which consisted of
a close-ended clear perspex cylinder (9.5 × 2.5 cm). Mice were
handled daily for 7 days prior to the commencement of experi-
mentation and randomly allocated to 4 experimental groups: (1)
WT-no stress (WT NS, n = 6); (2) WT-stress (WT S, n = 7); (3)
Nrg1 HET-no stress (Nrg1 HET NS, n = 6), and (4) Nrg1 HET-
stress (Nrg1 HET S, n = 5). Homecage controls and restraint
stressed animals were sacrificed by cervical dislocation immedi-
ately following their final 30 min restraint stress episode on day 14
(PND 49) and their brains were extracted, snap frozen and stored
at −80◦C prior to sectioning.

NMDA RECEPTOR AUTORADIOGRAPHY
NMDAR autoradiography was conducted on brains extracted
from the same mice that were used to determine corticosterone
levels reported previously by our research group (Chohan et al.,
2014). In these mice a differential effect of repeated stress was
observed between Nrg1 HET and WT mice on plasma corticos-
terone concentrations. The whole brain was coronally sectioned
at 20 μm on a cryostat, thaw-mounted onto polysine slides and
stored at −80◦C until use. Brain regions selected for quantifi-
cation were identified based on a standard mouse brain atlas
(Paxinos, 2004) at bregma levels +1.78 [containing prelimbic
(PrL) and infralimbic (IL) cortices); +0.50 (containing anterior
cingulate cortex (ACC), rostral caudate-putamen (rCPu), motor
cortex (M1-M2), ventrolateral septum (LSV)]; and −1.94 (con-
taining retrosplenial granular cortex (RSG), and subregions of the
hippocampus including dentate gyrus (DG), CA1 (cornu ammo-
nis area 1) and CA3 (cornu ammonis area 3) stratum radiatum
layers (Figure 1). Our prior work showed that Nrg1 hypomor-
phism alone and in combination with stress affected dendritic
morphology in the medial prefrontal cortex and hippocampus
(Chohan et al., 2014) and so these regions were consequently
analyzed for MK-801 binding in the present study. Furthermore,
the medial prefrontal cortex and hippocampus are strongly impli-
cated in the neurobiology of schizophrenia and stress (Michelsen
et al., 2007; Radley et al., 2008; Alfarez et al., 2009). The caudal
ACC region was examined, as it has been shown previously by our
group to be affected by stress (Kassem et al., 2013) and is a point
of comparison to another MK-801 binding study performed in
Nrg1 HET mice (Newell et al., 2013). Further, we examined the
LSV at it is thought to mediate stress and anxiety-related behavior
(Dielenberg et al., 2001; Sheehan et al., 2004) and was shown to be
dysregulated in our prior work on Nrg1-cannabinoid interactions
(Boucher et al., 2007b, 2011).

The sections were incubated in 30 mM HEPES buffer (pH
7.45) containing 23 nM [3H] MK-801 (specific activity 27.5
Ci/mmol, PerkinElmer, USA), 100 μM glycine, 100 μM L-
glutamate and 1 mM EDTA for 2.5 h at room temperature.
Non-specific binding was determined by incubating adja-
cent sections with [3H] MK-801 in the presence of 200 μM

(ketamine hydrochloride, National Measurement Institute,
Sydney, Australia). Following the incubation, the sections were
washed twice for 20 min each at 4◦C in 30 mM HEPES contain-
ing 1 mM EDTA (pH 7.45) and rapidly dried under a stream of
cool air.

QUANTITATIVE ANALYSIS OF AUTORADIOGRAPHIC IMAGES
Following the binding assays, all sections were placed on Kodak
BioMax MR Film along with a [3H] autoradiographic standard
(Amersham, UK) for 4 or 6 weeks. Some of the samples from
the CA1 region of the hippocampus were re-exposed for 4 weeks
due to initial oversaturation of the films, to allow them to fall
within the normal pseudolinear response range. Films were devel-
oped using Kodak GBX developer/fixer (Sigma-Aldrich, NSW,
Australia). Films were scanned using a BioRad GS-800 calibrated
densitometer, and quantification of mean density performed in
each brain region [average optical density over three adjacent
brain sections, for total binding and non-specific binding, using
ImageJ (http://rsbweb.nih.gov/ij)]. Using density values for cal-
ibrated [3H] autoradiographic standards, radioactive concentra-
tions were derived for all density values using a standard curve,
and converted into fmol per mg tissue equivalent (fmol/mg).
All regions quantified were analyzed blind to treatment group.
Specific in vitro binding of [3H] MK-801 was calculated by sub-
traction of non-specific from total binding values. For each brain
region, 6 frozen sections (3 total binding and 3 non-specific bind-
ing were selected per animal. Due to sectioning problems some of
the sections were torn and unsuitable for processing. Therefore,
for some of the brain regions the final value represents an average
from five animals only.

STATISTICAL ANALYSES
Statistical analyses were performed using SPSS (IBM, IL, USA)
or Statview (SAS Institute Inc) software. Statistically significant
variation in radioligand binding was identified by Two-Way anal-
ysis of variance (ANOVA) with genotype or stress as factors.
Planned Bonferroni comparisons were conducted to further ana-
lyze differences between experimental groups on all measures
using the following four specific comparisons (WT-no stress vs.
Nrg1 HET-no stress, WT-stress vs. Nrg1 HET-stress, WT-no stress
vs. WT-stress, and Nrg1 HET-no stress vs. Nrg1 HET stress). The
results of all analyses were deemed significant at p < 0.05.

RESULTS
In all groups, the highest density of specific binding was dis-
tinctly observed in the hippocampus (CA1 & CA3 subregions).
Moderately high levels of [3H] MK-801 binding were observed
in the PrL, IL and anterior cingulate cortices. The rCPu, RSG,
M1-M2, DG and LSV subdivisions displayed moderate-low levels
of [3H] MK-801 binding. Two factor ANOVA revealed a signifi-
cant genotype by stress interaction (F(1, 18) = 4.53, p < 0.05) in
the IL cortex (Table 1, Figure 2A). A significant effect of stress
was found for [3H] MK-801 binding in the LSV (F(1, 19) = 5.58,
p < 0.05) and DG (F(1, 20) = 15.51, p < 0.001), demonstrating
that restraint stress significantly increased NMDAR expression in
these regions independent of genotype (Table 1 and Figure 2B).
Planned Bonferroni comparisons revealed that stressed Nrg1 HET
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FIGURE 1 | Mouse brain atlas adapted from Paxinos (2004), indicating

the brain regions quantified (A,B,C); PrL: prelimbic cortex, IL: infralimbic

cortex, rCPu: rostral caudate putamen, M1-M2: motor cortex, ACC:

anterior cingulate cortex, LSV: ventrolateral septum, RSG: retrosplenial

granular cortex, DG: dentate gyrus, CA1 and CA3 subregions of the

hippocampus. Representative autoradiograms of coronal brain sections
showing total [3H] MK-801 binding (A1,B1,C1) and non-specific [3H] MK-801
binding (A2,B2,C2). Scale bar = 2.5 mm.

mice exhibited greater MK-801 binding in the DG compared
with their non-stressed counterparts (p < 0.01). There were no
main effects of genotype or stress, or genotype by stress interac-
tions for NMDAR binding in any other brain regions examined
(Table 1). No significant NMDAR binding differences between
specific experimental groups in the other brain regions were
observed (p > 0.05).

DISCUSSION
Here we show that in adolescence partial genetic deletion of Nrg1
promoted an idiosyncratic change in medial prefrontal cortex
NMDAR binding in response to repeated stress. Repeated stress
exposure tended to decrease [3H] MK-801 binding in Nrg1 HET
mice whilst promoting an increase in binding in WT mice in the
IL cortex, a subregion of the medial prefrontal cortex. In the DG
region of the hippocampus, stress significantly increased NMDAR
binding. Interestingly, stressed Nrg1 HET mice displayed signif-
icantly higher NMDAR binding than non-stressed Nrg1 HET
mice, an effect that was absent in WT mice. In addition, we report
for the first time that restraint stress increased [3H] MK-801
binding levels in the LSV.

Partial genetic deletion of Nrg1 failed to significantly alter
NMDAR binding in the other brain regions examined (PrL, rCPu,

RSG, ACC, motor cortex & CA1/CA3 regions of the hippocam-
pus) when measured in late adolescence (PND 49). Prior studies
have shown that adult Nrg1 HET mice (> PND 60) display
unaltered [3H] MK-801 binding in the cortex, caudate putamen,
hippocampus and the septum (Dean et al., 2008; Long et al.,
2013). Inconsistent with our present findings in late adolescent
mice, adult Nrg1 HET mice exhibited increased NMDAR bind-
ing in the ACC and motor cortex compared to WT mice (Newell
et al., 2013). The differences observed between the current study
and the findings of Newell et al. (2013) may be explained by
the different developmental period examined between the stud-
ies. As NMDARs undergo significant changes across development
(Scheetz and Constantine-Paton, 1994; Cull-Candy et al., 2001;
Haberny et al., 2002) and the locomotor hyperactivity phenotype
of Nrg1 HET mice develops over time (Karl et al., 2007), it is pos-
sible that the effect of partial genetic deletion of Nrg1 on NMDAR
binding might also follow a developmental trajectory and become
significant in adulthood.

Here we show for the first time that repeated restraint stress
in adolescence increased NMDAR binding in the LSV. The LSV
is responsible for promoting active behavioral responses in stress-
ful situations (De Oca and Fanselow, 2004; Sheehan et al., 2004)
and its ablation provoked septal rage and exaggerated defensive
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FIGURE 2 | [3H] MK-801 binding to NMDARs (fmol/mg tissue) in (A)

infralimbic cortex (IL), (B) ventrolateral septum (LSV) and (C) dentate

gyrus (DG) in repeatedly stressed (S) and non-stressed (NS) wild

type-like (WT) and Nrg1 HET mice; n = 5–7/group. Data are presented
as means ± s.e.m. Significant effects are indicated by #p < 0.05 and
###p < 0.001 (main effects of stress); ∗∗p < 0.01 [planned Bonferroni
comparison, Nrg1 HET (NS) vs. Nrg1 HET (S)].

behaviors (Brady and Nauta, 1953). These findings imply that
the integrity of the lateral septum is vital for the inhibition of
excessive fear and anxiety. New evidence however indicates that
the role of the lateral septum in controlling fear and anxiety is
more complex than this, as infusion of CRF type 2 receptor ago-
nists or optogenetic transient activation of CRF type 2 receptors
in the lateral septum promoted anxiety-related behaviors (Henry
et al., 2006; Anthony et al., 2014). Little research has examined the
role of NMDARs in the lateral septum in the control of defensive
behaviors. NMDAR knockout mice display reduced aggressive
behavior and swim-stress induced Fos expression in the lateral
septum than WT mice (Duncan et al., 2009).
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The ability to directly compare studies examining the effects of
stress on NMDARs is limited by factors including the diversity of
stress paradigms implemented, differences in post-stress washout
periods, and the multitude of methods used to analyse NMDAR
expression. Most studies have explored the effect of stress on
NMDAR subunit protein & mRNA expression, rather than total
NMDAR binding as measured with [3H] MK-801 autoradiogra-
phy (Sterlemann et al., 2010; Buret and Van Den Buuse, 2014).
No prior study has directly examined the effects of adolescent
restraint stress on [3H] MK-801 binding in rodents. In adult
rats chronic variable stress increased [3H] MK-801 binding in
the prefrontal cortex, caudate putamen, nucleus accumbens and
basolateral amygdala, while decreasing binding in the hippocam-
pus (Lei and Tejani-Butt, 2010). Here we could only discern
measurable effects of stress on the LSV and DG, which might be
explained by our use of a relatively mild restraint stress paradigm
(30 min per day for 14 days). To resolve the effects of stress on
NMDAR binding in other brain regions might require a more
intense stress regimen like the classic paradigm of 6 h per day
for 21 days that reliably induces retraction of dendrites and loss
of gray matter (Radley et al., 2004, 2006, 2008; Magarinos et al.,
2011; Kassem et al., 2013). Alternatively, it is possible that ear-
lier application of the stressor (i.e., from PND 28) might have
been more effective as recent data suggests that peripubertal stres-
sor exposure (i.e., encompassing the juvenile through to pubertal
period, PND 28-42 in rats) is critical to provoking neurobio-
logical changes in stress circuits including increased NMDAR
expression (Tzanoulinou et al., 2014).

Using an identical adolescent stress protocol we recently
reported that partial genetic deletion of Nrg1 and repeated stress
interacted to offset the normal development of sensorimotor gat-
ing and blunted stress-induced corticosterone levels (Chohan
et al., 2014). We also provided evidence of abnormal dendritic
morphology in the medial prefrontal cortex of Nrg1 HET mice
exposed to stress. Specifically, unlike WT mice whose dendritic
morphology was unaffected by stress, repeated stress in Nrg1 HET
mice reduced the length of dendrites and their complexity, and
promoted an increase in dendritic spine density in pyramidal
neurons of layers II/III of the anterior cingulate and PrL cortices
of the medial prefrontal cortex. Given that Nrg1 and stress both
influence NMDARs (Garcia et al., 2000; Bjarnadottir et al., 2007;
Law et al., 2007; Li et al., 2007; Chong et al., 2008; Bennett, 2009;
Cohen et al., 2010; Bennett et al., 2011; Buret and Van Den Buuse,
2014) and that NMDARs regulate the density of dendritic spines
(Alvarez et al., 2007; Hayashi-Takagi et al., 2010) we hypothe-
sized that Nrg1 and stress might interact to alter NMDAR binding
specifically in the anterior cingulate and PrL cortices.

Therefore, it was surprising to observe in the present study that
the Nrg1-stress interaction on NMDAR binding occurred in the
IL cortex rather than the PrL cortex. The IL cortex shares recip-
rocal connections with the PrL cortex (Gabbott et al., 2003, 2005;
Jones et al., 2005; Hoover and Vertes, 2007; Gutman et al., 2012)
and the IL and PrL regions of the medial prefrontal cortex cooper-
ate to produce an integrated response to stress (McDougall et al.,
2004). Therefore, it is possible then that the changes in dendritic
morphology in the anterior cingulate and PrL cortices in our pre-
vious study (Chohan et al., 2014) may be a cause or consequence

of the Nrg1-stress interaction on NMDAR binding in the IL cor-
tex we observed here. Indeed, perturbation of activity in the IL has
flow on effects on the PrL cortex, as activation of IL cortex out-
put via optical stimulation in adult rats inhibits PrL pyramidal
neurons (Ji and Neugebauer, 2012). Here, there was a tendency
toward reduced [3H] MK-801 binding in the medial prefrontal
cortex of Nrg1 HET mice which accords with the general view of
NMDAR hypofunction in schizophrenia as well as research show-
ing that NMDAR expression is reduced in the schizophrenia brain
(Errico et al., 2013). Although, this contradicts studies that report
[3H] increased MK-801 binding in post-mortem schizophrenia
brains (Kornhuber et al., 1989; Newell et al., 2005).

Here we report that repeated stress-induced increased
NMDAR binding in the DG in Nrg1 HET mice but not in WT
mice, which provides some additional support for Nrg1 HET
mice being more sensitive to the effects of stress on NMDAR
binding. However, this must be interpreted cautiously in the
absence of an overall interaction between Nrg1 genotype and
stress condition. The DG plays an important role in memory
and sensorimotor gating function (Reul et al., 2009; Guo et al.,
2013), thus the stress induced increase in NMDAR binding specif-
ically in Nrg1 HET mice observed here may partially explain the
spatial memory and PPI deficits observed previously in these
mice following adolescent stress (Desbonnet et al., 2012; Chohan
et al., 2014). Juvenile stress decreases expression of type III Nrg1
in the hippocampus (Brydges et al., 2014), so it is possible
that the effects of stress on an already depleted Nrg1 level in
hypomorphic mice is sufficient to then increase [3H] MK-801
binding. Why the DG but not the CA1 or CA3 region is selec-
tively vulnerable to this effect is unclear. It might be partially
explained by the DG expressing relatively lower levels of NRG1
than other hippocampal subfields (Law et al., 2004). The mecha-
nisms responsible for the effect of stress on [3H] MK-801 binding
in Nrg1 HET mice will need to be specifically addressed in future
research including studies which directly examine the expression,
internalization and phosphorylation status of NMDAR, and also
whether this effect can be magnified by a more intense stress
protocol.

Our findings further reinforce research showing that varia-
tion in Nrg1 confers vulnerability to the effects of stress. Human
studies have shown that a NRG1 polymorphism interacted with
psychosocial stress to effect reactivity to expressed emotions in
schizophrenia patients (Keri et al., 2009) and that polymor-
phic variation in NRG1 interacts with job strain to increase the
risk of heart disease (Hintsanen et al., 2007). Reduced type II
Nrg1 expression in rats induced increased baseline corticosterone
levels, a disruption in recovery of stress-induced plasma corticos-
terone concentrations, as well as elevated levels of glucocorticoid
receptors in the hippocampus, paraventricular nucleus of the
hypothalamus and pituitary gland (Taylor et al., 2010). Further,
complex gender specific interactions of type II Nrg1 genotype
and adolescent chronic variable stress were reported on anxiety-
related behavior and cued fear conditioning (Taylor et al., 2012).
Stress-induced increase in corticosterone was more pronounced
in Nrg1 HET mice than WT mice at the younger (3–4 months)
but not the older age group (6–7 months) (Chesworth et al.,
2012), highlighting the developmental effect of stress and Nrg1
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hypomorphism on the HPA axis. Adolescent social defeat stress
has also been shown to selectively impair spatial memory and
decrease expression of the inflammatory cytokine interleukin 1β

in the prefrontal cortex of Nrg1 HET mice, but not WT mice
(Desbonnet et al., 2012). The latter finding might be related to
the present finding of partial genetic deletion of Nrg1 promoting
a unique stress-induced downregulation of NMDAR binding in
the prefrontal cortex, as interleukin 1β (IL 1β) has been shown
to potentiate NMDA function and reduce the density of synap-
tic spines (Viviani et al., 2003, 2006). Further, the effects of IL 1β

are mediated by interleukin receptor 1 (ILR1) which appear to
interact with NR2B subunits of the NMDAR in the postsynaptic
density (Gardoni et al., 2011; Viviani et al., 2013).
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