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In order to investigate roles of dopamine receptor subtypes in reward-based learning,
we examined choice behavior of dopamine D1 and D2 receptor-knockout (D1R-KO and
D2R-KO, respectively) mice in an instrumental learning task with progressively increasing
reversal frequency and a dynamic two-armed bandit task. Performance of D2R-KO mice
was progressively impaired in the former as the frequency of reversal increased and
profoundly impaired in the latter even with prolonged training, whereas D1R-KO mice
showed relatively minor performance deficits. Choice behavior in the dynamic two-armed
bandit task was well explained by a hybrid model including win-stay-lose-switch and
reinforcement learning terms. A model-based analysis revealed increased win-stay, but
impaired value updating and decreased value-dependent action selection in D2R-KO mice,
which were detrimental to maximizing rewards in the dynamic two-armed bandit task.
These results suggest an important role of dopamine D2 receptors in learning from past
choice outcomes for rapid adjustment of choice behavior in a dynamic and uncertain
environment.
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INTRODUCTION
There has been a large progress in understanding roles of
dopamine in reward processing over the last two decades. In
particular, the finding that midbrain dopamine neurons sig-
nal the difference between actual and expected rewards (Schultz
et al., 1997) led to the proposal that midbrain dopamine neu-
rons signal reward prediction error (RPE; the difference between
actual and predicted rewards) as postulated by the reinforcement
learning (RL) theory (Sutton and Barto, 1998). In RL, a deci-
sion maker assigns a value funciton (a sum of expected future
rewards) to each available action and makes choices based on
a set of value functions in order to maximize a long-term sum
of rewards. In turn, value functions are updated according to
the difference between actual and predicted rewards (i.e., RPE).
A large body of subsequent studies employing the RL theory
have yielded results that further support the role of dopamine
in updating value functions according to RPE (Daw and Doya,
2006; Dayan and Niv, 2008; Kable and Glimcher, 2009; Niv and
Montague, 2009; Lee et al., 2012). This line of research empha-
sizes an essential role of dopamine in learning to choose optimally
for maximizing rewards. However, dopamine-deficient animals
can learn to choose more rewarding targets (Berridge, 2007) and
some dopamine neurons signal stimulus salience rather than RPE
(Brischoux et al., 2009; Matsumoto and Hikosaka, 2009; Wang
and Tsien, 2011), which led to the proposal that the primary
role of dopamine might be in forming incentive salience rather

than learning to choose more rewarding targets. In addition,
dopamine involvement in another aspect of RL, namely control-
ling exploration-exploitation trade-off, has been proposed. In a
dynamic environment, it is advantageous for a decision maker
to choose an action with a low value function from time to time
(exploration) rather than to exclusively choose an action with the
highest value function (exploitation) in order to keep track of
dynamically changing value functions. Previous theoretical and
empirical studies have suggested involvement of dopamine in
controlling exploratory vs. exploitive choices (Frank et al., 2009;
Beeler et al., 2010; Humphries et al., 2012). As such, the extent
and nature of dopamine roles in RL are still under debate.

We investigated this matter using mice while manipulating
stability and certainty of action-reward contingency. Given that
the core concept of RL is to discover optimal choice strategy
in a dynamic and uncertain environment (Sutton and Barto,
1998), it would be desirable to employ a behavioral task that
emulates dynamicity and uncertainty in action-reward contin-
gency in investigating the role of dopamine in RL. However,
unlike in human studies (e.g., Frank et al., 2004, 2007, 2009;
Pessiglione et al., 2006; Klein et al., 2007; Rutledge et al., 2009),
animal studies seldom tested effects of dopamine manipulation in
a behavioral task wherein action-reward contingency was uncer-
tain and dynamically varied in the context of value-based decision
making, which undermines an important advantage of using
animal over human subjects (i.e., comprehensive and complete
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manipulation of dopamine). In the present study, to manipulate
stability and certainty of action-reward contingency, we tested
mice in a simple instrumental learning task with the frequency of
reversal progressively increased (i.e., dynamicity of action-reward
contingency was gradually increased) and a dynamic two-armed
bandit (TAB) task in which binary choices were associated with
different reward probabilities (i.e., uncertainty was added). In
addition, we examined effects of manipulating dopamine receptor
subtypes rather than dopamine itself. Specifically, we examined
choice behavior of dopamine D1 and D2 receptor knock-out
(D1R-KO and D2R-KO, respectively) mice. Dopamine D1R and
D2R are major subtypes among five subtypes of dopamine recep-
tors, and their anatomical distributions and functional roles are
distinct (Hurley and Jenner, 2006; Kreitzer and Malenka, 2008).
These features call for separate manipulations of D1R and D2R
to fully capture the extent of dopamine functions. For these rea-
sons, we examined choice behavior of D1R-KO and D2R-KO
mice while manipulating stability and certainty of action-reward
contingency.

MATERIALS AND METHODS
SUBJECTS
D1R-KO and D2R-KO mice were described previously (Drago
et al., 1994; Kelly et al., 1997) and were purchased from JAX lab
(Bar Harbor, Maine, USA). They were bred to C57BL/6J mice for
more than 10 generations in our lab. All D2R−/− mice and their
wild type (WT) were obtained by crossing D2R+/− and D2R+/−,
and had C57BL/6J genetic background. Few D1R−/− mice with
C57BL/6J genetic background survived to adult stage. To over-
come this problem, D1R+/− were backcrossed with 129S1/SvlmJ
and their F1 progenies were crossed with 129S1/SvlmJ again.
Crossing D1R+/− and D1R+/− of F2 progenies gave rise to
D1R−/− mice, which were, together with WT littermates as con-
trol, used in this study. Therefore, all D1R−/− mice and their WT
control had C57BL/6J-129S1/SvlmJ hybrid genetic background.
For genotype analysis, the following primer sets were used: 5′-
AAA GTT CCT TTA AGA TGT CCT-3′ and 5′-TGG TGG CTG
GAA AAC ATC AGA-3′ for D1R (350 bp); 5′-TGT GAC TGC AAC
ATC CCA CC-3′ and 5′-GCG GAA CTC AAT GTT GAA GG-
3′ for D2R (105 bp); 5′-CTT GGG TGG AGA GGC TAT TC-3′
and 5′-AGG TGA GAT GAC AGG AGA TC-3′ for the KO state
(neo; 280 bp) in both KO cases. The experimental protocol was
approved by the Institutional Animal Care and Use Committees
of Ajou University School of Medicine, Ewha Womans University,
and Korea Advanced Institute of Science and Technology.

APPARATUS
The animals were trained on a modified T-maze (Figure 1A) that
was made of black acrylic (overall dimension, 55 × 30 cm; width
of track: 6 cm with 10-cm high walls along the entire track). It
was elevated 80 cm from the floor and covered with a transparent
acrylic lid. Water (10∼15 μl; same amount for a given animal)
was delivered by briefly opening a solenoid valve at the upper
left and upper right corners. The maze contained five sliding
doors to guide movement direction and to impose delay on the
central stem for some animals (delay-imposed WT animals; see
below). Navigation of the animal was monitored by three sets of

photobeam sensors that signaled the animal’s arrival at the goals
and return to the start arm. Monitoring of animal behavior and
water delivery were automatically controlled by a personal com-
puter using LabView software (National Instruments, TX, USA).

BEHAVIORAL TASKS
The animals were tested in a reversal task and a dynamic TAB
task. In both tasks, they were placed on the central stem of the
maze and allowed to choose freely between two goals that deliv-
ered water reward. They were required to come back to the central
stem via the lateral alleys. Sliding doors were opened or closed
when appropriate to guide navigation of the animals (Figure 1A).

Reversal learning task
One goal delivered water with 100% probability and the other
with 0%. Locations of the correct and incorrect goals were
reversed initially across sessions, and then within a session. For
this, the animals went through five stages of testing as follows:
stage 1, training without reversal (the location of correct goal was
counterbalanced across animals; 45–60 daily trials), 3 d; stage 2,
reversal of target location at the beginning of the first session
and training without further reversal, 4 d (60 daily trials); stage
3, reversal of target location at the beginning of each session, 4 d
(60 daily trials); stage 4, one episode of target location reversal
in the middle of each session, 4 d (60 daily trials with reversal at
trial #31); stage 5, two episodes of target location reversal in the
middle of each session, 4 d (90 daily trials with reversal at trials
#31 and 61). For stages 4 and 5, the initial location of the correct
target was randomly determined for each session except on day 1
(reversal of target location from the previous day).

Dynamic TAB task
Two goals delivered water with different probabilities in the
dynamic TAB task (Kim et al., 2009; Sul et al., 2010). Reward
probability of a goal was constant within a block of trials but
was changed across blocks without any sensory cues. The mice
therefore had to detect changes in relative reward probabilities by
trial and error. The number of trials in each block was between
35 and 55. The order of block reward probabilities in a given ses-
sion was determined randomly with the constraint that the option
with the higher reward probability always changed its location at
the beginning of a new block. All animal groups went through at
least three stages of training (stages 1–3) that employed different
arming probabilities as follows: stage 1, two blocks, 0.84 vs. 0.12;
stage 2, three blocks, 0.84 vs. 0.14; stage 3, three blocks, 0.80 vs.
0.16. D2R animal groups went through two additional stages of
training (stages 4–5) with arming probabilities as follows: stage
4, three blocks, 0.72 vs. 0.24; stage 5, four blocks, 0.72 vs. 0.12
and 0.63 vs. 0.21. This was to test whether poor performance of
D2R-KO animals (see below) could be overcome by prolonged
training. The animals were trained for 10 d in stages 1–4, and for
60 d in stage 5. However, D2R-KO animals were further trained
for 10 additional days in each of stages 1–4 (total 20 d of training
in each stage). Again, this was to test whether prolonged training
can enhance performance of D2R-KO mice.

All animals initially went through 2–3 days of acclimation to
the maze and a shaping period. Of the animals tested in both
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FIGURE 1 | Behavioral task and experimental groups. (A) Left, A
schematic diagram of the modified T-maze used in the present study. Mice
were allowed to choose between two target locations (gray circles) that
delivered water reward. Arrows indicate movement directions that were
controlled by opening and closing of 5 sliding doors (indicated by dashed
lines). Triangles indicate locations of photobeam sensors. The maze was
divided into four sections (blue lines; D, delay; A, approach to goal; Rw,
reward; Rt, return to central stem). Scale bar, 6 cm. (B) Mean trial durations
(±s.e.m.) during the reversal and TAB tasks are shown for each experimental
group. There were three experimental groups for each receptor subtype [KO,
WT, and WT with delay (dWT)]. Delay was imposed to dWT animals on the

central stem in order to match their trial durations to those of KO mice. Trial
duration was not significantly different between D1R-KO and D1R-dWT mice
(reversal task, p = 0.913, TAB task, p = 0.767; One-Way ANOVA followed by
Bonferroni post-hoc tests) but significantly longer for D2R-dWT than D2R-KO
mice (reversal task, p = 2.3 × 10−45, TAB task, p = 1.4 × 10−48). Asterisks,
significant differences (p < 0.05). Six D2R-WT and five D2R-KO mice were
excluded from calculating trial durations in the TAB task because trial
durations were not measured for them. (C) Mean durations of the delay,
approach, reward and return phases are shown for D1R-KO, D1R-dWT,
D2R-KO, and D2R-dWT mice for the TAB task. Asterisks, significant
differences (t-test, p < 0.05).

tasks, the sequence of the tasks was counterbalanced across the
animals (18 and 13 were tested first in the reversal and dynamic
forging task, respectively), and they were kept in their home cages
for 2–3 weeks between the two phases of training to minimize
interference between the two tasks.

EXPERIMENTAL GROUPS
D1R-KO and D2R-KO mice were compared with their respective
WT littermates (C57BL/6J-129S1/SvlmJ and C57BL/6J, respec-
tively). Also, because D1R-KO and D2R-KO mice were slower in
performing the behavioral tasks, we imposed delay on the central
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stem for separate groups of WT littermates to match their trial
durations to those of mutant mice. Therefore, there were three
experimental groups [WT, WT with delay (dWT) and KO] for
each receptor type. A fixed length of delay (the difference in mean
trial duration between D2R-KO and D2R-WT; 15 s in the rever-
sal task and 10 s in the TAB task) was imposed to D2R-dWT
mice, which resulted in longer mean trial durations for D2R-dWT
than D2R-KO mice. For D1R-dWT mice, to avoid this problem,
delay durations were adjusted in blocks of 10 trials based on mean
delay durations of D1R-KO and D1R-dWT mice up to that time
point so that the final mean delay duration was similar between
the two animal groups for a given training stage (Figure 1B).
We divided the maze into four sections (delay, approach, reward
and return sections; Figure 1A) and measured time the animals
spent in each section during the TAB task to compare response
patterns of the KO and dWT mice. For this, for each of D1R-
KO, D1R-dWT, D2R-KO, and D2R-dWT animal groups, 1000
trials were evenly divided to each animal and each training day
of stages 1–3, and then the resulting number of trials for a given
animal for a given training day was randomly selected for anal-
ysis. D1R-dWT mice spent less time at the reward site and in
coming back from a goal site to the central stem than D1R-KO
mice, as expected. D2R-dWT mice also spent less time at the
reward site, but were slower in coming back from a goal site to
the central stem than D2R-KO mice (Figure 1C). This might be
because D2R-dWT mice were trapped in the central section (“D”
in Figure 1A) for 15 (reversal task) or 10 s (TAB task) in each trial
(they might be reluctant to enter the central section), whereas the
duration of delay was variable across blocks of 10 trials for D1R-
dWT mice. Other than these differences between KO and dWT
mice, we were unable to identify unusual behavior of KO mice
on the maze.

Note that different trial durations of D2R-KO and D2R-dWT
mice did not affect the conclusions because the performance of
D2R-KO mice was impaired relative to D2R-dWT mice which had
longer, rather than shorter, trial durations. Also, similar results
were obtained when the animal’s performance was analyzed with
a logistic regression analysis that took trial-by-trial variations in
trial duration into account, and when model-based analysis was
performed after matching trial durations between D2R-KO and
D2R-dWT mice groups by excluding some behavioral sessions
(see below). Of a total of 48 animals, the majority (n = 31, 64.6%)
were tested in both behavioral tasks, seven (14.6%) were tested
only in the reversal task, and ten (20.8%) were tested only in the
TAB task. Nine D1R-WT, six D1R-dWT, four D1R-KO, five D2R-
WT, five D2R-dWT, and nine D2R-KO mice were tested in the
reversal task, and nine D1R-WT, six D1R-dWT, three D1R-KO,
nine D2R-WT, five D2R-dWT, and nine D2R-KO mice were tested
in the dynamic TAB task.

ANALYSIS
Logistic regression analysis
Two different logistic regression analyses were used. The first
logistic regression analysis was to examine effects of D1R-KO
and D2R-KO on the animal’s performance controlling for trial-
by-trial variations in trial duration. For this, we related the
animal’s choice with the animal type (KO vs. WT) and trial

duration as the following:

log

(
pHigh(i)

pLow(i)

)
= aGXG + aTT(i) + a0,

where pHigh(i) (or pLow(i)) is the probability of selecting the direc-
tion with a higher (or lower) reward probability in the i-th trial,
and XG is a dummy variable representing the animal type (KO vs.
WT) and T(i) is the trial duration in the i-th trial.

The second regression analysis was to examine how the ani-
mal’s choices and their outcomes in the past 10 trials influenced
the animal’s choice in the current trial in the TAB task. For this,
the following logistic regression analysis was performed (Lau and
Glimcher, 2005; Huh et al., 2009; Kim et al., 2009):

log

(
pL(i)

pR(i)

)
=

10∑
j = 1

γ r
j

(
RL(i − j) − RR(i − j)

)

+
10∑

j = 1

γ c
j

(
CL(i − j) − CR(i − j)

) + γ0,

where pL(i) (or pR(i)) is the probability of selecting the left (or
right) goal in the i-th trial. The variables RL(i) (or RR(i)) and
CL(i) (or CR(i)) are reward delivery at the left (or right) goal
(0 or 1) and the left (or right) goal choice (0 or 1) in the i-th
trial, respectively. The coefficients γ r

j and γ c
j denote the effect of

past rewards and choices, respectively, and γ0 is a bias term. The
regression model was applied separately for each animal using the
entire choice data during the TAB task (D1R, stages 1–3; D2R,
stages 1–5).

Models of behavior
In order to obtain insights on psychological/neural processes
underlying the animal’s choice behavior, we tested how well
different models can account for the animal’s choice behavior
during the TAB task. The full model contained simple RL, win-
stay-lose-switch, and uncertainty-based exploration terms along
with choice bias, and one or more of these terms were left
out in reduced models. In the full model, win-stay-lose-switch
and uncertainty-based exploration terms for the chosen action
“a” and unchosen action “b” (left or right goal choice) were
determined as the following:

Ua(t) = Sa(t) + ρμa(t) + εσa(t),

Ub(t) = Sb(t) + ρμb(t) + εσb(t),

where Sa(t) and Sb(t) are win-stay (WS) and lose-switch (LS)
terms, respectively [Sa(t) = Sreward and Sb(t) = 0 if rewarded in
the previous trial and Sa(t) = 0 and Sb(t) = S0 otherwise], and
μa(t) and σa(t) determine uncertainty-based exploration in the
t-th trial. Contributions of the factors for the uncertainty-based
exploration were quantified by the free parameters ρ and ε. μa(t)
is the mean reward value computed from the reward structure
experienced in the past trials and σa(t) is the SD of the distribu-
tion of the estimated reward structure. For the estimation of the
mean expected values from the experienced reward history, we
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used the Kalman filter (Kruschke, 2008; Frank et al., 2009) and
μa(t) was assumed to follow the normal distribution N(μ, σ 2).
The values μa(t) and σa(t) were updated for the chosen action
“a” as the following:

μa(t + 1) = μa(t) + ka(t) {R(t) − μa(t)} ,

ka(t) = σa(t)2

σa(t)2 + σreward(t)2
,

where ka(t) is the Kalman gain and σreward(t) is the SD of the
actual rewards taken by the mice. σa(t) was computed as the
following:

σa(t + 1) = σa(t) {1 − ka(t)} .

For the unchosen action “b,” the values μb(t) and σb(t) were
unchanged.

For the RL term, a Q-learning model (Sutton and Barto, 1998)
was used. Briefly, action values were updated based on RPE in
each trial as the following:

if choice = left, RPE = R(t) − QL(t),

QL(t + 1) = QL(t) + α · RPE,

QR(t + 1) = QR(t),

if choice = right, RPE = R(t) − QR(t),

QR(t + 1) = QR(t) + α · RPE,

QL(t + 1) = QL(t),

where α is the learning rate, QL(t) and QR(t) are action val-
ues for leftward and rightward choices, respectively, and R(t) is
the reward in the t-th trial (1 if rewarded and 0 otherwise). The
learning rate was different depending on the sign of RPE as the
following: α = αpos if RPE >0, and α = αneg otherwise.

Choices were made according the softmax action selection rule
as the following:

pL(t) = 1

1 + exp ( − β(QL(t) − QR(t)) − (UL(t) − UR(t)))
,

where pL(t) is the probability for selecting the left goal and β is the
inverse temperature that determines the degree of randomness
in action selection. Model parameters were estimated separately
for each animal based on the entire choice data (D1R, stages
1–3; D2R, stages 1–5) using fminsearch function of MATLAB
(Mathwork Inc.).

STATISTICAL TESTS
Two-Way repeated measure ANOVA was applied separately to the
behavioral data obtained from D1R and D2R animal groups to
examine effects of experimental groups (KO, WT, and dWT) and
training days on the animal’s behavioral performance. For the sta-
ble phases of the TAB task (stages 2–5), behavioral performance
data were collapsed across stages 2–3 (D1R and D2R animal
groups) and stages 4–5 (only D2R animal groups) and analyzed

with One-Way ANOVA. ANOVA was followed by Bonferroni
post-hoc tests (SPSS 20). Model parameters of KO and dWT
animal groups were compared with Wilcoxon rank-sum tests
(two-tailed). Statistical significance of the regression coefficients
was tested with t-tests (two-tailed). A p-value < 0.05 was used
as a criterion for significant difference. The data are expressed as
mean ± s.e.m.

RESULTS
PERFORMANCE IN THE REVERSAL TASK
All animal groups learned to choose the correct goal over the
initial 3 days of training (stage 1; Two-Way repeated measure
ANOVA, main effect of training day, D1R, p = 1.0 × 10−6; D2R,
p = 4.0 × 10−6), during which the location of the correct goal
was fixed, so that the animal’s performance (% correct choice)
on the third day of training was >80% in all animal groups
(Figure 2A). However, D2R-KO mice were slower in improv-
ing performance compared to the other animal groups (main
effect of animal group, p = 0.004; Bonferroni post-hoc test, D2R-
KO vs. D2R-WT, p = 0.007; D2R-KO vs. D2R-dWT, p = 0.035).
D1R-KO mice also showed a trend for lower performance com-
pared to D1R-dWT mice (main effect of animal group, p =
0.045; D1R-KO vs. D1R-dWT, p = 0.054). Upon the reversal of
the correct goal location, all animals learned to choose the new
target location (stage 2; days 4–7; main effect of training day,
D1R, p = 1.0 × 10−6; D2R, p = 1.0 × 10−7) so that the animal’s
performance on the fourth day (day 7) of training was >80%
(Figure 2A). However, performance of D2R-KO mice was lower
(main effect of animal group, p = 8.0 × 10−6) relative to those
of D2R-WT (p = 9.3 × 10−5) and D2R-dWT (p = 3.1 × 10−5)
mice. D1R-KO mice showed lower performance than the other
animals groups only on day 5 (main effect of animal group,
p = 0.160; group × day interaction, p = 0.012; day 5, D1R-KO
vs. D1R-WT, p = 0.026; D1R-KO vs. D1R-dWT, p = 0.013).

D1R-KO mice showed relatively intact performance during
subsequent stages of reversal training (Figure 2A). No significant
performance variation was found within D1R animal groups dur-
ing across-session reversal (stage 3; correct goal location changed
at the beginning of each session, days 8–11; main effect of animal
group, p = 0.590) or one-daily reversal (stage 4; correct goal loca-
tion changed once during each session; days 12–15; p = 0.233).
The only significant difference was found between D1R-WT and
D1R-dWT animals on day 18 (p = 0.007). By contrast, perfor-
mance of D2R-KO mice was significantly impaired in all subse-
quent stages of reversal training (main effect of animal group,
p-values < 9.0 × 10−5) compared to D2R-WT (p-values < 3.0 ×
10−4) and D2R-dWT (p-values < 2.0 × 10−4; Figure 2A).

To further control for trial-by-trial variations in trial duration,
we examined effects of D1R-KO and D2R-KO on the animal’s per-
formance using a logistic linear regression analysis that included
trial-by-trial duration as an explanatory variable (see Materials
and Methods). This analysis indicated significant effect of D1R-
KO on the animal’s performance during stage 1 (t-test, p = 7.8 ×
10−10), 4 (p = 7.8 × 10−9) and 5 (p = 6.3 × 10−15), but not
during stages 2 and 3 (p = 0.921 and 0.382, respectively), and sig-
nificant effect of D2R-KO in all training stages (p-values < 3.0 ×
10−5). For direct comparison between D1R-KO and D2R-KO
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FIGURE 2 | Behavioral performance in the reversal task. (A) Behavioral
performance (% correct choice; mean ± s.e.m. across animals) is shown for
each daily session for each experimental group. (B) Relative performance

(performance difference between KO and dWT groups; mean ± s.e.m.
across daily sessions) is shown for each training stage. Asterisks, significant
differences (t-test, p < 0.05).

animals, we compared relative performance, which is the dif-
ference in performance (% correct choice) between KO and
dWT groups (�D1R and �D2R). �D2R was significantly lower
than �D1R in all training stages except the first (t-test, stages
1–5, p = 0.369, 0.048, 0.007, 1.2 × 10−4, and 0.001, respectively;
Figure 2B). Note that �D2R was lower than �D1R, even though
trial durations were shorter for D2R-KO than D2R-dWT mice (a
favorable condition for a positive value of �D2R).

PERFORMANCE IN THE TAB TASK
The animal’s performance was assessed by the proportion
of rewarded choices [P(R)] (session examples are shown in
Figure 3A), but similar results were obtained when it was assessed
by the proportion of choosing the higher arming probability
goal in each block (data not shown). In stage 1, performances
of D1R-KO and D1R-dWT mice were not significantly different
from each other, but significantly lower than that of D1R-WT
mice (main effect of group, p = 0.002; D1R-KO vs. D1R-WT, p =
0.033; D1R-KO vs. D1R-dWT, p = 1.000; D1R-WT vs. D1R-dWT,
p = 0.003). By contrast, performance of D2R-KO was signifi-
cantly lower than those of D2R-WT and D2R-dWT mice (data
during the initial 10 d were analyzed; main effect of animal group,
p = 1.0 × 10−7; D2R-KO vs. D2R-WT, p = 1.0 × 10−7; D2R-KO
vs. D2R-dWT, p = 0.010; Figure 3B).

Daily performance of the animals stayed more or less stable in
the subsequent stages (Figure 3B). We therefore collapsed behav-
ioral data of stages 2–3 and those of stages 4–5 and analyzed them
together. In stages 2–3, performances of D1R-KO and D1R-dWT
mice were similar, but significantly lower than that of D1R-WT
mice (One-Way ANOVA, p = 1.0 × 10−7; Bonferroni post-hoc
test, D1R-KO vs. D1R-WT, p = 1.0 × 10−7; D1R-KO vs. D1R-
dWT, p = 0.963; D1R-WT vs. D1R-dWT. p = 1.0 × 10−7) as in
stage 1, suggesting that impaired performance of D1R-KO rela-
tive to D1R-WT animals was because of longer trial durations.
On the other hand, D2R-KO mice showed significantly lower
performance than the other D2R animal groups in stages 2–3

(p = 1.0 × 10−7; D2R-KO vs. D2R-WT, p = 1.0 × 10−7; D2R-
KO vs. D2R-dWT, p = 1.0 × 10−7) as well as in stages 4–5
(p = 1.0 × 10−7; D2R-KO vs. D2R-WT, p = 1.0 × 10−7; D2R-
KO vs. D2R-dWT, p = 1.0 × 10−7; Figure 3C). Regression analy-
sis considering trial duration also indicated no significant effect
of D1R-KO in stages 2–3 (t-test, p = 0.434), but significant
effects of D2R-KO in stages 2–3 (p = 3.9 × 10−48) and 4–5 (p =
1.9 × 10−54). In addition, relative performance of D2R-KO mice
(�D2R) was significantly lower compared to that of D1R-KO
mice (�D1R) in stage 1 (initial 10 days, t-test, p = 9.9 × 10−6)
as well as stages 2–3 (p = 9.6 × 10−5; Figure 3D).

EFFECTS OF PAST CHOICES AND REWARDS
In order to examine how the animal’s current choice was influ-
enced by the animal’s choice and its outcome in the previous trial,
we assessed the proportions of repeating rewarded choice (com-
bined win-stay or cWS) and switching from unrewarded choice
(combined lose-switch or cLS). Note that we call these measures
as cWS and cLS to denote combined effects of potential multiple
underlying processes and to distinguish them from pure WS and
LS that are independent of the other components of the model
(such as the RL term; see Materials and Methods). We addition-
ally examined effects of the animal’s choice and its outcome two
trials before on the current choice by assessing proportions of
repeating the choice that was rewarded two trials before (cW2S)
and switching from the choice that was unrewarded two trials
before (cL2S). In the reversal task, cWS and cLS tended to be
lower in D2R-KO than D2R-dWT mice (Two-Way repeated mea-
sure ANOVA followed by Bonferroni post-hoc tests, cWS, stages
2–5, p-values < 0.05, cLS, stage 3, p = 0.009; stage 4, p = 0.047),
but similar between D1R-KO and D1R-dWT mice (cWS, p-values
> 0.1; cLS, p-values > 0.20; Figure 4A), which is consistent with
impaired performance of D2R-KO mice in the reversal task. In
the TAB task, no significant difference was found in these mea-
sures between D2R-KO and D2R-dWT mice except cWS in stage
1 (first 10 trials of stages 1–4 were used for D2R-KO mice for
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FIGURE 3 | Behavioral performance in the dynamic TAB task. (A)

Examples of choice behavior (chosen from stage 3; left, D2R-KO; right,
D2R-dWT) in the TAB task. Tick marks indicate trial-by-trial choices of
the animal (top, left choice; bottom, right choice; long, rewarded; short,
unrewarded) and vertical lines denote block transitions. Numbers
indicate reward probabilities in each block. The line shows the
probability of choosing the left goal (PL) in moving average of ten trials.

(B) The proportion of rewarded choices [P(R)] is shown for each daily
session for each experimental group. (C) Behavioral performance data
(mean ± s.e.m. across animals) were pooled across days for stages
2–3 and 4–5. (D) Relative performance (mean ± s.e.m. across daily
sessions) is shown for stages 1 and 2–3. Asterisks, significant
difference [(C), One-Way ANOVA followed by Bonferroni post-hoc tests;
(D), t-test, p < 0.05)].

statistical comparisons with the other mice; cWS, stage 1, p <

0.001; stages 2–5, p > 0.18; cLS, all stages, p-value > 0.09). On
the other hand, cW2S was significantly lower (all training stages,
p-values < 0.002) and cL2S was significantly higher (stages 2, 3
and 5, p-values < 0.002) in D2R-KO than D2R-dWT mice. No
significant difference was observed for these measures between
D1R-KO and D1R-dWT mice (stages 1–3, cW2S, p-values > 0.5;
cL2S, p-values > 0.75; Figure 4A). Thus, in the TAB task, D2R-
KO animals were different from D2R-dWT mice in incorporating
distant reward history (reward at t-2 trial) in deciding which goal
to choose.

We also ran a logistic regression analysis to examine further
how the animal’s choices were influenced by the history of past
choices and their outcomes during the TAB task. All animals
tended to alternate their choices (choice effect) whereas repeat
the choice that was rewarded in recent trials (reward effect) as
previously described for rats (Huh et al., 2009; Kim et al., 2009)
and monkeys (Lau and Glimcher, 2005). However, effects of past
choices and rewards were different across WT, dWT, and KO ani-
mal groups for both D1R and D2R (Figure 4B), and the following
characteristics are worth noting. First, reward effect of the previ-
ous trial (t-1) in WT animals was markedly different from those
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FIGURE 4 | Effects of past choices and rewards on the animal’s choice.

(A) Proportions of cWS (repeating rewarded choice in the previous trial),
cLS (switching from unrewarded choice in the previous trial), cW2S
(repeating rewarded choice two trials before) and cL2S (switching from
unrewarded choice two trials before) are shown for each behavioral stage.
Asterisks, significant difference between KO and dWT mice (Two-Way
repeated measure ANOVA followed by Bonferroni post-hoc tests, p <

0.05). (B) Results of a logistic regression analysis. Effects of past choices
and rewards (up to 10 trials) on the animal’s choice in the current trial were
estimated by applying a logistic regression analysis to the behavioral data
obtained during the TAB task (D1R, stages 1–3; D2R, stages 1–5). A positive
coefficient for the choice effect indicates the animal’s tendency to repeat
the same choice, and a positive coefficient for the reward effect indicates
the animal’s tendency to repeat the rewarded choice. Error bars, 95%
confidence intervals. Asterisks, significant difference between KO and dWT
mice (One-Way ANOVA followed by Bonferroni post-hoc tests, p < 0.05).

of dWT and KO animals for both D1R and D2R, indicating a
strong effect of trial duration on this measure. Second, effects of
past choices and rewards were different between KO and dWT
groups for both D1R and D2R (One-Way ANOVA followed by
Bonferroni post-hoc tests), indicating that not only D2R-KO, but
also D1R-KO altered the way past choices and rewards influenced
the animal’s choices. Thus, although D1R-KO mice showed rel-
atively intact performance in the TAB task, the pattern of their

choices was different from those of the other animal groups.
Third, past choice effect was not a monotonic function for D2R-
KO mice. The magnitude of past choice effect increased between
t-1 and t-2 trials and then gradually declined for more distant tri-
als. Although results of a simple regression analysis are limited in
providing useful information on underlying neural processes, this
pattern raises a possibility that effects of past choices and rewards
are mediated by multiple underlying processes.

MODELING
The above analysis results suggest altered choice behavior of D1R-
KO and D2R-KO mice from their respective control mice (D1R-
dWT and D2R-dWT, respectively). However, they are limited
in revealing underlying psychological/neural processes because
externally observed measures might be outcomes of combined
effects of multiple underlying processes. For example, win-stay
can be influenced by an RL-like process, wherein actions are
selected according to values that are computed based the his-
tory of past choices and rewards, as well as by a simple win-
stay-lose-switch strategy irrespective of values. We therefore per-
formed a model-based analysis to obtain insights on psychologi-
cal/neural processes underlying the animal’s choice behavior. We
have shown previously that rat’s choice behavior in a dynamic
TAB task similar to the one used in the present study is well
explained by a simple RL model (Huh et al., 2009). However,
the non-monotonic influence of past choices in D2R-KO mice
(Figure 4B) suggests existence of multiple processes mediating
effects of past choices and rewards. Also, previous studies added
an additional RL process (Beeler et al., 2010), a perseveration
factor (Rutledge et al., 2009) or a win-stay-lose-switch strategy
(Worthy and Maddox, 2014) to an RL model to account for
humans’ or mice’s choice behavior. In addition, an uncertainty-
based exploration term was added to an RL model to account
for choice behavior of human subjects carrying different alleles
for genes controlling dopamine functions (Frank et al., 2009).
We therefore examined several different versions of a hybrid
model, and found that a model consisting of a win-stay-lose-
switch strategy (irrespective of value), a simple RL component
(which updates value in a recursive manner) and uncertainty-
based exploration well explained the animal’s choice behavior in
the TAB task. Specifically, the model containing separate pro-
cesses for win-stay (WS, repeating the rewarded choice in the
previous trial irrespective of value), lose-switch (LS, switching
from the unrewarded choice in the previous trial irrespective of
value), value learning from positive outcome, value learning from
negative outcome and uncertainty-based exploration along with
choice bias outperformed all other reduced models as assessed by
Akaike’s information criterion (AIC) and Bayesian information
criterion (BIC) (Burnham and Anderson, 2002) (Table 1).

Results of the logistic regression analysis (Figure 4B) indicated
that trial duration strongly affected the influence of the previ-
ous reward on the animal’s subsequent choice in the TAB task.
As can be expected from this, trial duration was significantly cor-
related with the majority of model parameters (Figure 5). Based
on this observation, we focused on comparing model param-
eters between KO and dWT animals. For D1R, WS (Sreward)
and uncertainty-based exploration (ε) were significantly higher
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for KO than dWT animals (Wilcoxon rank sum test, p = 0.048
for both parameters; Figure 6A). For D2R, WS was significantly
higher (p = 0.001), and value learning from positive outcome
(αpos), value learning from negative outcome (αneg) and inverse
temperature controlling randomness in action selection (β) were
significantly lower (p = 0.001, 0.007, and 0.001, respectively) for
KO than dWT animals (Figure 6B). To test the possibility that dif-
ferences in model parameters between D2R-KO and D2R-dWT
mice were because of different trial durations between these ani-
mal groups, we repeated the same analysis after matching trial
durations of D2R-KO and D2R-dWT animal groups by excluding
long (D2R-dWT, 244 out of 500) and short (D2R-KO, 244 out of
700) behavioral sessions of the TAB task (resulting trial durations,
D2R-dWT, 21.3 ± 0.4 s; D2R-KO, 21.3 ± 0.5 s; t-test, p = 0.980).

Table 1 | Results of model comparison.

[RL, Bias, [RL, Bias, [RL, Bias, [RL, Bias,

Stay] Stay, UE] WS, LS] WS, LS, UE]

AIC 0 1 2 38

BIC 2 3 4 32

Each number indicates the number of animals whose choice behavior in the

TAB task (total n = 41) was best explained by a given model in terms of AIC or

BIC. The full model explained choice behavior best in the majority of animals.

RL, reinforcement learning term; Bias, bias to choose one particular goal; UE,

uncertainty-based exploration; WS, win-stay; LS, lose-switch; Stay, perseveration

factor (tendency to stay regardless of choice outcome).

The analysis yielded similar results (Figure 6C). This result might
appear inconsistent with significant correlations between trial
duration and model parameters (Figure 5). However, the differ-
ence in trial duration between D2R-KO and D2R-dWT mice was
relatively small compared to that between D2R-KO and D2R-
WT mice and, more importantly, a given amount of change in
trial duration would have only a weak effect when the original
trial duration is relatively long because reward effect presum-
ably decays over time according to an exponential or hyperbolic
function (Kalenscher and Pennartz, 2008). Consistent with these
accounts, no model parameter except one (αpos; even in this case
a positive, rather than negative, correlation was found suggesting
a possibility of spurious correlation) showed a significant cor-
relation with trial duration when the subjects with mean trial
durations <10 s were excluded (data not shown).

Choices predicted by the full model using parameters obtained
from the animals matched actual choices of the animals dur-
ing the TAB task quite well. The proportion of rewarded choices
[P(R)], the proportion of choosing the higher arming-probability
goal [P(H)], the proportion of repeating rewarded choice in the
previous trial [P(cWS)], and the proportion of switching from
unrewarded choice in the previous trial [P(cLS)] were simi-
lar between the actual and predicted data (Figure 7A). To gain
insights on how choice behavior of KO mice was influenced
by a particular component of the model, we examined effects
of replacing a model parameter on behavioral performance of
the model. When the value of a particular model parameter of
D2R-KO mice was replaced with that of D2R-dWT mice, the
performance [P(R)] was enhanced for αpos, αneg , and β, but

FIGURE 5 | Correlations between trial duration and model parameters.

WS (Sreward ), win-stay; LS (S0), lose-switch; ε, coefficient for
uncertainty-based exploration; αpos, learning rate for positive outcome; αneg ,

learning rate for negative outcome; β, inverse temperature indicating
randomness in action selection; VL, choice bias toward the left goal. All
animals tested in the TAB task were included in the analysis.
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FIGURE 6 | Model parameters. Shown are coefficients for the explanatory
variables of the full model applied to the behavioral data obtained during the
TAB task (D1R, stages 1–3; D2R, stages 1–5; mean ± s.e.m. across animals).
Asterisks, significant differences (Wilcoxon rank sum test, p < 0.05). (A,B)

Values of model parameters obtained from D1R-KO and D1R-dWT mice (A),
and those obtained from D2R-KO and D2R-dWT mice (B) are shown. (C)

Values of model parameters for D2R-KO and D2R-dWT mice were estimated
after matching trial durations between D2R-WT and D2R-KO mice.

decreased for WS compared with the performance of D2R-KO
mice. Conversely, when a model parameter value of D2R-dWT
mice was replaced with that of D2R-KO mice, the performance
decreased for αpos, αneg , and β, but increased for WS compared
with the performance of D2R-dWT mice (Figure 7B). These
results indicate that altered α and β contributed to impaired
choice behavior of D2R-KO mice in the TAB task, which was alle-
viated by altered WS. For D1R-KO mice, increased WS enhanced
the animal’s performance, which was offset by decreased αpos

(Figure 7B), although αpos was not significantly different between
D1R-KO and D1R-dWT mice (p = 0.095). Replacing the value

of ε had little effect on the performance of D1R or D2R animals
(Figure 7B).

DISCUSSION
We examined choice behavior of D1R-KO and D2R-KO mice
while varying stability and certainty of action-reward contin-
gency. Although all animals learned to choose correct target in
the simple instrumental learning task, performance of D2R-KO
mice was impaired as stability and certainty of action-reward
contingency decreased, whereas performance deficits of D1R-KO
were relatively small. A model-based analysis indicated increased
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FIGURE 7 | Model prediction. (A) Animal’s choices were simulated with
the full model. P(R), the proportion of rewarded choices; P(H), the
proportion of choosing the higher arming-probability goal in each block;
P(cWS), the proportion of repeating rewarded choice in the previous trial;
P(cLS), the proportion of switching from unrewarded choice in the
previous trial. Open bars, actual choice data (mean ± s.e.m. across
animals); filled circles, choices were predicted using model parameters
estimated for individual animals (mean across animals); open circles,

choices were predicted using model parameters averaged across animals
in each experimental group (mean across animals). (B) Effect of changing
a model parameter. KO→dWT, effect of replacing a model parameter of
KO mice with that of dWT mice. The graphs indicate altered P(R) and
P(H) [�P(R) and �P(H), respectively] relative to those of KO mice.
dWT→KO, effect of replacing a model parameter of dWT mice with that
of KO mice. The graphs show altered P(R) and P(H) relative to those of
dWT mice.

win-stay tendency, but impaired value updating and decreased
value-dependent action selection in D2R-KO mice, which was
detrimental to making optimal choices in the TAB task. These
results indicate importance of D2R in learning from the history
of past choices and their outcomes for rapid adjustment of choice
behavior in a dynamic and uncertain environment.

ROLE OF D2R IN RAPID ADJUSTMENT OF CHOICE BEHAVIOR
It has been proposed that dopamine is involved in stimulus-
reward, but not response-reward association (Berridge, 2007;
Flagel et al., 2011). However, our results indicate requirement
of dopamine in response-reward association when action-reward
contingency is unstable. All animals learned to choose the cor-
rect goal >80% during the initial training and after a single
episode of reversal. However, performance of D2R-KO mice was

dramatically impaired in the subsequent phases of reversal train-
ing, which is consistent with previous studies showing involve-
ment of D2R in reversal learning (Lee et al., 2007; Pizzagalli et al.,
2008; Boulougouris et al., 2009; Cools et al., 2009; De Steno and
Schmauss, 2009; Jocham et al., 2009; Herold, 2010; Groman et al.,
2011; van der Shaaf et al., 2013), although involvement D1R in
reversal learning has also been reported (Diekamp et al., 2000;
Calaminus and Hauber, 2007). It is notable that D2R-KO mice
were profoundly impaired when reward uncertainty was added to
the task (i.e., TAB task) even with prolonged training, which is
in line with impaired performance of Parkinson’s disease (PD)
patients in probabilistic learning tasks (Knowlton et al., 1996;
Shohamy et al., 2004). These findings suggest that dopamine,
largely through D2R, plays an essential role in rapid adjustment
of choice behavior in a dynamic environment, whereas gradual
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adjustment of behavior in a stable environment does not require
intact D2R.

It is unclear why the absence of D2R led to more severe per-
formance deficits compared to the absence of D1R in a dynamic
and uncertain environment. Anatomical distributions of D1R and
D2R are different across brain structures (e.g., relatively high lev-
els of D1R in the cerebral cortex; Hurley and Jenner, 2006), within
a brain structure (e.g., D1R and D2R mRNAs are expressed pri-
marily in layers 6 and 4–5, respectively, in rat neocortex; Weiner
et al., 1991), and across cell types (e.g., D1R and D2R expressions
in striatal neurons projecting to substantia nigra pars reticulata
and globus pallidus, respectively; Missale et al., 1998; Kreitzer
and Malenka, 2008). In addition, physiological effects of D1R and
D2R activation are different (e.g., D2R, but not D1R, functions as
a presynaptic autoreceptor regulating dopamine release; Hurley
and Jenner, 2006; Romanelli et al., 2009). Any of these factors
can be responsible for different choice behavior of D1R-KO and
D2R-KO mice, which remains to be determined.

LEARNING FROM RPE
Our model-based analysis indicated that D2R-KO mice were
impaired in updating value based on RPE, which supports the
proposed role of dopamine in RPE-based learning as postulated
by the RL theory. Our analysis also indicated D2R involvement in
learning from both positive and negative RPE. It has been con-
troversial whether dopamine is involved in learning from only
positive RPE (Morris et al., 2004; Bayer and Glimcher, 2005;
Pessiglione et al., 2006; Rutledge et al., 2009; Fiorillo, 2013) or
both positive and negative RPE (Frank et al., 2004, 2007, 2009;
Bayer et al., 2007; Klein et al., 2007; Hart et al., 2014), and roles
of D1R vs. D2R in RPE-based learning are unclear. In humans,
variations of DARPP-32 and D2RDD genes, which are related to
D1R and D2R functions, respectively, were correlated with learn-
ing from positive and negative RPE, respectively (Frank et al.,
2007; Klein et al., 2007). Subsequent studies in rodents employ-
ing specific manipulations of striatal D1R and D2R have yielded
consistent results (Hikida et al., 2010, 2013; Kravitz et al., 2012;
Tai et al., 2012; Danjo et al., 2014). However, in monkeys, striatal
D2R availability was correlated with learning from positive, but
not negative, feedback (Groman et al., 2011; but see Piray, 2011).
The reason for inconsistent findings across studies is currently
unclear. Such factors as different anatomical distributions of D1R
and D2R across different animal species (Mandeville et al., 2011),
global vs. focal manipulations of dopamine receptors, chronic
vs. transient manipulations of dopamine receptors, and differ-
ent degrees of dopamine receptor manipulations (e.g., relatively
small quantitative variations in dopamine receptor functions
caused by genetic variations in humans vs. complete knock-out
of dopamine receptors in the present study) might have con-
tributed to inconsistent results. Despite such inconsistency, results
from these studies are all consistent in that D2R is involved in
RPE-based learning.

VALUE-DEPENDENT ACTION SELECTION
Decreased value-dependent action selection (decreased β) was
another important factor for impaired performance of D2R-KO
mice in the TAB task. A previous modeling study has suggested

that increased tonic dopamine in the basal ganglia might decrease
β via D1R (Humphries et al., 2012). Our results show, how-
ever, that D2R, rather than D1R, is important for controlling β.
Another study has found decreased β in dopamine transporter-
KO mice (hyperdopaminergic mice) (Beeler et al., 2010). The
relationship between this finding and ours is unclear. A com-
mon process might have been affected in the same direction by
D2R-KO and dopamine transporter KO. For example, absence
of D2R autoreceptors (Romanelli et al., 2009) might lead to
enhanced dopamine release, which in turn causes decreased
value-dependent action selection. Although additional studies are
needed to clarify this issue, both studies provide evidence for the
involvement of dopamine in controlling value-dependent action
selection, and our study indicates importance of D2R, rather than
D1R, for this process.

WIN-STAY
Both D1R-KO and D2R-KO animals showed increased WS com-
pared to their delay-matched control animals. These results are
different from, but consistent with the previous findings that PD
patients off-medication (Rutledge et al., 2009) and rats with dor-
sal striatal lesions (Skelin et al., 2014) tended to repeat the same
choice, raising the possibility that D1R-KO and D2R-KO effects
on WS found in the present study might be mediated by dorsal
striatum. Enhanced WS in D2R-KO mice alleviated performance
deficit in the TAB task. Increased tendency to repeat the choice
rewarded in the previous trial would facilitate performance in
many behavioral settings, particularly in a simple instrumental
learning task. However, such a simple strategy without consider-
ing values computed based on the history of past rewards would
be suboptimal in a dynamic and uncertain environment, such as
during a TAB task.

UNCERTAINTY-BASED EXPLORATION
In humans, a gene known to primarily control prefrontal
dopamine function (catechol-O-methyltransferase) was associ-
ated with uncertainty-based exploration. Specifically, the val
allele (low dopamine function) was associated with reduced
exploration compared to the met allele (high dopamine func-
tion) (Frank et al., 2009). We found that D1R-KO increased
uncertainty-based exploration compared to delay-matched con-
trol mice. The two studies are consistent in that dopamine is
related to uncertainty-based exploration and that D1R is more
abundant than D2R in the prefrontal cortex (Seamans and Yang,
2004; Hurley and Jenner, 2006). However, they are inconsistent
in that low dopamine function was associated with low (the val
allele in humans) or high (D1R-KO in mice) exploration. The
relationship between dopamine function and uncertainty-based
exploration might be a non-monotonic function. Alternatively,
considering that dopamine can act at low and high concentrations
on D1R and D2R, respectively, to exert opposing physiological
actions in the prefrontal cortex (Seamans and Yang, 2004), both
elevated dopamine and absence of D1R might end up with similar
functional consequences via relatively enhanced D2R functions,
which remains to be explored. Changes in uncertainty-based
exploration had little effect on the animal’s choice behavior in
our dynamic TAB task. However, choice behavior of D1R-KO
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mice may deviate substantially from that of control animals when
uncertainty-based exploration is a critical factor for maximizing
rewards.

MULTIPLE ROLES OF DOPAMINE IN MEDIATING REWARD EFFECTS
RL models have been successful in accounting for choice behav-
ior of humans and animals (Dayan and Niv, 2008; Niv and
Montague, 2009; Lee et al., 2012). The results of our model
comparison showed, however, that a simple RL model alone is
insufficient to describe choice behavior of mice in the TAB task.
Additional components, namely a win-stay-lose-switch strat-
egy and uncertainty-based exploration, were necessary to better
describe mice’s choice behavior. Previous studies have shown
that adding a win-stay-lose-switch strategy (Worthy and Maddox,
2014), a perseveration factor (Rutledge et al., 2009) or an addi-
tional RL term with a short time constant (Beeler et al., 2010)
in addition to an RL model better accounted for humans’ or
mice’s choice behavior. Thus, multiple effects of reward might be
a general characteristic across different animal species. Our mod-
eling results indicate multiple roles of dopamine in mediating
diverse reward effects, which is consistent with previous findings
in humans (Frank et al., 2009). Specifically, D1R was involved in
controlling WS and uncertainty-based exploration, and D2R was
involved in controlling WS, value updating and value-dependent
action selection. These results suggest that dopamine is involved
in not only learning from RPE, but also another component of
RL, namely controlling value-dependent action selection, as well
as other aspects of reward processing that are not described by a
simple RL model.

LIMITATIONS OF THE STUDY
Although our study provides new insights on functional roles
of D1R and D2R, there remain outstanding issues that need
to be addressed in future studies. First, we cannot rule out
the possibility that developmental changes or compensation
mechanisms associated with dopamine receptor KO largely con-
tributed to the observed behavioral changes. Second, specific
brain areas and the mode of dopaminergic neuronal activity
(tonic vs. phasic) mediating the proposed functions of D2R
are unknown. Previous studies have shown that distinct neural
signals related to value-based decision making are observed in
various dopaminoceptive areas of the brain (Lee et al., 2012), rais-
ing the possibility that effects of dopamine manipulation in each
of these brain structures might induce distinct effects on choice
behavior. Future investigations using region-specific (such as tar-
geting prefrontal D1R for its involvement in uncertainty-based
exploration and striatal D2R for its role in value-dependent action
selection) and time-controlled (i.e., adult stage-specific) inacti-
vation of dopamine receptors (such as inducible KO, optoge-
netic manipulation and siRNA-based strategy) along with activity
mode-specific manipulation of dopamine neurons (Zweifel et al.,
2009; Schiemann et al., 2012) would be necessary to address
these concerns.
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