{frontiers in

BEHAVIORAL NEUROSCIENCE

ORIGINAL RESEARCH ARTICLE
published: 04 December 2014
doi: 10.3389/fnbeh.2014.00413

e

Motor imagery in unipolar major depression

Djamila Bennabi'?***, Julie Monnin'?*, Emmanuel Haffen'?3*%, Nicolas Carvalho'?, Pierre Vandel '*°,
Thierry Pozzo%"%° and Charalambos Papaxanthis®’

" Department of Clinical Psychiatry, University Hospital of Besan¢on, Besangon, France
2 EA 481 Neurosciences, University Hospital of Besangon, Besangon, France

3 FondaMental Foundation, Créteil, France

4 Centre d’Investigation Clinique en Innovation Technologique de Besancon (CIC-IT 808) INSERM, Besangon, France
° FHU Integrated Center for Research in Inflammatory Diseases (InCREASe) INSERM, Besangon, France

5 UFR STAPS, Université de Bourgogne, Dijon, France

7 Unité 1093, Cognition, Action et Plasticité Sensorimotrice, INSERM, Dijon, France

8 Robotics, Brain and Cognitive Sciences Department, Istituto Italiano di Tecnologia, Genoa, Italy

9 Institut Universitaire de France (IUF), Dijon, France

Edited by:
John D. Salamone, University of
Connecticut, USA

Reviewed by:

John D. Salamone, University of
Connecticut, USA

Merce Correa, Universitat Jaume |,
Spain

*Correspondence:

Djamila Bennabi, Department of
Clinical Psychiatry, 2 place St.
Jacques, Besangon University
Hospital, Besangon 25030, France
e-mail: dbennabi@chu-besancon.fr

Background: Motor imagery is a potential tool to investigate action representation, as it
can provide insights into the processes of action planning and preparation. Recent stud-
ies suggest that depressed patients present specific impairment in mental rotation. The
present study was designed to investigate the influence of unipolar depression on motor
imagery ability.

Methods: Fourteen right-handed patients meeting DSM-IV criteria for unipolar depression
were compared to 14 matched healthy controls. Imagery ability was accessed by the tim-
ing correspondence between executed and imagined movements during a pointing task,
involving strong spatiotemporal constraints (speed/accuracy trade-off paradigm).

Results: Compared to controls, depressed patients showed marked motor slowing on
both actual and imagined movements. Furthermore, we observed greater temporal dis-
crepancies between actual and mental movements in depressed patients than in healthy
controls. Lastly, depressed patients modulated, to some extent, mental movement dura-
tions according to the difficulty of the task, but this modulation was not as strong as that
of healthy subjects.

Conclusion: These results suggest that unipolar depression significantly affects the higher
stages of action planning and point out a selective decline of motor prediction.

Keywords: major depressive disorder, psychomotor retardation, motor imagery, mental chronometry, movement

speed, speed/accuracy trade off

INTRODUCTION

Motor imagery is as a mental process during which a specific action
is internally simulated without any overt motor output. Accord-
ing to the simulation theory, mental actions are motor actions
that are not overtly executed (Jeannerod and Decety, 1995; Jean-
nerod, 2001). Numerous studies have addressed the behavioral
and cerebral correlates of motor imagery, and its relationship with
motor planning and execution. It has been reported that actual
and mental actions follow the same motor rules (e.g., speed—
accuracy trade-off, speed-curvature relationship) and retain the
same temporal structure (Decety and Jeannerod, 1995; Maruff
et al., 1999; Bakker et al., 2007; Gueugneau et al., 2008; Papaxan-
this et al., 2012). Furthermore, mental training improves motor
performance (Yaguez et al., 1998; Gentili et al., 2006, 2010; Allami
et al., 2008; Avanzino et al., 2009) and enhances muscular force
(Yue and Cole, 1992; Zijdewind et al., 2003; Ranganathan et al.,
2004). Lastly, neuroimaging studies revealed a common activation
of specific brain regions recruited during both motor imagery and
motor production, pointing to the parietal and prefrontal cortices,

the supplementary motor area, the premotor and primary motor
cortices, the basal ganglia, and the cerebellum (Lotze et al., 1999;
Jeannerod, 2001; Guillot and Collet, 2005; Szameitat et al., 2007;
Munzert et al., 2009; Hetu et al., 2013).

Experimental paradigms using motor imagery offer a useful
and sensitive behavioral tool to investigate the unconscious process
of action representation (Jeannerod and Decety, 1995). Motor
imagery has been extensively used to gain insight into the action
system of both healthy and diseased populations. The advantage
of motor imagery is that one can explore the internal processes
of action planning and preparation, while avoiding sensory and
motor confounds related to motor execution. This feature is espe-
cially important when studying motor impairments in clinical
populations, like those in neuropsychiatric and neurological syn-
dromes, in which motor execution is impaired or even absent. In
these cases, the ability or inability of generating motor images
can indicate whether the planning stage of an action is intact
or impaired, respectively. Motor imagery impairments have been
found in Parkinson disease (Dominey et al., 1995; Helmich et al.,
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2007; Heremans et al., 2011), in cerebellum syndrome (Kagerer
etal., 1998), after lesions in motor and parietal cortex (Sirigu et al.,
1996; Danckertetal.,2002; Malouin etal.,2004), in neglect patients
(Coslett, 1998), in patients with fatigue syndrome (de Lange et al.,
2004), and in multiple sclerosis (Heremans et al., 2012; Tacchino
etal., 2013).

Psychomotor retardation (PMR) is a central feature of depres-
sion that can have clinical and therapeutic implications, and may
severely impact on patient’s psychosocial functioning. PMR mod-
ifies all the actions of the individual, including motility, mental
activity, and speech (Widlocher, 1983). Clinical and experimen-
tal studies, questioning the motor aspects of PMR, have enhanced
the comprehension of important pathophysiological mechanisms
in depression (Sobin and Sackeim, 1997). Nevertheless, cognitive
deficits related to PMR are poorly understood. Several studies have
drawn similarities between bradyphrenia in depressed patients
and bradykinesia in Parkinson disease, specifically in self-initiated
movementin reliance to external or internal cues, or in programing
the velocity of movement (Caligiuri and Ellwanger, 2000; Rogers
et al., 2000). These authors have reported that some aspects of
motor deficits are equally present in the two pathologies, and con-
sequently have suggested the possibility that the two phenomena
may share some common underlying pathology (Caligiuri and
Ellwanger, 2000; Rogers et al., 2000). The basal ganglia system
constitutes, therefore, a possible candidate as a site of motor dys-
function common to these two disorders. In addition, PMR was
linked to structural alterations in the prefrontal dorsolateral cortex
(DLPFC) and hypodopaminergic states of the basal ganglia (Bench
etal., 1993; Martinotetal.,2001; Walther etal.,2012). Investigation
of motor imagery can strongly contribute to explore the higher
stages of action organization underlying PMR in depression.

In the current study, we evaluated the effect of depression on
motor imagery ability. Our general aim was to examine whether
cognitive aspects of motor function, like action representation and
prediction, are affected by major depression disorder (MDD). A
group of patients with MDD and an aged-match control group
carried out actual and mental arm movements involving strong
spatiotemporal constraints (speed/accuracy trade-off paradigm).
We recorded actual and mental movement times and used the
degree of their similarities (i.e., isochrony) as an indicator of
the accuracy of motor imagery/prediction process (Sirigu et al.,
1996; Personnier et al., 2010b; Demougeot and Papaxanthis, 2011).
Based on the previous literature, we expected patients with MDD
to be slower than healthy controls in both executed and imag-
ined movements. We also anticipated a specific decline in motor
imagery ability in patients with MDD; that is, significant temporal
differences between actual and mental movements. Such impair-
ments could provide an objective marker of brain dysfunction in
depression, which impacts the higher stages of motor planning
and production.

MATERIALS AND METHODS

PARTICIPANTS

Fourteen patients (eight females, six males, mean 52.7 4= 16.7 years),
meeting diagnostic and statistical manual of mental disorders

(DSM-1V) criteria for unipolar depression, and 14 healthy adults

(seven females, seven males, mean 57.6 & 11.2 years), matched

for age, sex, and education, participated in this study. All of
them had normal or corrected-to-normal vision and were right
handers (Olfield, 1971). Patients were recruited from the psy-
chiatric wards of the university hospital of Besan¢on (France).
They were included into the study if their score was more than 25
on the Montgomery—Asberg Depression rating Scale (MADRS)
(Montgomery and Asberg, 1979) and if they were considered
at least stage II treatment resistant (Thase et al., 1995; Rush
etal., 2003). Exclusion criteria were: bipolar depression, psychotic
features, neurological disease, severe organic disease, and intake
of first-generation antipsychotics (FGA). Every patient received
an antidepressant medication with escitalopram in a constant
dosage (10-20 mg/day) over 4 weeks prior to the experiment.
Two patients received substances for augmentation, six patients
received second-generation antipsychotics (SGA), and six were
treated with benzodiazepines. Participants of the control group
were free from any neurological, cognitive, and muscular impair-
ment. They were recruited from the University’s and Hospital’s
staff, as well as from the local community. All participants gave
written informed consent to participate in the study. Research
protocol was approved by the Committee of Protection of Persons
(CPP-Est-1I), and was conducted in accordance with the principle
laid down by the declaration of Helsinski.

PSYCHIATRIC ASSESSMENT

All patients completed the Montgomery—Asberg Depression Rat-
ing Scale (MADRS) (Montgomery and Asberg, 1979), the 24-items
Hamilton Depression Rating Scale (HDRS) (Hamilton, 1960), and
the Salpetriere Retardation Rating Scale (SRRS) (Widlocher, 1983)
to determine the intensity of depression and the clinical severity
of retardation. In addition, patients and controls completed the
Beck Depression Inventory (BDI; Beck et al., 1961). All patients
were severely depressed and showed a marked degree of retar-
dation (see Table 1). The BDI scores in the depressed patients
were significantly higher than those in healthy subjects (Z =5.84,
P < 0.0001).

EXPERIMENTAL DESIGN

The experiment took place in a quiet room inside the hospital. In
order to limit the influence of circadian rhythms on motor and
mental performances (Gueugneau et al., 2009; Gueugneau and
Papaxanthis, 2010), all experiments were carried in the morning
(between 9 and 11 a.m.). Participants were comfortably seated on

Table 1 | Average (+SD) scores in clinical tests for the major
depression disorders (MDD) and the control groups.

Tests MDD group (n=14) Control group (n=14)
MADRS 30.6+4.8 -

HDRS 22+39 -

SRRS 23.6+9.9 -

BDI 17.8+4.0 2.13+3.9

MDD, major depressive disorder; MADRS, Montgomery-Asberg Depression
Rating Scale;, HDRS, Hamilton Depression Rating Scale; SRRS, Salpetriére
Retardation Rating Scale; BDI, Beck Depression Inventory.
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an adjustable chair in front of a table whose edge was aligned with
their chest at the level of the diaphragm. In the middle of the
table, a block of paper (A4 format) was placed at a distance of
20 cm from participants’ chest (Figure 1A). In each sheet, two tar-
gets were printed (black squares). We used three different sizes of
targets (0.5cm x 0.5cm, 1cm x 1cm, 1.5cm x 1.5cm) and two
inter-target distances (15 and 20 cm) to modulate the difficulty of
the task according to the Fitts’s law (Fitts, 1954):

ID = logy QA/W), (1)

where, ID is the index of difficulty, A is the inter-target distance,
and W is the target size. Figure 1B shows the five combinations of
targets’ size and distance, as well as the corresponding ID for this
experiment. Note that each trial corresponded to one ID.

Participants had to actually point (actual or overt action) or
to imagine themselves pointing (mental or covert action) between
the targets as accurate and as fast as possible (i.e., adapted Fitts’s
law motor paradigm, see also Maruff et al. (1999) and Gueugneau
etal. (2008), while holding a pencil in their right-dominant hand.
Actual and mental trials were performed with eyes open. Before
an actual or mental trial, the participants placed the pencil in
the center of one of the two targets (pseudorandom order, 50%
right target and 50% left target). They were free to start the
actual or mental movements when they felt ready. Relatively, long
trial durations are necessary to obtain reliable measurements in
mental movement simulation protocols because movement dura-
tions have a coarse resolution (Sirigu et al., 1996; Gentili et al,,
2010; Demougeot and Papaxanthis, 2011). Therefore, one actual
or mental trial consisted of five cyclical pointing movements
between the targets, namely of 10 arm movements. For the men-
tal trials, participants were requested to place their arm above
the target, to keep it motionless during the whole trial, and to
feel themselves performing the task (motor or first-person per-
spective) as they would actual do. Imagining a movement in
the first person is a necessary condition to engage the motor
system (Stinear et al., 2006; Gueugneau et al., 2013). For each
actual trial, we measured the spatial precision of the pointing
movements. Participants were informed that if they missed more
than two targets during a trial, this one will be canceled (invalid
trial) and retaken at the end of the session. Very few trials were
repeated in both groups (<5%). Each trial was performed on
a distinct sheet. The main experiment was preceded by a num-
ber of practice trials, which allowed participants to familiarize
themselves with the task. The targets used in the practice session
had different sizes (2cmx 2 cm) from those used in the experi-
ment. After this practice phase, all participants verbally reported
being able to generate motor images after having practised 6—10
times. During the experiment, all participants performed eight
actual and eight mental trials for each ID (80 trials per partic-
ipant) in a pseudorandom order. When participants performed
eight consecutive trials, they rested for ~1 min in order to pre-
vent physical or mental fatigue. After the achievement of the
experimental protocol, none of the participants reported men-
tal or muscle fatigue and any difficulty to internally simulate the
movements.

A
B

Target Size | Distance | ID

1.5x 1.5cm ISem [4.32

P x 1x1cm 15cm |4.91

o \ Ixlem | 20em [532

0.5x0.5cm 15em | 591

05x05cm | 20cm [6.32

FIGURE 1 | (A) Schematic representation of the experimental setup. A
sheet of paper (A4 format) was placed on a table and participants had to
actually point or to imagine pointing between the targets as accurate and as
fast as possible. (B) Three different sizes of targets and two inter-target
distances were used to modulate the difficulty of the task (ID).

RECORDING OF MOVEMENT TIME AND STATISTICAL ANALYSIS

Actual and mental movement times were recorded by means of
an electronic stopwatch hold by the participant in their left hand.
They started the stopwatch when they actually or mentally initi-
ated the movement and stop it when they finished pointing. We
required the participants to record their actual and mental move-
ment durations because they reportedly felt more comfortable
manipulating the stopwatch themselves [see Skoura et al. (2008)
and Personnier et al. (2010a)].

For each participant, the mean duration of movements and its
SD was calculated over all trials. We first checked that all variables
were normally distributed (Shapiro-Wilk W test; P > 0.05) and
that their variance was equivalent (Levene’s test; P > 0.05). Then,
we used three steps in our statistical analysis:

(i) First, we made a general analysis to investigate whether
actual and mental movement times differed between groups.
In this analysis, we did not consider movement times for
each ID separately; instead, we averaged for each par-
ticipant the times of the five ID. Using these average
values, we performed an analysis of variance (ANOVA),
with group (MDD patients, controls) as a between-subject
factor and movement (actual, mental) as within-subject
factors.
(ii) Then, we tested whether movement time was modulated
as a function of ID. We performed ANOVA with ID (4.3,
4.9, 5.3, 5.9, and 6.3) as within-subject factor, for each
independent variable separately (i.e., control-actual, control-
mental, MDD-actual MDD-mental). We also performed a
regression analysis between movement time and ID to ver-
ify their linear relationship as predicted by Fitts’s law. R?
values were compared by means of ANOVA with group as
a between-subject factor and movement as within-subject
factors.
Lastly, we compared the temporal similarities between actual
and mental movements to appreciate to what extent action
representation is similar to action production. When mental
time significantly differs from actual time, one could argue
that some aspects of movement production are not included,
or partially integrated, into action representation. For that
purpose, we calculated, for each participant, the index of

(iii)
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mental performance (iMP):

Dy — Dy

iMP = x 100

A

For each participant, iMP is defined as the absolute differ-
ence between the average time of actual movements (Dp in
the formula; n=238) and the average time of mental move-
ments (Dy in the formula; n=38). In order to account
for inter-individual differences in movement duration, we
divided this value by the average actual movement time
(Da). An iMP value near to zero would indicate excellent
mental performance; i.e., almost similar actual and mental
movement durations. On the contrary, an index of 100%
would indicate that the duration of mental movements is
two times greater from that of actual movements. We aver-
aged the absolute difference for the five ID and performed
independent t-tests between the two groups. Statistical sig-
nificance was accepted at P < 0.05 and post hoc differences
were assessed by means of Scheffé test.

RESULTS

SLOWER ACTUAL AND MENTAL MOVEMENTS FOR THE DEPRESSIVE
GROUP

Average times of actual movements ranged between 3.6 and 9.5 s
for the control group and between 4.5 and 12.0's for the MDD
group. Average times of mental movements ranged between 3.3
and 9.1s for the control group and between 4.7 and 11.7s for
the MDD group. Figure 2 shows average (4SD) actual and men-
tal movement times (all ID mixed) for both groups. It is evident
that patients with MDD performed the task slower (27.4 +2.9%
for actual movements; 25.4 £ 4.1% for mental movements) than
the participants of the control group (main effect of group;
F126=18.33, P < 0.001). We did not find a main effect of move-
ment (P=0.22), or an interaction effect between group and
movement (P =0.42).

GROUP DIFFERENCE IN THE MODULATION OF MENTAL MOVEMENT
TIMES WITH THE ITEM DIFFICULTY

Figure 3 shows average durations (4+SD) of actual and mental
movements for the two groups and the five ID. For the con-
trol group, times of actual (Fy 5, =77.57, P < 0.0001) and mental
(Fa4,5, =45.89, P < 0.0001) movements progressively increased as
the ID gradually increased. Post hoc comparisons (see Figure 4)
showed that actual and mental movement times significantly dif-
fered between all ID (in all cases, P < 0.02). For the MDD group,
there was also an effect for actual (F4s5;=38.69, P <0.0001)
and mental (F45, =7.21, P < 0.0001) movements. However, time
modulation with ID in depressive patients was not as strong as
that observed in the control group. For mental movement times,
post hoc comparisons showed significant differences between IDy 3
versus 1Ds 3, IDs9, and IDg3 (in all cases, P <0.02), and for
the ID4 9 versus the IDg3 (P =0.01); for all the other compar-
isons, P > 0.1. For actual movement times, significant differences
existed between several ID (in all cases, P < 0.05), except for the
ID4 3 versus the IDg9 (P =0.10) and the IDs 3 versus the IDsg
(P=0.68).

O Mental
9 - B Actual
] y
= 6
=
()
g
()
g 3
>
O - )

MDD Control

FIGURE 2 | Average (+SD) values of actual and mental movement
times for both groups. Star indicates significant differences between
groups (P <0.001).

MDD Control

—
(=]

O Mental
B Actual

Movement Time (s)
(9,

0
43 49 53 59 63 43 49 53 59 63

Index difficulty (bits) Index difficulty (bits)

FIGURE 3 | Average (+SD) values of actual and mental movement
times according to the index of difficulty (ID) for both groups. Star
indicates significant differences between groups (P < 0.001).

The previous findings were further explored by performing
a linear regression analysis between movement time and ID
(see Table 2). ANOVA revealed a significant interaction effect
between group and movement type for R? values (Fj 6 =6.63,
P =0.016). Post hoc analysis showed that R? values significantly
differed between actual and mental movements for the MDD
group (P <0.001) but not for the control group (P=0.28).
Furthermore, R? values significantly differed between groups
for the mental (P <0.001) but not for the actual movements
(P =0.50). We found similar results for the slope values (inter-
action effect between group and movement type; Fi,6=5.35,
P =0.03). Post hoc analysis showed that slope values signifi-
cantly differed between actual and mental movements for the
MDD group (P < 0.001) but not for the control group (P =0.82).
Furthermore, slope values significantly differed between groups
for the mental movements (P=0.02) but not for the actual
movements (P =0.93).

GROUP DIFFERENCES IN MENTAL PERFORMANCE
The temporal discrepancy between actual and mental movements
is twice greater in the MDD group than in the control group
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increasing spatiotemporal constraints (i.e., speed/accuracy trade-
Actual MDD Controls off motor paradigm). Our main findings revealed a global slowness
s ] of both actual and mental movements and a decline in the abil-
N </ At . . . . .
% s 7710 ity to mentally represent actions in patients with MDD compared
= % with a control group of healthy adults. These results suggest that
8 ﬂ% unipolar depression significantly affects the higher stages of action
43 49 53 59 6.3 planning with depression.
ID (bits)
Mental ALTERATION OF ACTUAL AND MENTAL MOVEMENTS IN UNIPOLAR
7 m DEPRESSION
< 53 I os /f/jf i | 1S The results of our study indicate that patients with MDD produced
A 59 ns | ns P22 18 pointing arm movements significantly slower than healthy adults.
6o 3 19 g; g; fg{; 13 10 53 5o X This observation corroborates and expands previously described
o T T T motor deficits in psychomotor function in unipolar depression.
ID (bits) Notably, depressed patients exhibit overt signs associated with a

FIGURE 4 | Schematic representation of post hoc analysis regarding
the influence of the index of difficulty on mental and actual movement
times of both groups. Gray squares indicate significant differences

(P > 0.05), whereas white squares with indicate non-significant (n.s.)
differences.

Table 2 | Linear regression equations calculated between the index of
difficulty and the average actual or mental movement durations for
both groups.

Group Movement Linear R

MDD Actual y=0.87x+3.23 0,86
Mental y =0.68x+4.49 0,59

Control Actual y =0.94x+0.68 0,96
Mental y=0.82x+1.26 0,90

MDD, major depressive disorder.

(t =2.38; P=0.02). This temporal difference is further visible
when the average times of actual movements are plotted across
the average times of mental movements. It appears that scatterplot
points are more spread in the MDD group than the control group.
The correlation between actual and mental movement dura-
tions for the control group (R*=0.87) was significantly higher
(P < 0.0001) than the correlation for the MDD group (R?=0.55).

RELATIONSHIPS BETWEEN ACTUAL MOVEMENTS, MENTAL
MOVEMENTS, AND CLINICAL FACTORS

Correlational analyses were performed to examine the relation-
ship between actual and mental movement times (all ID mixed)
and clinically relevant variables including severity of depression.
No significant correlations were found between MADRS, HDRS,
SRRS, BDI scores and actual (in all comparisons: 0.01 < R? <0.15;
—0.06 <t <1.20; 0.26 < P <0.94) or mental movement times
(0<R*<0.14; —0.07 < t < 1.14;0.29 < P < 0.94).

DISCUSSION

The present study investigated actual movement production and
motor imagery ability in patients with severe unipolar major
depression. Motor imagery was evaluated by means of the men-
tal chronometry paradigm in an arm pointing motor task with

global slowness, such as reduced movement velocities, increased
reaction times, and increased movement times (Sabbe et al., 1999).
This motor slowness has been mainly related to the dopamine
dysregulation in depression (Schrijvers et al., 2008). Here, it is
of interest that, despite this general slowness, patients modulated
their actual movement time according to both target size and tar-
get distance; i.e., with respect to the task difficulty as preconized by
Fitts’s law. At a first glance, this may suggest that the higher levels of
movement organization remains intact in MDD patients, because
a motor law (here, the Fitts’s law) is conserved, and that motor
slowness is perhaps due to deficits at the lower stages of movement
production, such as execution and sensorimotor control.
However, our findings regarding mental movements seem to
not support this premise. One of the most prominent results of
our study was that duration of imagined movements, as those of
actual movement, was significantly longer in depressed patients
compared with healthy participants. As during motor imagery no
actual movement occurs, this finding denotes that motor impair-
ments in unipolar depression have to a great extent a central origin,
instead of peripheral deficiencies. This idea is further supported
by the greater temporal discrepancies between actual and mental
movements in depressed patients. These observations point out a
decline in the capacity to mentally representing actual movement
production. In other words, action planning and representation
in depressed patients do not correspond to actual movement
production; that is, the ongoing movement is not executed as rep-
resented. More appealing was the finding regarding the respect of
Fitts’s law during mental movements. Qur experiment revealed
that depressed patients modulated, to some extent, mental move-
ment durations according to the difficulty of the task. However,
this modulation was not as strong as that of healthy subjects.
For instance, the slope and correlation values of the relationship
between mental movements and task difficulty significantly dif-
fered between the two groups (see Table 2). Together, our findings
regarding mental movement simulation indicate an alteration in
action representation and planning in depressed patients. This
extends the results of previous studies highlighting impairment
of mental transformation abilities in major depressive disorder
(Rogers et al., 2000; Chen et al., 2013). In fact, compared to con-
trols, MDD patients exhibit longer reaction times during mental
rotation tasks and experience progressively greater slowing as a
function of the angle of rotation, as a reflect of specific deficits of
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visuospatial cognitive operation (Chen et al., 2013). Comparing
internally and externally cued response selection and initiation,
several authors demonstrated that depressed patients were par-
ticularly slowed when movements involved internal movement
selection (Rogers et al., 1987, 2000; Hoffstaedter et al., 2012).
Collectively, these results suggest that depression influences the
generation and manipulation of intended actions. Current results
enlarge those of previous studies, which have used several motor
imagery paradigms to gain insight into the action system of
diseased populations.

FORWARD INTERNAL MODELS FOR ACTION IN MAJOR DEPRESSION
Forward internal models mimic the causal flow of the physical
process by predicting the consequences (e.g., position, velocity)
of a motor command (Wolpert and Miall, 1996; Desmurget and
Grafton, 2000; Wolpert and Flanagan, 2001). The use of a forward
internal model could explain the temporal equivalence between
actual and mental arm movements in healthy subjects (Pozzo etal.,
2006; Papaxanthis et al., 2012; Michel et al., 2013). During motor
imagery, timing information for the simulated movement is pro-
vided by the forward internal model, which on the basis of the
correctly prepared (efferent copy is available), but blocked neural
commands (note that no actual movement occurs during motor
imagery), predicts the future sensorimotor state of the movement.
Therefore, accurate forward models can provide similar temporal
estimations, i.e., isochrony, during both actual and mental move-
ments under varying spatiotemporal constraints. Interestingly, our
results showed that depressed patients did not fully integrate task
constraints (i.e., target size and movement speed) during the men-
tal simulation process. In particular, greater absolute differences
between actual and mental movements were observed in patients
than health participants. This may be due to the fact that forward
internal models, used in mental prediction of motor actions, are
not well preserved in major depressive disorder.

These behavioral findings may reflect functional and structural
brain changes of a network associated with action representa-
tion. Specific deficits of motor control in depression have been
attributed to disturbances in the higher cognitive control centers,
including the dorsolateral prefrontal cortex, the parietal cortex the
anterior cingulate cortex, and the basal ganglia (Walther et al.,
2012). Due to the involvement of these areas in motor imagery
process, these dysfunctions could underlie the alteration of the
temporal processing of imagined actions in depression. Recent
findings seem to point in that direction. Liberg and collabora-
tors found that activation in the brain areas involved in motor
selection, planning, and preparation was altered in patients with
bipolar depression (Liberg et al., 2013). Precisely, during motor
imagery, patients with bipolar depression activated the posterior
medial parietal cortex, the posterior cingulate cortex, the premo-
tor cortex, the prefrontal cortex, and the frontal poles more than
the controls did.

Our results must be viewed with caution as they need fur-
ther investigation and generalization. The effect of severity and
state of depression needs to be analyzed in longitudinal studies
including neuropsychiatric control groups and depressive sub-
groups. Preoccupation with precision is an important confound-
ing variable to consider, which could impact accuracy and anxiety

levels in the subjects (Sobin and Sackeim, 1997). Motivational
factors including interest, pleasure, and reactivity to pleasurable
stimuli contribute to the initiation and progression of motor activ-
ity, and may interfere with the expression of behaviors (Lemke
et al., 1999; Scheurich et al., 2008). Recent studies have high-
lighted the importance of deficits in willingness to expend effort
for reward in depressed patients. Reward-related deficits, a crucial
aspect of anhedonic symptoms, might involve a failure to inte-
grate cost/benefit information in a consistent manner (Treadway
etal.,2012; Yang et al., 2014). This hypothesis is supported by pre-
vious report on the role of dopamine in computing cost-benefit
computations and in modulating the amount of effort allocated
to obtain rewarding outcomes (Der-Avakian and Markou, 2012;
Salamone and Correa, 2012). Effort-related motivational impair-
ments and observable psychomotor alterations may have common
underlying neurobiological mechanisms involving dopaminer-
gic pathways in mesolimbic structures (Salamone and Correa,
2012; Treadway and Zald, 2013). Therefore, future investigations
combining laboratory effort-tasks and motor imagery paradigms
may provide further insights into the neurobiological process
underlying the inhibition of activity in mood disorders.

CONCLUSION

Motor imagery studies in normal adults indicated that the same
motor representation governs an action whether it is executed or
imagined, and time constraints operate in the same way in both
modalities of action. Our patients’ impaired performances sug-
gest that mental prediction of motor actions is not preserved in
MDD, with specific alterations of the higher stages of action plan-
ning. A decline in cognitive processing associated with the ability
to mentally represent actions leads to difficulties making accurate
predictions of intended actions. The alteration of this mechanism
is a relevant finding for physical and cognitive interventions in
depression. Moreover, this paradigm offers an innovative approach
for the study of motor and cognitive components of PMR in
depression and might provide objective parameters to measure
antidepressant response.
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