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INTRODUCTION

Anxiety disorders and substance use disorders are strongly associated in humans.
Accordingly, a widely held but controversial concept in the addiction field, the so-called
“self-medication hypothesis,” posits that anxious individuals are more vulnerable for drug
dependence because they use drugs of abuse to alleviate their anxiety. We tested this
hypothesis under controlled experimental conditions by quantifying the conditioned place
preference (CPP) to 15mg/kg i.p. cocaine given contingently (COCAINE) in CD1 mice
selectively bred for high anxiety-related behavior (HAB) vs. normal anxiety-related behavior
(NAB). Cocaine was conditioned to the initially non-preferred compartment in an alternate
day design (cocaine vs. saline, four pairings each). HAB and NAB mice were also tested
for the effects of non-contingent (NONCONT) cocaine administration. HAB mice showed
a slightly higher bias for one of the conditioning compartments during the pretest than
NAB mice that became statistically significant (p = 0.045) only after pooling COCAINE and
NONCONT groups. Cocaine CPP was higher (p = 0.0035) in HAB compared to NAB mice.
The increased cocaine CPP was associated with an increased expression of the immediate
early genes (IEGs) c-Fos and Early Growth Related Protein 1 (EGR1) in the accumbens
corridor, i.e., a region stretching from the anterior commissure to the interhemispheric
border and comprising the medial nucleus accumbens core and shell, the major island
of Calleja and intermediate part of the lateral septum, as well as the vertical limb of the
diagonal band and medial septum. The cocaine CPP-induced EGR1 expression was only
observed in D1- and D2-medium spiny neurons, whereas other types of neurons or glial
cells were not involved. With respect to the activation by contingent vs. non-contingent
cocaine EGR1 seemed to be a more sensitive marker than c-Fos. Our findings suggest that
cocaine may be more rewarding in high anxiety individuals, plausibly due to an anxiolytic
effect.
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individuals suffering from anxiety are more vulnerable for drug

Anxiety disorders and substance use disorders are strongly asso-
ciated in humans. For example, a recent survey of 43,093 indi-
viduals in the U.S. showed that the 12-month prevalence of any
drug dependence increased from 0.63 to 5.24% in individuals
with a primary diagnosis of generalized anxiety disorder (GAD),
which was found in 2.06% of the surveyed sample (Grant et al.,
2004). GAD as the primary diagnosis increased the prevalence of
alcohol dependence from 3.81 to 10.52% and of substance depen-
dence (which can be considered the sum of drug- and alcohol
dependence) from 4.07 to 13.34% (Grant et al., 2004). At first
sight, these findings support a widely accepted (Khantzian, 1985;
Mariani et al., 2014) but controversial (Lembke, 2012) concept
in the addiction field, the so-called “self-medication hypothe-
sis” This hypothesis would—with respect to anxiety—posit that

abuse and dependence because they use drugs of abuse to alleviate
their anxiety. However, despite all efforts at improving the study
design, epidemiological surveys cannot resolve questions regard-
ing the causal mechanisms underlying the relationship between
substance use disorders and anxiety or mood disorders (Grant
et al., 2004) because the temporal order of the first onset of the
respective disorder (GAD vs. substance dependence) could not be
ascertained beyond any doubt, allowing only the conclusion that
the disorders are associated (Grant et al., 2004; Lembke, 2012) but
not that one has caused the other.

Thus, the investigation of a causal relationship between anx-
iety and drug dependence requires the controlled conditions of
an experiment in which the individual’s level of anxiety can been
ascertained beyond any doubt before any exposure to a drug of
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abuse is initiated. The high anxiety-related behavior (HAB) vs.
normal anxiety-related behavior (NAB) mice, derived from CD1
mice selectively bred for their level of anxiety-related behavior
displayed on an elevated plus maze (Landgraf et al., 2007), offers
such an opportunity. While the HAB/NAB mouse model opera-
tionalizes several aspects of anxiety, its translational power may
be greatest with respect to GAD as the HAB/NAB mouse model
operationalizes trait anxiety (Sartori et al., 2011b) and as individ-
uals suffering from GAD show high levels of trait anxiety (Rapee,
1991; Chambers et al., 2004). Therefore, one of the main goals
of the present study was to investigate if cocaine, a prototypical
drug of abuse that has been reported to relieve symptoms of anx-
iety (Khantzian, 1985), would be more rewarding for HAB than
for NAB mice. We chose the conditioned place preference (CPP)
paradigm (Bardo et al., 1995; Zernig et al., 2007; Prast et al., 2014)
for this purpose, as CPP allows to quantify, in a drug-free state, to
what degree previously neutral contextual stimuli have acquired
appetitive properties after having been paired with the drug on
a minimal number of occasions, i.e., only 4 times (Fritz et al.,
2011; Kummer et al., 2011; Prast et al., 2014). We had previously
demonstrated in rats (Prast et al., 2014) that the time spent in
the cocaine associated compartment was strongly correlated with
the degree of activation, i.e., expression of the immediate early
gene (IEG) Early Growth Related Protein 1 (EGR1), in the whole
accumbens corridor, i.e., in a region stretching from the anterior
commissure to the interhemispheric border and comprising the
medial nucleus accumbens core (AcbCm) and shell (AcbShm),
the major island of Calleja and lateral septum (ICjM + LSI), as
well as the vertical limb of the diagonal band and medial septum
(VDB + MS). Human functional imaging studies have confirmed
the important role of the accumbens in drug addiction (Breiter
et al., 1997; Breiter and Rosen, 1999; Haber and Rauch, 2010)
and anxiety (Levita et al., 2012). Therefore, the present study
was designed to investigate if HAB mice would display a higher
accumbens corridor activation than NAB mice (1) upon cocaine
CPP conditioning and (2) after administration of non-contingent
cocaine, i.e., cocaine administered not in close temporal associa-
tion with any CPP conditioning procedure and (3) under baseline
conditions, i.e., naive animals. We selected the CPP paradigm as
we have previously focused on CPP with cocaine as a prototypical

drug of abuse, intending to compare our present results with our
previous findings. The CPP paradigm allows to test in a cocaine-
free state, i.e., avoids the acute direct pharmacologic effect of
cocaine as a confounding variable (please see Zernig et al., 2007
for a detailed discussion of these methodological issues).
Following the seminal paper by Everitt and coworkers (Lee
et al., 2005), we decided to use the IEG EGR1 as a marker for neu-
ronal activation in our paradigm (Fritz et al., 2011; El Rawas et al.,
2012; Prast et al., 2012, 2014). However, the most commonly used
marker for neuronal activation in the accumbens is not EGRI,
but another IEG, i.e., c-Fos (Hope et al., 1992; Singewald, 2007;
Muigg et al., 2009). In vivo, both EGR1 and c-Fos have impor-
tant roles in processes such as brain development, learning, and
the response to drugs of abuse or stress (Beckmann and Wilce,
1997; Perez-Cadahia et al., 2011). Of note, knockout of EGRI1 in
mice has shown that EGR1 expression is necessary to establish
cocaine CPP (Valjent et al., 2006). In contrast, food CPP was not
affected by knockout of EGR1 (Valjent et al., 2006). The final aim
of the present study was to directly compare the two markers with
respect to their sensitivity in our experimental paradigm, also in
order to render our results directly comparable to the majority of
the published studies that employ IEG expression as a marker for
neuronal activation in the accumbens corridor (Prast et al., 2014).

MATERIALS AND METHODS

SUBJECTS

Adult male HAB and NAB mice with divergent levels of trait anx-
iety were obtained from the breeding colony at the Department of
Pharmacology and Toxicology, University of Innsbruck, Austria.
The HAB and NAB mouse lines had been created at the Max
Planck Institute of Psychiatry, Munich, Germany (Kromer et al.,
2005) by subjecting 7 week old animals of an outbred Swiss CD1
mice population to an elevated plus maze test and by the sub-
sequent deliberate mating of males and females with the least
percentages of open arm time (i.e., marker for anxiety-related
behavior), and of those with the mean percentages of open arm
time, respectively. From that point on, the bidirectional inbreed-
ing of animals with high and low anxiety-related behavior has
been continued. In order to confirm the anxious phenotypes the
offspring of each generation including the one used in the present

time line
GROUPS PRETEST CONDITIONING CPP test
NONCONT NAB n=8, NONCONT HAB n=8 day1 2 (3| 4| 5|6|7|8|9 10
morning (CPP box) pretest sal | sal | sal | sal | sal | sal | sal | sal | CPP test
afternoon (bucket) coc| sal | coc| sal | coc| sal | coc| sal
GROUPS PRETEST CONDITIONING CPP test
COCAINE NAB n=8, COCAINE HAB n=7 day1 2 (3| 4| 5|6|7|8|9 10
morning (CPP box) pretest coc| sal | coc| sal | coc| sal | coc| sal | CPP test
afternoon (bucket) sal | sal | sal | sal | sal | sal | sal | sal

FIGURE 1 | Experimental timeline for cocaine conditioned place
preference. The detailed time line of the behavioral training is shown. See
“Materials and Methods” Section for details. Experimental groups and group
sizes are listed on the left; each conditioning group was treated twice per day

(in the morning in the CPP box and in the afternoon in a bucket). Just briefly:
the training sessions were: on day 1 the pre conditioning test (PRETEST) to
assess a possible compartment bias; the CONDITIONING (day 2-9) with
either cocaine (coc) or saline (sal) and the CPP test (day 10).
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studies is again tested on the elevated plus maze at the age of
7 weeks (Muigg et al., 2009) and the percentage of time in the
open arms is registered. Per definition, the open arm time of HAB
mice is less than 15% as compared with approximately 25-35%
for NAB mice with no overlapping between the lines and with
NAB mice representing the population mean of unselected CD1
mice (Sartori et al., 2011a). Animals were group-housed until the
elevated plus maze test and then single-housed at around 23°C
and around 55% humidity for 1-2 weeks before the start of the
cocaine CPP experiment. The animals received ad libitum access
to tap water and pellet chow, and were maintained on a 12-h
light/dark cycle with lights on from 0800 to 2000 h. All animals
were treated according to the ethical and scientific standards of
the European Union. The present experiments were approved by
the Austrian National Animal Experiment Ethics Committee.

PLACE CONDITIONING PROCEDURE

Housing conditions and CPP apparatus

Conditioning was conducted in a three compartment apparatus
(CPP box 64 cm wide x 32cm deep x 31cm high) made of
unplasticized polyvinylchloride. The middle (neutral) compart-
ment (10 x 30 x 30 cm) had white walls and a white floor. Two
doorways led to the two conditioning compartments (25 x 30 x
30cm each) with walls showing either vertical or horizontal
black-and-white stripes of the same overall brightness and with
stainless steel floors containing either 168 holes (diameter 0.5 cm)
or 56 slits (4.2 x 0.2 cm each, Kummer et al., 2011). All behavioral
tests were video recorded and analyzed offline for the time spent
in each compartment by an experimenter blinded to the anxious
phenotype of the animals. Experiments were conducted during
the light period of the cycle. Masking background noise was gen-
erated by a continuously running high efficiency particulate air
(HEPA) antiallergen filter box. The CPP box was placed directly
beneath a fluorescent lighting (58 W, 1 m distance).

Experimental groups

A detailed plan of the training schedule is shown in Figure 1.
Each line was divided into three groups with comparable per-
centages open arm time. Animals of the NAIVE groups were
sacrificed before undergoing any further treatment to investigate
EGRI and c-Fos expression in NAIVE NAB (n = 7) and NAIVE
HAB (n = 8) animals. The remaining animals were divided into
two groups each and were either treated with non-contingent
cocaine (NONCONT NAB n = 8, NONCONT HAB n = 8) or
trained for cocaine CPP (COCAINE NAB n = 8, COCAINE HAB
n = 7). First, pretest bias for any of the two conditioning com-
partments was declared if during pretest the animal spent more
time in one of the conditioning compartments in a 15 min test
session. Cocaine injections were paired with the initially non-
preferred side. On the following day, cocaine CPP acquisition
training was started by injecting COCAINE animals intraperi-
toneally (i.p.) with cocaine HCI (corresponding to 15 mg/kg pure
base) or saline (1 ml/kg) in an alternate day design in the morn-
ing and by putting each animal into the respective compartment
inside the CPP box for 15 min immediately after the i.p. injec-
tion. The cocaine dose was chosen based on a previous review in
which we extensively compared different cocaine doses (Zernig

etal., 2007, p. 387) and on the CPP reviews by Bardo et al. (1995,
p- 1327) who also reviewed a large number of cocaine CPP exper-
iments. Fifteen mg/kg i.p. can be considered a high cocaine dose.
In the afternoon, i.e., at least 6h after the CPP training in the
morning, the COCAINE groups received a saline injection out-
side of the CPP box in a clearly different context, i.e., they were
injected i.p. with saline and placed for 15 min into a bedding-filled
bucket (red colored polyvinylchloride bucket, diameter 20 cm,
height 28 cm) before being put back into the home cage. In con-
trast, the animals of the NONCONT groups received i.p. saline
injections before being put in either compartment of the CPP box
during CPP training (i.e., they were trained for saline vs. saline)
and, in the afternoon, non-contingently (i.e., not in close tem-
poral association with any CPP conditioning procedure) received
the same number of saline or cocaine injections in the same alter-
nate day design as the COCAINE groups. This procedure assured
that the NONCONT groups could not associate any compart-
ment of the CPP box with the interoceptive effects of cocaine, thus
controlling for the pharmacologic effect of cocaine as well as the
handling and i.p. injection effects.

COCAINE CPP TEST

On experimental day 10, the CPP test was performed 24 h after
the last conditioning trial by placing the mouse in the middle
(neutral) compartment of the CPP apparatus and allowing it to
freely move between the three compartments for 15 min. The
preference for cocaine was then calculated as time in the cocaine

7]
wd
+
=
o

FIGURE 2 | Mouse accumbens corridor counting areas. The investigated
counting areas are displayed as individual 190 um counting bins overlaid on
an acetylcholinesterase staining at an AP location of +1.10 mm from
bregma (modified from Franklin and Paxinos, 2007). Abbreviations (see
Materials and Methods) follow the nomenclature of the atlas of Paxinos and
Watson (2007). The numbers in the image refer to the following regions: 1,
accumbens corridor; 2, AcbCl; 3, CPu.
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compartment minus time in the saline compartment (given in
seconds). The mouse had to move in and out of the condition-
ing compartments at least five times during the CPP test for
the data to be used for further analysis (which always was the
case).

IMMUNOHISTOCHEMISTRY

One hour after the start of cocaine CPP test, i.e., at a time
when a substantial increase in both EGRI and c-Fos protein
expression is expected (Chaudhuri, 1997; Zangenehpour and
Chaudhuri, 2002), animals were deeply anesthetized with isoflu-
rane. Animals were intracardially perfused with 0.1 M phosphate
buffered saline (PBS) followed by 4% (w/v) paraformaldehyde
(PFA) dissolved in PBS (pH 7.4). Brains were removed and
postfixed in 4% PFA for 8h, cryoprotected in PBS containing
10% sucrose (w/v) for 1 day and in 30% sucrose PBS at 8°C
until the brains sank to the bottom. Brains were shock-frozen
in isopentane (at —35°C to —39°C) and stored at —80°C until
sectioning. All serial brain sections (30 m) were cut using a
Cryostat (Leica). Sections were stored in PBS containing 0.1%
sodium azide at 8°C until processing for immunolabeling. A
total of six randomly chosen free-floating sections from a defined
anteroposterior range with respect to bregma (AP +1.34 mm
from bregma to AP +0.98 mm from bregma), according to the
stereotaxic mouse Atlas (Franklin and Paxinos, 2007) were pro-
cessed for either EGRI1 (rabbit polyclonal, 1:3000, Santa Cruz
Biotechnology, sc-189) or c-Fos (rabbit polyclonal, 1:1000, Santa
Cruz, Biotechnology, sc-52) immunohistochemistry. Additionally
we processed three slices each for double staining of EGRI1
with dynorphin (goat polyclonal anti-DYN; 1:50, Santa Cruz
Biotechnology, sc-46313) to presumably label dopamine D1
receptor expressing medium spiny neurons (D1-MSNs) or the
dopamine D2 receptor expressing neurons (mouse polyclonal
anti-DRD2, 1:50, Santa Cruz Biotechnology, sc-5303) to label
D2-MSNs, choline acetyltransferase (goat polyclonal anti-ChAT,
1:166, Millipore, AB144p) to label cholinergic interneurons; or
parvalbumin (goat polyclonal anti-PV, 1:1000, Swant, PVG-214),
calretinin (goat polyclonal anti-CR, 1:1000, Swant, CG1) and
neuropeptide Y (goat polyclonal anti-NPY, 1:500, Novus, NBP1-
46535) to label GABAergic interneurons. Another three slices
each was used for doublelabeling of EGR1 with the neuron-
specific nuclear protein NeuN (Mullen et al, 1991), mouse
monoclonal anti-NeuN, 1:200, Millipore, MAB377) or mark-
ers for glial cells, i.e. astrocytes (Wang et al., 2013), mouse
polyclonal anti glial fibrillary acidic protein, anti-GFAP; 1:200,
Santa Cruz Biotechnology, sc-33673); oligodendrocytes (Najm
et al., 2013), myelin basic protein (anti-MBP; 1:200, Santa
Cruz Biotechnology, sc-71546) or simple tomato lectin stain-
ing (6 pg/il, 24 h incubation, Vector laboratories, DL-1177) for
microglia (Joseph and Venero, 2013). All sections were washed
3 times for 5min each in TBS-T and only sections used for
double immunohistochemistry were then incubated at 95°C for
4min in a 10mM citrate buffer (pH 6.0) for antigen retrieval.
After a TBS-T wash, slices were incubated for 30 min in TBS
containing 50 mM glycine, followed by another wash in TBS-T
(3 x 5min) and a 1h incubation in TBS-T containing 2% BSA
and 10% normal serum (normal donkey serum, Millipore, S30;
or normal goat serum, Vector Labs, S-1000) depending on the

secondary antibodies used. Sections were then incubated for 48 h
at 8°C in 50 mM Tris-buffered saline (TBS; pH 7.4) containing
0.1% Triton-X-100 (5TBS-T) and 2% BSA with a single primary
antibody against EGRI1 or c-Fos or in case of the double immuno-
labeling with the primary antibody for EGR1 and another pri-
mary antibody for one of the markers. Sections were washed in
50 mM TBS-T for 1h and then incubated for 2 h in 50 mM TBS-
T containing 2% BSA and the donkey anti-rabbit Alexa Fluor
488-conjugated secondary antibody (1:400, Invitrogen, A21441)
for EGR1 and c-Fos single labeling. For double immunolabeling
we used the donkey anti-rabbit Alexa Fluor 488-conjugated sec-
ondary antibody (1:400, Invitrogen, A21441) for EGRI together
with either the donkey-anti goat Alexa Fluor 555 conjugated
secondary antibody (1:400, Invitrogen, A21432) or the goat
anti-mouse Alexa Fluor 555 conjugated secondary antibody
(1:400, Invitrogen, A31570), depending on the primary antibody
used. Finally slices were incubated 4 min with Hoechst 33258
for nuclei staining followed by an additional wash in 50 mM
TBS for 1h. Sections were then mounted onto gelatine-coated
slides and coverslipped using Vectashield (Vector Laboratories,
H-1000).

IMAGE ANALYSIS

For each immunohistochemical marker, we took representative
images with a laser scanning confocal microscope (Zeiss LSM
510 Meta) at a magnification of 100x. A representative image of
the EGR1 and c-Fos expression in the accumbens corridor was
made at a magnification of 20 x. For the quantitative analysis, we
used another fluorescence microscope interfaced to a computer
(Zeiss Axioplan 2 Imaging). The Pictures for the quantification
were also made at a magnification of 20x in the areas of interest.
Immunohistochemistry images were processed using Fiji software
(fiji.sc/Fiji). The researcher who did the counting was blind to the
different treatments and the counting of the positive nuclei in the
unprocessed (i.e., raw) images was conducted offline using the Fiji
cell counter plugin. Immunoreactivity is given as immunopositive
cells per mm?. Only nuclei in focus of one focal plane and positive
for Hoechst 33258 were counted.

DEFINITION OF THE ACCUMBENS CORRIDOR AND THE COUNTING
AREAS

To precisely define the borders of the regions in the accum-
bens corridor (Prast et al., 2014) at different anteroposterior
positions with respect to bregma, we used a stereotaxic atlas by
Paxinos and coworkers (Franklin and Paxinos, 2007) in which
the core and shell subregions of the accumbens are distinguished
by their differential acetylcholinesterase staining and histoarchi-
tectonics (as revealed by cresyl violet staining). Abbreviations
follow these authors’ convention (Franklin and Paxinos, 2007)
except for the “m” (for “medial”) and “I” (for “lateral”) exten-
sions that we added to their terms “AcbSh” or “AcbC” to designate
the location of these Acb subregions relative to the anterior com-
missure. Because we used slices only from the anteroposterior
(AP) positions +1.34 mm to +0.98 mm relative to bregma, we
measured the width (i.e., mediolateral extension) of the AcbCm
and the AcbShm at the height of the anterior commissure at
four different AP positions, i.e., at +1.34 mm, +1.18 mm, +1.10
and +0.98 mm, obtaining a mean width of 190 um for each
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of these Acb subregions. Accordingly, we divided the whole
accumbens corridor into 190 pm bins (Figure 2) and were able
to distinguish the following regions (from medial to lateral):
the nucleus of the vertical limb of the diagonal band and the
medial septal nucleus (VDB + MS), the major island of Calleja
and the intermediate part of the lateral septal nucleus (ICjM
+ LSI), the medial accumbens shell (AcbShm) and the medial
accumbens core (AcbCm; Prast et al.,, 2012, 2014). A 190 um
strip immediately lateral of the anterior commissure represented
the accumbens core lateral (AcbCl). The dorsal caudate puta-
men (CPu), i.e., a rectangle forming a segment with the dor-
salmost curvature of the corpus callosum was also used for
counting.

STATISTICAL ANALYSIS

Statistical differences in preference scores were calculated using a
two-tailed unpaired heteroskedastic ¢-test. Immunohistochemical
data (i.e., EGRI- or c-Fos immunoreactive nuclei per mm?) are
presented as the group mean = standard error of the mean (SEM)
of individual animals (NAIVE NAB n = 7, NAIVE HAB n = &;
NONCONT NAB n =8, NONCONT HAB n = 8; COCAINE
NAB n = 8, COCAINE HAB n = 7). For each individual animal,
the counts for all three slices per immunohistochemical stain-
ing were averaged before being further processed as one value
per animal. Differences in EGR1 or c-Fos expression between
the three groups NAIVE NAB, COCAINE NAB, NONCONT
NAB or between NAIVE HAB, COCAINE HAB, NONCONT

NONCONT

Pretest CPP test

450 . 450

300{ — T S e
pr— 150 ‘ ‘ l 150 ‘ ‘
& " NP neu P " NP neu P
-+—
C CPP test CPP test
Q o 450
E 300{ =— [ = 300
t 150 ‘ ‘ ‘ ‘ 150

TN o : " NP neu P

CU NP neu P
E Pretest CPP test
450 450
O 300 - — 300{ ——— —
O 150 ‘ ‘ 150
- " NP NP " NP NP
GJ Pretest CPP test
E 300 -1 NONCONT NAB 300
w150 [ NONCONTHAB 150
) N N
L — 0
4 50} — ‘——'——/ A 50J 1=
-300 -300
NP-P NP-P NP-P NP-P

FIGURE 3 | Cocaine CPP preference is increased in high anxiety-related
behavior mice. Shown are times spent in the different compartments of the
CPP box. For the NONCONT groups time spent in the initially non-preferred
(NP), neutral (neu) or initially preferred compartment are displayed. For the
COCAINE group time spent in the compartment later associated with
cocaine- (Lcoc), the neutral (neu), or the later saline- (Lsal) associated
compartment are shown for the pretest and time spent in the cocaine- (coc),
neutral (neu), or saline- (sal) associated compartment are displayed for the
CPP test. Time in the compartment is presented in seconds as the group
mean + SEM. Total session duration was 900's. Data are shown for CD1
mice bred for normal- (NAB, top panel) or high anxiety-related behavior (HAB,
second panel from the top) and the comparison of NAB vs. HAB animals
(third panel) for both treatment groups, i.e., NONCONT (unfilled red and

COCAINE

Pretest CPP test
450
300
150
Lcoc neu Lsal coc neu sal
Pretest CPP test
k%%
450
300
150
0
Lcoc neu Lsal coc neu sal
Pretest CPP test
##
450 450
300 300
150 150
0 0
Lcoc Lcoc coc coc
Pretest CPP test
300 B3 COCAINE NAB 300
150 EECOCAINE HAB 150

-150

&
£8 o
§

0
Lcoc-Lsal Lcoc-Lsal

coc-sal coc-sal

green bars) and COCAINE (filled red and green bars) for the pretest and the
CPP test for the non-preferred compartment, which was later associated with
cocaine in the COCAINE group (reexposure in a cocaine-free state). The
difference between the time spent in the conditioning compartments is also
shown for NAB and HAB mice as time spent in the initially non-preferred
minus initially preferred (NP-P) compartment for the NONCONT groups and
as time spent in the later cocaine minus later saline- (Lcoc-Lsal) associated or
cocaine minus saline- (coc-sal) associated compartment for the COCAINE
groups (Figure 3, bottom panel). Significant differences between the time
spent in the coc and sal compartment are shown as asterisks: *p < 0.05;

**p < 0.01; **p < 0.001 (1-Way ANOVA). Statistical differences between the
COCAINE NAB and COCAINE HAB group (unpaired 2-tailed t-test) are shown
as rhombs (##p < 0.01).
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FIGURE 4 | Colocalization of neuronal markers with EGR1 expression

1h after cocaine CPP is restricted to D1- and D2-medium spiny

neurons. Brains were harvested for double fluorescence

immunohistochemistry 1 h after the start of a 15-min cocaine CPP test
(Continued)

FIGURE 4 | Continued

session. EGR1 immunoreactivity (shown in green) remained restricted to
nuclei. All other neuronal markers are shown in red. Colocalization of
immunoreactivity is found only in cells positive for the neuronal nuclear
protein NeuN (A) In contrast, no colocalization with EGR1 was observed in
glial cells. The employed glial markers were glial fibrillary acidic protein for
astrocytes (GFAP B), myelin basic protein for oligodendrocytes (MBP,

C), and tomato lectin for microglia (TL, D). Colocalization of
immunoreactivity was found only in neurons immunoreactive against an
anti-dynorphin antibody (DYN, E), i.e., most likely dopamine D1 receptor
expressing medium spiny neurons (D1-MSNs) or in neurons
immunoreactive against an anti-dopamine D2 receptor antibody (DRD2,
D2-MSNs, F). No colocalization with EGR1 was observed in cholinergic
interneurons (marker: choline acetyltransferase ChAT, G) or GABAergic
interneurons positive for parvalbumin (PV, H), neuropeptide Y (NPY, I) or
calretinin (CR, J) Images were taken with a laser scanning confocal
microscope with a magnification of 100x (bar size, 10 um).

HAB animals were compared by One-Way analysis of vari-
ance (ANOVA). When the overall comparison of the groups
yielded statistical significance (p < 0.05), subsequent compar-
isons between pairs of groups were performed using the least sig-
nificant difference (LSD) method (Levin et al., 1994). Differences
between NAB and HAB mice in the COCAINE group were calcu-
lated using a one-tailed unpaired heteroskedastic ¢-test for each
brain region compared, as we expected that HAB animals show
an increased EGR1 or c-Fos expression compared to NAB ani-
mals. To correlate EGR1- or c-Fos expression with the time in
the cocaine compartment we calculated the Spearman’s rank cor-
relation coefficients and the one-tailed p-values. Analysis was
performed using GraphPad Prism (www.graphpad.com).

RESULTS

COCAINE CPP IS INCREASED IN HAB MICE

All animals established a preference for one of the two condition-
ing compartments of the CPP box at the pretest day (Figure 3),
i.e., before place conditioning was initiated. Interestingly, HAB
mice showed a slightly higher bias for one of the compartments
than NAB mice (Figure 3, bottom row). The difference was non-
significant for either the NONCONT group (2-tailed ¢-test, p =
0.38) or the contingent COCAINE group (p = 0.085) alone but
became statistically significant (p = 0.045) after pooling both
groups. Time spent in the neutral compartment was excluded
from further analysis as the time in the neutral compartment was
not significantly different between the groups. Animals assigned
to the cocaine group were conditioned with cocaine to the non-
preferred compartment. At the CPP test day NONCONT NAB
(Figure 3, top row, green unfilled bars) and NONCONT HAB
mice (Figure 3, middle row, red unfilled bars) did not establish
a preference for any compartment (1-Way ANOVA; NAB, p =
0.55 and HAB, p = 0.07). In contrast, COCAINE NAB (Figure 3,
top row, CPP test, green filled bars) and COCAINE HAB ani-
mals (Figure 3, middle row, CPP test, red filled bars) developed
a cocaine CPP for the cocaine associated compartment at the
CPP test day (1-Way ANOVA; NAB, p < 0.0001 and HAB, p <
0.0001). COCAINE HAB animals showed an increased cocaine
CPP preference compared with COCAINE NAB animals (2-sided
t-test; p < 0.001, Figure 3, bottom row, CPP test).
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COCAINE CPP-INDUCED EGR1 EXPRESSION IS RESTRICTED TO D1-
AND D2-MEDIUM SPINY NEURONS

Cocaine CPP-induced an increase in EGRI1 expression that
remained restricted to neurons (Figure 4), as identified by colo-
calisation of EGR1 with the neuronal marker NeuN (panel A). A
lack of colocalisation with EGR1 was observed in glial cells, pos-
itive for GFAP (panel B), MBP (panel C) or tomato lectin (panel
D) in any of the treatment groups. Colocalization of EGR1 was
restricted to neurons positive for DYN, most likely dopamine D1
receptor expressing neurons (D1-MSNs, panel E) and D2-MSNs
positive for DRD2 (panel F). Also there was no colocalization of
EGR1 with markers for cholinergic interneurons (ChAT, panel
G) or GABAergic interneurons positive for PV (panel H), NPY
(panel I); or CR (panel J) in any of the treatment groups. This
suggested that these neuron types were not involved in mediating
cocaine CPP-induced EGRI expression and were not affected by
high anxiety-related behavior.

HAB MICE SHOW INCREASED COCAINE CPP-INDUCED EGR1 AND
C-FOS EXPRESSION IN THE ACCUMBENS CORRIDOR

In order to quantify the cocaine CPP-induced neuronal acti-
vation in the accumbens corridor we assessed EGR1 and c-
Fos expression by immunohistochemistry 1h after the cocaine
CPP test. Figure5 gives an illustrative example of the cocaine
CPP-induced EGR1 (Figures 5A,B) and c-Fos (Figures 5C,D)
accumbens corridor activation.

Quantification showed that 1 h after the CPP test cocaine CPP-
induced EGR1 expression was significantly increased in NAB
(Figure 6A, left panel) and HAB animals (Figure 6A, middle
panel) trained for cocaine CPP (COCAINE NAB and COCAINE
HAB) compared to non-contingent cocaine treated animals
(NONCONT NAB and NONCONT HAB) in the accumbens cor-
ridor (Figure6) and in regions lateral from the corridor, i.e.

the AcbCl and the CPu in the COCAINE NAB group or only
in the AcbCl in the COCAINE HAB group. A comparison of
COCAINE NAB and COCAINE HAB animals (Figure 6A, right
panel) showed that there was a significant increase in EGRI1
expression in the cocaine HAB group in the accumbens corridor,
but not in lateral regions (AcbCl and the CPu).

In contrast we found that c-Fos expression in animals trained
for cocaine CPP (COCAINE NAB and COCAINE HAB) was
only significantly different from animals treated non-contingently
with cocaine (NONCONT NAB and NONCONT HAB) in the
AcbShm (Figure 6B, left and middle panel), but not in other
regions of the accumbens corridor. Similarly to the increase in
cocaine CPP-induced EGR1 expression in COCAINE HAB mice
compared to COCAINE NAB mice we found that c-Fos expres-
sion was significantly increased in the accumbens corridor of the
COCAINE HAB mice, but not in lateral regions (Figure 6B, right
panel; see Table 1 for p-values).

EGR1 AND c-FOS EXPRESSION CORRELATE WITH THE TIME SPENT IN
THE COCAINE COMPARTMENT IN THE INDIVIDUAL ACCUMBENS
CORRIDOR REGIONS

We investigated if there was a correlation between the animals’
preference for the cocaine-associated contextual cues (as quan-
tified in the CPP paradigm) and neuronal activation in the
accumbens corridor regions (as determined by EGRI1 and c-Fos
activation). As we wanted to test if this was a general phe-
nomenon (i.e., independent of variations in conditioning), we
pooled the data from the two conditioning groups, following field
precedence (Golden et al., 2013; Prast et al., 2014).The respec-
tive correlational statistics for the individual treatment groups
are given at the end of this paragraph. There was a correlation
between the preference for the cocaine associated compartment
and the EGRI expression in the animals trained for cocaine CPP

EGR1 COCAINE NAB

VDB+MS ICjM+LSI AcbShm

c-Fos COCAINE NAB

AcbShm

VDB+MS ICjM+LSI

FIGURE 5 | Cocaine CPP-induced EGR1- and c-Fos expression are
increased in the accumbens corridor. Shown for each (A-D) are
representative images of the individual 190 um counting bins of the
different accumbens corridor regions comprising, from medial to the
lateral, VDB 4+ MS, ICjM + LSI, AcbShm, and AcbCm. For abbreviations

. EGR1 COCAINE HAB

VDB+MS ICjM+LSI AcbShm

c-Fos COCAINE HAB

VDB+MS ICjM+LSI AcbShm

see Materials and Methods. In (A) Cocaine CPP-induced EGR1 expression
is shown for NAB (A) vs. HAB (B) mice. Cocaine CPP-induced c-Fos
expression is shown for NAB (C) vs. HAB (D) mice. Images were taken
with a laser scanning confocal microscope with a magnification of 20x
(bar size, 50 pm).
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(NAB and HAB COCAINE group) in the ICjM + LSI and the
AcbShm (Figure 7, panel A). In contrast there was no positive
correlation for animals treated non-contingently with cocaine
(NONCONT) in any of these brain areas.

Also c-Fos expression correlated with the time spent in the
cocaine associated compartment in the COCAINE group in the
AcbShm and the AcbCm. The NONCONT group did not show
a positive correlation between the c-Fos expression per mm2and
the time spent in the cocaine compartment.

Spearman’s rank correlation coefficients and p values for EGR1
and c-Fos expression for the different treatment groups are shown
in detail in Table 2.

DISCUSSION

Our results support the so-called “self-medication hypothesis of
addiction” in that mice selectively bred for high anxiety-related
behavior (HAB) and tested in a CPP paradigm found 15 mg/kg
i.p. cocaine more rewarding (Figure3) than normal anxiety-
related behavior mice. Our results are in accordance with a previ-
ous study from an independent group (Pelloux et al., 2009) which
found that cocaine CPP was increased in rats selectively bred for
high anxiety as compared to their non-anxious conspecifics. One

very likely explanation for the increase in cocaine CPP in HAB
mice is that cocaine relieves anxiety in these animals. In sup-
port of this assumption, Costall and coworkers have previously
shown that cocaine at a dose of 1 mg/kg i.p. or more, administered
twice daily for several days, increased the time spent in the bright
compartment of a black and white box and increased other mea-
sures indicative of an anxiolytic effect in male albino BKW mice,
whereas cocaine withdrawal produced a temporary anxiogenic
effect (Costall et al., 1989). These data reflect the human situa-
tion in that cocaine user self-report to consume cocaine to relieve
symptoms of anxiety (Khantzian, 1985). In contrast, Estelles and
coworkers have found variable effects of cocaine on elevated plus
maze behavior of male OF1 mice (Estelles et al., 2007). These
effects depended on the pattern of cocaine administration, the
age of the mice, and the housing conditions, without yielding a
general pattern (Estelles et al., 2007).

By subjecting the animals to only four cocaine exposures, each
separated by 2 days, we tried to minimize a confounding effect
that jeopardizes all human epidemiological studies (Grant et al.,
2004; Lembke, 2012), i.e., that drug withdrawal may cause symp-
toms of anxiety (see also the mouse data by Costall et al., 1989,
above) the alleviation of which leads to renewed consumption
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FIGURE 6 | Cocaine CPP-induced EGR1 and c-Fos expression is increased HAB n = 8, red filled squares), treated with non-contingent cocaine
in the accumbens corridor of HAB mice. (A) shows group means = SEMs of ~ (NONCONT HAB n = 8, red unfiled squares), and NAIVE HAB animals (n = 8,
EGR1-positive nuclei per mm2, whereas (B) shows group means 4+ SEM of black small dots). For reasons of clarity, significant differences (indicated by an
c-Fos-positive nuclei per mm2. On the x-axis the individual regions of the asterisks) between treatment groups are only displayed for the comparison of
accumbens corridor, the AcbCl and the CPu are displayed. The accumbens animals conditioned for cocaine CPP and animals that received cocaine
corridor comprises the VDB + MS, ICjM + LSI, AcbShm, and AcbCm (for non-contingently (*p < 0.05; **p < 0.01; **p < 0.001, and **p < 0.0001).
abbreviations see Materials and Methods). The graphs in the left panel show Comparison between the NAB COCAINE and HAB COCAINE group is shown in
NAB animals trained for cocaine CPP (COCAINE NAB n = 7, green filled the right panel of the figure. Statistical differences assessed by a one-tailed
squares), treated with non-contingent cocaine (NONCONT NAB n = 8, green t-test between these two groups for each region of the accumbens corridor is
unfilled squares) and NAIVE NAB animals (n = 8, black small dots). The graphs indicated by the number sign (#p < 0.05; ##p < 0.01). The complete statistical
in the middle panel display HAB animals trained for cocaine CPP (COCAINE analysis and the individual p-values are shown in Table 1.
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of the very same drug that had been taken to alleviate non-
drug-related anxiety in the first place, thus blurring a simple
cause-effect relationship between anxiety and drug consumption.
We also tested the effect of non-contingent (i.e., CPP training pro-
cedure independent) cocaine and found no difference between
HAB and NAB mice in the CPP test (pitching two saline injec-
tions against each other during CPP training), demonstrating
that there were no differences between HAB and NAB mice
with respect to CPP-relevant pharmacological cocaine effects.
Interestingly, while non-contingent cocaine did not differentially
affect behavior in the CPP paradigm, non-contingent cocaine
in HAB vs. NAB mice increased the expression of EGR1 in the
AcbShm and the AcbCl, whereas c-Fos expression was increased
in the VDB + MS (Figure 6 and Table 1). This suggests that HAB
mice may also be more sensitive to the direct pharmacological
effects of cocaine. Of note, HAB mice also showed a higher EGR1
baseline expression in the ICjM + LSI compared to NAB mice,
whereas c-Fos baseline expression was increased in the AcbCm,

but lower in the AcbCl compared to NAB mice. To complicate
matters further, cocaine and other psychostimulants in animal
experiments have been shown (for review see Zernig et al., 2007)
to produce appetitive and aversive effects (plausibly including
anxiogenic effects) at the very same doses of 0.03-3 mg/kg i.v.
In the present study, however, the appetitive/rewarding effects
of cocaine must have prevailed over possible anxiogenic effects:
Otherwise, HAB mice would most likely have shown less cocaine
CPP than NAB mice or would even have developed conditioned
place aversion to cocaine, which was clearly not the case.
Paralleling the increased cocaine CPP (Figure 3), the cocaine
CPP-induced expression of the IEGs EGR1 and c-Fos in neurons
(Figure 4) was increased in many regions of the accumbens cor-
ridor of HAB vs. NAB mice (Figure 5), most notably the medial-
most ones, i.e., VDB + MS, ICjM + LSI, and AcbShm (Figure 6,
rightmost panels, and Table1). In contrast, regions lateral of
the accumbens corridor (AcbCl and CPu) were not differentially
affected in HAB vs. NAB mice (Figure 6) despite the pronounced

Table 1 | Cocaine CPP-induced increase in EGR1 and c-Fos expression.

Immediate early gene Treatment group comparison

Accumbens corridor Lateral regions

VDB + MS ICjM + LSI AcbShm AcbCm AcbCl CPu

EGR1 COCAINE NAB vs. HAB 0.045 0.0022 0.048 0.09 0.13 0.22
EGR1 NONCONT

NAB vs. HAB 0.27 0.16 0.0075 0.085 0.0084 0.23
EGR1 NAIVE

NAB vs. HAB 0.1 0.011 0.15 0.1 0.26 0.06
EGR1 COCAINE vs. NONCONT

NAB 0.0031 0.0174 0.0081 0.0002 0.0287 0.0198

HAB 0.0002 0.0002 0.0017 < 0.0001 0.0112 0.052
EGR1 COCAINE vs. NAIVE NAB < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.0003 < 0.0001

HAB < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
EGR1 NAIVE vs. NONCONT

NAB 0.0177 0.0419 0.0412 0.0085 0.056 0.0001

HAB 0.0132 < 0.0001 0.0006 0.0002 0.0038 0.0002
c-Fos COCAINE NAB vs. HAB 0.0055 0.034 0.013 0.082 0.097 0.16
c-Fos NONCONT

NAB vs. HAB 0.039 0.204 0.16 0.46 0.18 0.44
c-Fos NAIVE

NAB vs. HAB 0.099 0.29 0.29 0.029 0.048 0.38
c-Fos COCAINE vs. NONCONT

NAB 0.99 0.56 0.0155 0.16 0.47 0.53

HAB 0.1 0.15 0.0002 0.0245 0.14 0.097
c-Fos COCAINE vs. NAIVE

NAB 0.088 0.0007 0.0005 0.0063 0.75 0.20

HAB < 0.0001 0.0002 < 0.0001 0.18 0.0029 0.011
c-Fos NAIVE vs. NONCONT

NAB 0.076 0.0023 0.14 0.12 0.28 0.50

HAB < 0.0001 0.007 0.20 0.35 0.40 0.28

EGR1 and c-Fos expression was compared by One-Way ANOVA followed by Fisher's Least Significant Difference (LSD) test (Levin et al., 1994) between the following
treatment groups for NAIVE NAB (n = 8), NONCONT NAB (n = 8), COCAINE NAB (n = 7) or NAIVE HAB (n = 7), COCAINE HAB (n = 8), and NONCONT HAB
(n = 8) animals in the following brain regions: the accumbens corridor (VDB + MS, ICiM + LSI, AcbShm, and AcbCm), the AcbCl and the CPu. COCAINE NAB vs.
COCAINE HAB and NONCONT NAB vs. NONCONT HAB groups were compared using an unpaired one-tailed t-test. The respective p-values for each comparison

are shown in the Table. For abbreviations see Materials and Methods.
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increase in cocaine CPP in HAB mice. These results mirror previ-
ous findings by our group in rats in that the regions lateral of the
accumbens corridor, i.e., the accumbens core lateral of the ante-
rior commissure and the dorsal striatum, are much less affected
by the cocaine CPP reacquisition and its inhibition by a previous
history of dyadic social interaction than the regions within the
accumbens corridor (Prast et al., 2014).

This suggests that the accumbens corridor regions (Prast et al.,
2014) are not only important for the acquisition/expression of
drug reward as operationalized in the CPP paradigm, but also
for anxiety-related behavior. Data from human imaging studies

support the idea that the Acb plays a role in reward (Breiter
et al., 1997; Breiter and Rosen, 1999; Haber and Rauch, 2010)
as well as anxiety (Levita et al., 2012). The nucleus accumbens
proper has been shown to mediate anxiety (Ahmadi et al., 2013)
in animal experiments (Muigg et al., 2009; Ahmadi et al., 2013).
Interestingly, in HAB mice deep brain stimulation of the lateral
nucleus accumbens core causes anxiolytic effects in HAB- but not
NAB mice (Schmuckermair et al., 2013). Clinically, deep brain
stimulation of the accumbens region has been shown to allevi-
ate symptoms of anxiety (Sturm et al., 2003; Bewernick et al,,
2010). Of note, Schlaepfer and coworkers (Bewernick et al., 2010)
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FIGURE 7 | Correlation of EGR1 and c-Fos expression in the given for each region of the accumbens corridor, the AcbCl and the
accumbens corridor regions 1h after the cocaine CPP test with the CPu for animals that had undergone cocaine CPP (COCAINE NAB
time spent in the cocaine associated compartment. The correlation n=17, filled green squares, filled; COCAINE HAB n=8, filled red
of EGR1 expression (A) or c-Fos expression (B) per mm?2 vs. the time squares) as a continuous line and animals treated with non-contingent
spent in the cocaine compartment during the cocaine CPP test is cocaine shown as dashed line (NONCONT NAB n =8, unfilled green
shown by pooling data from NAB and HAB animals. The correlation is squares; NONCONT HAB n =38, unfilled red squares).
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found that deep brain stimulation of the accumbens in treatment-
resistant depressive patients did not only increase the number
of “positive activities,” but also decreased symptoms of anxiety
and depression. Thus, electrical stimulation of the accumbens
region in humans not only increased the frequency of motivated
behavior—a function for which the accumbens is well-known for
(Salamone and Correa, 2012)—but also relieved anxiety. As the
amygdala is known to mediate memories with emotional con-
tent (Herry et al., 2010; Liithi and Liischer, 2014) and to project
extensively to the AcbShm (Heimer et al., 1997), it is plausible that
amygdala-AcbShm projections modulate the effect of anxiety on
AcbShm MSN activation. Regions medial of the nucleus accum-
bens i.e., the major island of Calleja and intermediate part of the
lateral septum as well as the medial septum/diagonal band com-
plex have also been shown to be affected by rewarding/reinforcing
effects of drugs of abuse (Mahler and Aston-Jones, 2012; Prast
etal, 2014) or by anxiety (Menard and Dallas, 1996; Degroot and
Treit, 2003; Razavi et al., 2014). For instance, it has been shown
that neurons in the lateral septum were specifically activated dur-
ing cue-induced cocaine seeking (Mahler and Aston-Jones, 2012)
or that the cocaine CPP reacquisition-induced EGR1 expression

was increased in the medial septum/diagonal band complex and
also in the major islands of Calleja and the intermediate part
of the lateral septum (Prast et al., 2014). A role of the medial
and lateral septum in anxiety has been shown by lesioning of
the lateral and medial septum, which leads to reduced anxiety
behavior on the elevated plus maze (Menard and Dallas, 1996).
Administration of muscimol into the medial septum also induced
anxiolytic effects in a shock probe burying test (Degroot and Treit,
2003). There is a lot of evidence indicating that these regions form
a functional continuum which we termed “accumbens corridor”
(see discussion in Prast et al., 2014). All these findings suggest
that the accumbens corridor might be important for mediating
anxiety-related behavior (for the LSI, see Muigg et al., 2009) and
cocaine CPP-induced EGR1- (Prast et al., 2014 and present study)
and c-Fos expression (present study). With respect to baseline
EGRI1- and c-Fos activation of accumbens corridor D1- and D2-
MSNss in high anxiety- vs. normal anxiety mice, which may have
given us an indication if anxiety per se results in an increased
activation of accumbens corridor MSNGs, our findings are equivo-
cal: HAB mice showed an increased baseline EGR1 expression in
the ICjM + LSI (Figure 6A and Table 1), whereas baseline c-Fos

Table 2 | Correlation of cocaine CPP-induced EGR1 and c-Fos expression with time spent in the cocaine compartment.

Treatment group Accumbens corridor AcbCl CPu
VDB + MS ICjM + LSI AcbShm AcbCm
EGR1
COCAINE NAB + COCAINE HAB r=0.30, r=0.46, r=0.50, r=0.77, r=0.13, r=20.18,
(pooled) p=0.13 p=0.038 p=0.026 p=0.0003 p=0.32 p=0.25
COCAINE NAB + COCAINE HAB r=0.20, r=0.032, r=—0.24, r=—0.02, r=0.16, r=20.17,
(pooled) p=0.23 r=0.45, p=0.20 p=0.47 p=0.28 p=0.28
COCAINE NAB r=0.29, r=0.54, r=0.32, r=0.86, r=0.32, r=0.36,
p=0.28 r=0.12, p=0.25 p=0.012 p=0.25 p=0.22
COCAINE HAB r=-0.07, r=-0.17, r=0.24, r=0.33, r=-0.62, r=0.50,
p=0.44 r=0.35, p=0.29 p=0.21 p =0.058 p=0.1
NONCONT NAB r=—0.26, r= —0.40, r=—0.24, r= —0.48, r= —0.048, r= —0.095,
p=0.27 r=0.16, p=0.29 p=0.12 p=0.47 p=0.42
NONCONT HAB r= —0.36, r= —0.26, r= —0.048, r=—0.43, r=-—0.19, r=—20.19,
p=0.19 r=0.27, p =047 p=0.15 p=0.33 p=0.33
c—Fos
COCAINE NAB + COCAINE HAB r=0.40, r=0.42, r=—0.73, r=0.68, r=0.13, r=20.22,
(pooled) p=0.07 r =0.059, p=0.001 p=0.0029 p=0.32 p=0.22
COCAINE NAB + COCAINE HAB r=0.074, r=0.05, r=-0.21, r= —0.44, r=-—0.47, r= —20.21,
(pooled) p=0.39 r=0.42, p=0.21 p=0.044 p=0.033 p=0.2
COCAINE NAB r=0.036, r=-043 r=0.64, r=0.75, r=-0.19, r=—0.25
p=0.48 r=0.18, p=0.07 p=0.033 p=0.36 p=0.30
COCAINE HAB r=0.62, r=20.0, r=—0.09 r=-0.29 r=—0.34, r=0.25,
p=0.058 p=0.52 p=0.42 p=0.25 p=0.21 p=0.27
NONCONT NAB r=-0.12, r=0.43 r= —0.60, r=0.46, r= —0.048, r=0.048,
p=0.40 p=0.15 p=0.066 p=0.12 p=0.47 p=0.47
NONCONT HAB r=0.69, r=0.31, r=-0.31 r=0.048, r=—0.05 r=0.24,
p=0.035 p=0.23 p=0.23 p=0.47 p=0.47 p=0.29

Given are Spearman’s rank correlation coefficients and p-values for the correlations of the cocaine CPP-induced EGR1 or c-Fos expression [immunopositive cells

per mm?] and the times spent in the cocaine associated compartment [s]. Shown are correlations for data pooled from the COCAINE groups (COCAINE NAB and
HAB group) and NONCONT groups (NONCONT NAB and NONCONT HAB) or correlation coefficients and p-values obtained from the individual treatment groups
(NONCONT NAB, NONCONT HAB, COCAINE NAB, and COCAINE HAB) and (SOCIAL) for the different accumbens corridor regions, the AcbCl, and the CPu.
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activation was increased in a different region, i.e., the AcbCm
(Figure 6B and Table 1), allowing no firm conclusion.

We found that the cocaine CPP-induced EGR1 activation in
the accumbens corridor in CD1 mice bred for normal or high
anxiety-related behavior is mediated by D1- and D2-medium
spiny neurons (Figure4). In contrast, we did not find a con-
tribution of either cholinergic interneurons and GABAergic
interneurons or glial cells in mediating the global EGR1 response
(Figure 4). This is in accordance with previous results from our
group showing that only D1- and D2-MSNs mediate the cocaine
CPP reacquisition-induced EGR1 expression (Prast et al., 2014).
To summarize, cocaine CPP, either upon reacquisition in normal
anxiety rats (Prast et al., 2014) or upon acquisition/expression
in NAB- and HAB mice (present study) activates only D1- and
D2-MSNs and no other neuronal or glial population in the
accumbens corridor.

A role of EGR1 in anxiety was demonstrated by Ko et al. (2005)
who found that EGR1 knock out (KO) C57BL/6 mice showed a
roughly 10-fold increase in open arm time in the elevated plus
maze, indicating that a lack of EGR1 in the whole brain strongly
reduces anxiety. The EGR1 KO mice also displayed impaired
memory for late auditory cue-conditioned fear induced by mul-
tiple electric shocks, whereas context and auditory fear memory
induced by a single shock and extinction of context and audi-
tory fear memory were not affected. Finally, EGR1 KO decreased
synaptic potentiation in the amygdala and cortex.

With respect to the direct comparison of the neuronal acti-
vation markers EGRI1 vs. c-Fos, the effect of contingent vs. non-
contingent cocaine was more pronounced for EGR1 than c-Fos
in the very same brains (Figure 6). To emphasize, despite yielding
a higher baseline immunohistochemical signal, EGR1 produced
more pronounced increase by non-contingent cocaine than c-Fos.
When comparing cocaine CPP associated activation Figure 6,
rightmost panels), however, the relative increase in immunopos-
itive nuclei was comparable between the two markers, although
EGR1 yielded higher absolute values. Taken together, the present
findings suggest that EGR1 may be a more sensitive marker for
the direct pharmacological vs. the conditioned (“psychological”)
effects of cocaine in our paradigm than c-Fos. It has been reported
that the sensitivity of c-Fos induction is not uniform in all regions
of the brain (Chaudhuri, 1997; Chaudhuri et al., 2000) which
could explain the observed differences between c-Fos and EGR1
expression (Figure 6), with c-Fos showing a very low tonic (base-
line) activation vs. EGR1 showing a high tonic activation. The
finding that expression of EGR1 and c-Fos is not identical after
the same stimuli has also been reported by others (Cole et al.,
1989; Nguyen et al., 1992). The differences can be explained by
the fact that, although EGR1 and c-Fos have a common activa-
tion pathway (Chaudhuri, 1997; Herdegen and Leah, 1998; Zhai
etal., 2008), there are differences in the induction (Zangenehpour
and Chaudhuri, 2002), DNA binding sequence and binding to the
promoter region (Chaudhuri, 1997; Herdegen and Leah, 1998),
expression (Sassone-Corsi et al., 1988; Herdegen and Leah, 1998;
Ishida et al., 2000; Slattery et al., 2005) and posttranslational
modification (Chaudhuri, 1997).

There was a correlation between the animal’s behavior (i.e.,
the time spent in the cocaine associated compartment) and the

degree of cocaine CPP-induced EGR1 expression, and, to a lesser
degree, the cocaine CPP-induced c-Fos expression in some of the
accumbens corridor regions (Figure 7), suggesting that cocaine
CPP is broadly affecting the accumbens corridor. This is in line
with our previous experiments (Prast et al., 2014) in which we
also found a correlation between the time spent in the cocaine
associated compartment and the EGR1 expression per mm?2(for a
detailed mouse vs. rat comparison with regard to our experimen-
tal paradigms see Kummer et al., 2014). Moreover, the correlation
was observed in both studies regardless of the conditioning proto-
col, as we tested the acquisition/expression of cocaine CPP in the
present study and a cocaine CPP reacquisition paradigm in our
previous study (Prast et al., 2014).

Interestingly, the HAB mice not only showed a pronounced
increase in cocaine CPP compared to NAB mice but also demon-
strated a slightly higher but non-significant bias for one of
the conditioning compartments during the pretest than NAB
mice. This slightly bigger side bias became statistically signifi-
cant (p = 0.045) only after pooling COCAINE and NONCONT
groups. As we used a biased CPP procedure, i.e., conditioned
cocaine to the initially non-preferred side, we cannot exclude
that HAB mice may have experienced a higher level of stress
and/or anxiety in the initially non-preferred side, thus adding
to a likely anti-stress and/or anxiolytic effect of cocaine which
may have amplified the cocaine CPP in HAB mice even fur-
ther. Of note, this phenomenon supports the notion that the
cocaine reward in the present study was due to its anxiolytic
effect. In a similar vein, placing the CPP boxes under fluores-
cent light may also have produced a higher level of stress/anxiety,
rendering cocaine CPP even stronger in HAB mice because of an
anxiolytic effect.

In conclusion, the present findings support the self-
medication hypothesis of addiction in that cocaine proved to be
more rewarding in a mouse model that reflects trait anxiety. Our
results also suggest an important role of the accumbens corri-
dor in mediating the rewarding properties of cocaine based on its
likely anxiolytic effect. As shown previously in Sprague Dawley
rats using a different CPP procedure, the preference for cocaine
(measured as the time spent in the cocaine associated compart-
ment) was again correlated with the amount of EGR1 activation
(present study). Overall, the IEG EGR1 seemed to be a more sensi-
tive marker than c-Fos in our behavioral paradigm. One avenue of
future research is to differentiate the contribution of each accum-
bens corridor region by targeted activation/inactivation. It would
also be worthwhile to investigate if antidepressant/anxiolytic
treatment or deep brain stimulation is able to inhibit the increase
of cocaine CPP in HAB mice and inhibit the cocaine CPP-induced
IEG expression.
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