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Adaptive effort investment in
cognitive and physical tasks: a
neurocomputational model
Tom Verguts*, Eliana Vassena and Massimo Silvetti

Department of Experimental Psychology, Ghent University, Ghent, Belgium

Despite its importance in everyday life, the computational nature of effort investment

remains poorly understood. We propose an effort model obtained from optimality

considerations, and a neurocomputational approximation to the optimal model. Both

are couched in the framework of reinforcement learning. It is shown that choosing

when or when not to exert effort can be adaptively learned, depending on rewards,

costs, and task difficulty. In the neurocomputational model, the limbic loop comprising

anterior cingulate cortex (ACC) and ventral striatum in the basal ganglia allocates effort

to cortical stimulus-action pathways whenever this is valuable. We demonstrate that

the model approximates optimality. Next, we consider two hallmark effects from the

cognitive control literature, namely proportion congruency and sequential congruency

effects. It is shown that the model exerts both proactive and reactive cognitive control.

Then, we simulate two physical effort tasks. In line with empirical work, impairing the

model’s dopaminergic pathway leads to apathetic behavior. Thus, we conceptually unify

the exertion of cognitive and physical effort, studied across a variety of literatures (e.g.,

motivation and cognitive control) and animal species.

Keywords: cognitive effort, cognitive control, physical effort, computational model

Introduction

Adaptive choice requires deciding how much effort to invest. Do we ride our bike extra fast to
reach the supermarket before it closes? In the supermarket, do we mentally calculate price dif-
ferences between brands up to the eurocent? Several studies investigated the correlates of effort
exertion. Effort is exerted for difficult and highly rewarding tasks (Pessiglione et al., 2007; Krebs
et al., 2012; Salamone and Correa, 2012; Vassena et al., 2014). Effort investment varies across
individuals (Boksem and Tops, 2008; Treadway et al., 2012b), and is impaired in clinical con-
ditions like chronic fatigue syndrome, ADHD, and depression (Volkow et al., 2011; Treadway
et al., 2012a). Effort can be pharmacologically manipulated (Bardgett et al., 2009; Salamone and
Correa, 2012). However, a mechanistic understanding of how organisms learn to exert effort
is lacking. To address this issue, we frame effort allocation as a reinforcement learning (RL)
problem (Sutton and Barto, 1998). In RL, an action is chosen that maximizes some value (util-
ity) function. We consider optimization of a value function combining reward and effort cost
(Rigoux and Guigon, 2012). Effort is indeed a cost dimension that subjects try to minimize (Kool
et al., 2010). We consider deciding to apply effort as an action to be chosen. Indeed, although
effort is no overt response, it has effects on the environment, so RL principles can be applied.
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We start from an optimality consideration of effort, spec-
ifying what a neurocomputational model might approximate.
Next, we propose a neural substrate for effort. The basal ganglia
(BG)-thalamocortical circuit through the anterior cingulate cor-
tex (ACC) and BG is ideally suited for this purpose (Alexander
et al., 1986). This limbic loop originates in ACC, and subsequently
projects to ventral striatum (VS), ventral pallidum (VP), and tha-
lamus (GABA inhibitory pathways). The thalamus projects to
ACC, thus closing the loop. The brainstem dopaminergic ventral
tegmental area (VTA) projects into this limbic loop, in particu-
lar to ACC and VS (Pierce and Kumaresan, 2006). Classically, the
limbic loop is considered a gateway between emotion and action
(Mogenson et al., 1980). More specifically, it processes effort. For
example, dopaminergic depletion of VS impairs effort (Salamone
et al., 1994; Denk et al., 2005; Bardgett et al., 2009) and dopamin-
ergic stimulation of VS increases effort (Bardgett et al., 2009;
Wardle et al., 2011). Excitotoxic ACC lesions also impair effort
(Walton et al., 2002, 2009). In humans, the absence of effort initi-
ation is a hallmark of akinetic mutism, which is also associated
with ACC lesions (Devinsky et al., 1995). Stimulation of ACC
induces the “will to persevere,” a subjective feeling of increased
motivation (Parvizi et al., 2013). VS is activated in anticipation of
high effort (Boehler et al., 2011). Besides effort, the limbic loop
also processes reward (Kable and Glimcher, 2007; Matsumoto
et al., 2007; Pessiglione et al., 2007; Croxson et al., 2009).

To understand the limbic loop and its role in effort process-
ing, we seek inspiration from data and theory concerning another
cortico-striato-pallido-thalamo-cortical pathway, the motor loop
(Alexander et al., 1986). The motor loop receives dopaminergic
input fromVTA and substantia nigra (SN). Earlier computational
models (Frank, 2005; Ashby et al., 2007) describe how this motor
loop trains cortical pathways. We propose that the limbic loop
also modulates cortical pathways, not by training them but by
effort modulation. In this way, reward and cost feedback is used
both for learning a stimulus-action mapping (motor loop) and
for choosing when and whether to invest effort (limbic loop).

The optimality principle describes why a cognitive system
should allocate effort for what tasks; the neurocomputational
model states how. We next consider what types of effort exist.
Cognitive effort is often studied using congruency tasks like the
Stroop, Simon, or flanker tasks. In the Stroop task, subjects see
a colored word (e.g., RED) and must inhibit reading the word
and instead name the ink color. The congruency effect entails
that performance is better and easier when word and ink color
point to the same response (e.g., congruent stimulus RED is eas-
ier than incongruent stimulus RED; Egner, 2008). In addition,
we consider two hallmark findings, proportion congruency and
sequential congruency effects. The proportion congruency effect
means that the congruency effect is smaller in blocks with more
incongruent stimuli. A common interpretation is that subjects
prepare for incongruent trials in difficult blocks, exerting proac-
tive control (Cheesman and Merikle, 1986; Bugg and Chanani,
2011; Braver, 2012). The sequential congruency effect entails that
the congruency effect is smaller after an incongruent trial. This is
often interpreted as an instance of reactive control (Ansorge et al.,
2011; Braver, 2012). After a difficult trial, subjects temporarily
exert extra effort.

Physical effort is commonly studied in rodents (Salamone and
Correa, 2012; but see Meyniel et al., 2014). We also consider
two hallmark findings from this literature, effort discounting and
hyperbolic responding in variable-interval schedules. Effort dis-
counting entails that animals are willing to work for reward as
long as it is sufficiently large relative to the required effort. How-
ever, animals with a dopaminergically depleted limbic loop refuse
working and instead go for the easier but less rewarding option
(Salamone et al., 1994; Walton et al., 2009, 2002). In the variable-
interval reinforcement schedule (Catania and Reynolds, 1968),
animals perform some action repetitively (e.g., lever pressing),
and are reinforced with food on the first lever press after a vari-
able (randomly selected) interval. Here also, balancing reward
and effort costs is essential. This balance leads to hyperbolic
responding: Response rate increases almost linearly as a function
of reward rate at small reward rates, but plateaus when reward
rate is increased further. Intuitively, at some point increased
responding is no longer worth the extra (effort) cost.

Optimality

We aim to determine how to optimally allocate effort as a func-
tion of a reward, cost, and task difficulty. Consider the utility
function for a given task, as a function of effort:

U(effort)= E(reward)− effort cost (1)

where E(reward) expresses the expected reward. We assume
reward is contingent on solving the task, and solving it occurs
with some probability. This probability is a monotonically
increasing function of effort; and a monotonically decreasing
function of task difficulty. Further, we assume that effort cost is
a linear function of effort level. Equation (1) thus becomes

U(effort)= r
effort

difficulty+ effort
− c · effort (2)

The parameters r and c linearly scale expected reward and effort
cost, respectively. The cost parameter c may depend on vari-
ous factors, including long-term fatigue (due to prolonged effort
exertion), short-term fatigue (the time since the last effort expen-
diture, as in Simulation 5) or individual differences. Note that this
utility function is inherently subjective (subject-dependent): Both
effort and difficulty depend on the subject’s capacities and prior
exposure in the task at hand.

The effort that maximizes Equation (2) is the optimal effort,
and it turns out to be

optimal effort =

√

difficulty · r

c
− difficulty (3)

With this result, one can determine the optimal effort level for
various combinations of reward (r), cost (c), and task difficulty.
Figure 1A illustrates the effect of reward and cost (difficulty = 5;
low reward = 1; high reward = 2). The optimal effort level
is a decreasing function of cost, and an increasing function of
reward. Figure 1C shows optimal effort levels for different levels
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FIGURE 1 | Comparison of optimality perspective (A,C) and Simulation 1 (B,D).

of task difficulty (c = 0.2; low reward = 1; high reward = 2).
The shape of the curve is inverted-U: For very easy tasks, it
is not worth putting in effort, as they will be solved correctly
even without effort. On the other hand, for very difficult tasks,
effort is not worth it either: They will not be finished successfully
anyway.

Neurocomputational Model

In the neurocomputational model, one part implements the
minutiae of the relevant task (upper part in Figure 2), which
is different for each simulation. This is encoded by parameter
wSR , which are neural network weights between stimulus and
action representations. This mapping is assumed to be learned
earlier, and via pathways like the motor loop. Specific mappings
are reported for each simulation below.

The second part (lower part in Figure 2) is the focus of the
current paper. It determines whether investing effort for the cur-
rent configuration of reward, cost, and task difficulty, is worth
it. For this purpose, cortical stimulus areas project to ACC. The
ACC represents both stimulus value [V(s)] and values of actions
for a given stimulus [Q(s, a)].

A recent debate centers on what effort is exactly; an energetic
cost (Laughlin et al., 1998), an opportunity cost (Kurzban et al.,
2013), or both (Niv et al., 2007; Dayan, 2012). Our implemen-
tation is compatible with either, and derives from earlier work
on attentional processing. It consists of increasing signal-to-noise

FIGURE 2 | Neurocomputational model. Arrowheads are excitatory;

circleheads are inhibitory; the dashed line represents reward and cost

feedback (i.e., input for learning). The two black boxes are opened in different

simulations. The ACC representation is shown for just one stimulus s: One unit

for V (s), one for Q(s, Boost), one for Q(s, No Boost), and one for boosting the

action layer (B).

ratio (SNR) in cortical areas (McClure et al., 2005; Cohen et al.,
2007), called boosting for short. For simplicity, boosting is not
continuous, but instead Boost and No Boost are two discrete
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actions. These actions will be called options to avoid confusion
with cortical actions (Figure 2). ACC learns the (Q-)value of
each option for specific stimuli or contexts. A key point of the
model is that effort is modularized, in the sense that effort and
its associated effort cost are processed separately from the task to
be solved. Thus, we implement a “divide and conquer” strategy
in which different anatomical regions learn different regulari-
ties. Effort is also processed separately from other value dimen-
sions and indeed other cost dimensions, such as delay cost. Even
though delay cost is not explicitly implemented here, it is clear
that effort and delay costs would be processed separately in the
current modeling framework, simply because they have differ-
ent functional consequences. An organism should respond dif-
ferently to an effort cost (e.g., climbing) than to a delay cost (e.g.,
waiting). This principle is compatible with a host of data show-
ing explicit dissociations between the two dimensions of cost
(Rudebeck et al., 2006; Floresco et al., 2008; Prévost et al., 2010).

In the model, ACC projects directly to the VS (nucleus accum-
bens) (Heimer et al., 1997; Basar et al., 2010). From VS, an
inhibitory pathway projects to ventral pallidum (VP), which
inhibits the thalamus (Alexander and Crutcher, 1990). This is
called the direct pathway in the BG; the indirect pathway is not
currently implemented.

When state and action transition probabilities are known, one
can find the values of a policy by solving a set of Bellman equa-
tions (Sutton and Barto, 1998). However, these probabilities are
typically unknown. Besides, even if they were known, an organ-
ism busy interacting with its world does not straightforwardly
solve the equations. Fortunately, an alternative and more prac-
tical method exists, called Monte-Carlo RL. It involves sampling
the environment to update value estimates of one’s policy. In the-
ory, one alternates between estimating the value of a complete
policy with updating this policy based on the value estimates. In
real life, however, this is typically not feasible. As an alternative,
one can mix value estimation and policy updating by estimating
(Q-)values and updating the policy at every trial, which is called
generalized policy iteration (GPI). GPI leads to an optimal policy
(Sutton and Barto, 1998), and we implement it here. An option
a ∈ {Boost, No Boost} is chosen in ACC using a softmax rule:

Pr(a)=
exp

(

γQπ
n (s, a)

)

∑

a′ exp
(

γQπ
n (s, a

′)
) (4)

Thus, the continuous variable Qπ
n (s, a) is transformed into a

binary activation. A lower gain parameter γ means lower SNR
and more exploration in choosing an option. When the Boost
option is chosen, the boost value unit [Q(s, B) in Figure 2] in
ACC is activated (xBoost = 1). Otherwise, the no-boost value
unit [Q(s, no B] in Figure 2) in ACC is activated (xNoBoost = 1).
The boost option is thus chosen by ACC. It subsequently deter-
mines VS activation in the following way (using fixed weights
from ACC to VS): VS= 10xBoost +xNoBoost This activation is lin-
early passed on fromVS to VP and to thalamus, and back to ACC
to activate the boosting unit in ACC (B in Figure 2) with value
ACCBoost . The gate in VTA (Figure 2) is made explicit when
we explain the dopaminergically lesioned model (Simulation 4).
Finally, this activation modulates the choice for an appropriate

action (“Actions” box in Figure 2). Action k is also chosen via a
softmax rule:

Pr(k)=
exp

(

ACCBoost
∑

i w
SR
ik

xi

)

∑

k′ exp
(

ACCBoost
∑

i w
SR
ik′

xi
) (5)

in which x is a vector with xi = 1 if stimulus i is presented and
zero otherwise.

Note that ACC activation does not choose the action k, but
serves as a gain parameter that determines SNR in the pathway
implementing the task.

Learning to exert effort is supported by reward and cost feed-
back from VTA dopaminergic input into ACC (Takahata and
Moghaddam, 2000; Düzel et al., 2009). VTA responds to both
reward (Schultz et al., 1997) and cost (Matsumoto and Hikosaka,
2009), including effort cost (Krebs et al., 2012). Dopaminergic
projections train the limbic loop (Schultz et al., 1997), like they
train the motor loop (Frank, 2005; Ashby et al., 2007). Option
values are updated as:

Q
π

n (s, a)= Q
π

n− 1(s, a)+ α

(

R− c · xCost − Q
π

n−1(s, a)
)

(6)

Here,Q
π

n(s, a) is the value (averaged and cost-discounted reward)
of choosing option a when confronted with stimulus s, if one
chooses policyπ afterwards. Reward and (effort) cost are detected
in VTA; the factor R – c.xcost implements the value (reward—
effort cost) that was obtained (dotted line in Figure 2). For sim-
plicity cost is zero (xcost = 0) in case of no boosting; effort cost
scales linearly with parameter c (xcost = 1;) in case of boosting.

Simulation 1: Optimizing Value by Adaptive
Effort Allocation

Methods
We investigate the model’s effort investment for different com-
binations of reward, cost, and task difficulty. The task-specific
stimulus-response matrix wSR [used in Equation (5)] determines
difficulty. For example, if there is one easy (e.g., a simple arith-
metic problem, 2 × 1), and one difficult stimulus (e.g., a more
difficult problem, 7× 6), the weight matrix could be

wSR =

(

10 0
0 1

0
0.8

)

(7)

with rows indexing stimuli (i; 2× 1, 7× 6) and columns indexing
response options (k; 2, 42, 48). The first row corresponds to the
easy stimulus; in general, ifwSR

12 = wSR
13 = 0, then any valuewSR

11 >

ln(2)/βwill lead to probability of success>1/2, where β is the gain
parameter (implemented as ACCboost in Equation 5). This lower
bound ln(2)/ β is difficult to determine exactly, because the gain
parameter is optimized using reinforcement learning during the
task (Equation 5). For this reason, we setwSR

11 to a sufficiently high
value, so probability of success is always high for easy stimuli. The
0.8 in row 2 indicates a possible confusion between the actions
“42” and “48” (e.g., Campbell and Graham, 1985). Note that we
represent just a small subset of the mental arithmetic network,
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and with only limited realism. The modeling focus is on effort
rather than arithmetic, so we keep the task settings as minimal as
possible. Figure 3A illustrates the specific mapping.

In Simulation 1a, we varied the effort cost c for boosting from
0 to 0.8 (cost of not boosting is zero). We used two stimuli, one
low reward (reward= 1.5 for correct response), one high reward
(reward = 2 for a correct response). Both stimuli were difficult
(row 2 of Equation 7). Learning rate (α) and gain parameter (γ)
were set at 0.5 and 3, respectively. We ran 150 training trials, fol-
lowed by 50 test trials in which data were recorded. Results are
averaged across 1000 replications of this procedure.

In Simulation 1b, we manipulated difficulty. In particular we
changed the 0.8 in Equation (7) to the parameter δ, which indexed
task difficulty. A value δ = 0 means a relatively easy task; δ =

1 means an impossibly difficult task. The cost (c) for effort is
arbitrarily fixed at 0.2 for boosting.

Results and Discussion
Simulation 1a

Figure 1B displays mean ACC activation (here and elsewhere,
measured as ACCBoost) for different levels of reward and cost.
Because the scales of the optimal (left column) and neurocom-
putational (right column) models are different, and because dif-
ficulty is scaled in a different way, a quantitative comparison
between the two models is uninformative. However, both show
the same qualitative trends (more activation for high reward and
low cost). The effect of more activation for high reward than
for low reward is consistent with empirical data (Knutson et al.,

2001, 2005; Krebs et al., 2012). The effect of cost stands out as an
empirical prediction.

Simulation 1b

Figure 1D shows the model’s allocated effort level as a function
of task difficulty. Intuitively, when a task is very difficult, it’s not
even worth trying (to boost). When a task is very easy, no effort is
needed, because the task will be solved correctly anyway. Hence,
the allocated effort level exhibits an inverted-U shape. Part of the
pattern has been empirically verified. When task difficulty is low-
to-moderate (i.e., accuracy levels much higher than chance level),
ACC is more active for (moderately) difficult than for easy tasks
(Boehler et al., 2011; Vassena et al., 2014). The neurocomputa-
tional model does not completely conform to the optimal model,
however. In the optimal model, effort is an increasing function of
difficulty for a larger range of parameters for high reward than for
low reward (Figure 1C). This does not appear to be true in the
neurocomputational model (Figure 1D). Future studies should
determine more precisely the relationships between the opti-
mal model, the neurocomputational model, and corresponding
empirical results.

Simulation 2: Blockwise Proportion
Congruency Effect

Methods
As noted above, the proportion congruency (PC) effect means
that task blocks with more incongruent (MI) trials exhibit a

FIGURE 3 | Simulation-specific stimulus-action mappings.
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smaller congruency effect than blocks withmore congruent (MC)
trials (Logan and Zbrodoff, 1979; Tzelgov et al., 1992; Bugg et al.,
2011). It has been interpreted as an instance of proactive control,
meaning that participants exert more control (effort) in blocks
with mostly incongruent trials than in blocks with mostly con-
gruent trials (Bugg et al., 2011; Braver, 2012). Some authors have
argued that the effect derives from the relative stimulus frequen-
cies (Schmidt and Besner, 2008). However, the PC effect general-
izes to stimuli with matched frequencies in the same block (Bugg
and Chanani, 2011; Bugg and Crump, 2012), so this cannot be its
only origin.

We used the S-R matrix

wSR =

(

10 0
δ 1

)

(8)

with δ again indexing difficulty, and easy and difficult stim-
uli corresponding to congruent and incongruent trials, respec-
tively. Columns 1 and 2 correspond to the correct responses
for stimuli 1 and 2, respectively. See Figure 3B for an illus-
tration of the mapping in the context of a Stroop task. As in
the arithmetic example, this implementation is not intended to
imply much realism. Solving incongruent stimuli involves top-
down control signals which bias bottom-up processing path-
ways toward the less dominant but correct response (Miller
and Cohen, 2001). However, such top-down signals are not
the focus of this paper. The modular model structure allows
implementing any task in a convenient stimulus-action weight
matrix to which the effort processing machinery can be hooked
up. In such a weight matrix, the difference between correct
response and incorrect response should be much smaller for
an incongruent than for a congruent stimulus; however, the
correct response should still be more likely than the incor-
rect response in both cases. Otherwise, accuracies would be
below chance level, which is inconsistent with empirical data.
To sum up, the stimulus-action weight matrix is a simple
way of implementing bottom up/top down interactions with
two main features: Congruent is easier than incongruent; but
correct response is always more likely than incorrect. The
Appendix presents a more formal argument that the current S-R
matrix implements a combined “bottom-up” and “top-down”
configuration.

We introduce a context unit that is always active in a task block
(Figure 3B). It obeys the same learning laws as other stimuli
(Equation 6). Boosting is determined by the Q-values for boost-
ing vs. not boosting for this context unit. This means that, in
the current simulation, only the block context (rather than the
stimulus) determines whether to boost or not. This is of course
a simplifying assumption: In general, we expect that both task
and stimulus context determine whether to exert effort or not.
However, given that the current simulation focused on task con-
text, we opted for the simplest choice and implemented an effect
of task context only. Easy and difficult stimuli (Equation 8) were
randomly presented for 200 trials (80% easy stimuli inMCblocks;
20% easy stimuli in MI blocks). Hundred simulations were run
and averaged.

To explore the model’s parameter space, the parameters
reward, cost, difficulty, and learning rate were systematically var-
ied. As an approximation to this four-dimensional space, we plot
model performance in two of its subspaces. In the first (two-
dimensional) subspace, we vary the reward (R in Equation 6)
of the difficult stimulus; the reward of the easy stimulus is 1.
In this first subspace, we also vary the difficulty of the difficult
stimulus (δ).

In the second subspace, we vary the learning rate (α in Equa-
tion 6) and we vary the cost parameter (c in Equation 6); here
we set reward for the easy and difficult stimulus to 1 and 2
respectively, and δ = 0.8.

We plot accuracy for each point in the parameter space. In
addition, we plot the congruency effect, that is, the mean differ-
ence in accuracy for congruent vs. incongruent stimuli. Finally,
we plot the critical PC interaction

(

XMC
c − XMC

i

)

−
(

XMI
c − XMI

i

)

where XMC
c and XMI

c are the mean accuracies for congruent stim-
uli in MC and MI blocks, respectively (similar for incongruent
stimuli, with subscript i). Positive values of this contrast indicate
consistency of the model with the PC effect (smaller congruency
effect in MI blocks relative to MC blocks; Tzelgov et al., 1992;
Bugg and Chanani, 2011).

Results and Discussion
ACC is more active for incongruent relative to congruent stim-
uli (Van Veen and Carter, 2002; Kerns et al., 2004). The same is
true in the model, for the same reason as in Simulation 1: In the
low-to-moderate difficulty range where accuracies are well above
chance level (Figures 1C,D), more effort is exerted for difficult
than for easy stimuli.

Figure 4A displays the PC effect from a typical data set (Bugg
and Chanani, 2011). Only accuracy data (rather than response
times) are plotted because the current version of the model gen-
erates accuracy data only. Figure 4B shows the simulation results
from one point in the parameter space; this point is indicated by
a black dot in Figures 4C–H. Figure 4C shows that accuracy is
higher for higher rewards. This is consistent with empirical liter-
ature (Krebs et al., 2010; Padmala and Pessoa, 2011). In the simu-
lation (Figure 4E), the congruency effect is smaller when rewards
are larger, again consistent with data (Padmala and Pessoa, 2011).
Figure 4G shows that the PC effect is larger for bigger rewards.
This remains a prediction for future empirical investigation.

Figures 4D,F,H shows that learning rate has little effect on
accuracy, congruency, or PC effects. The only exception is when
learning rate is very low, in which case the model cannot learn
the block contingencies. Finally, cost has a strong (and oppo-
site) effect on accuracy and congruency effect, but little on the PC
effect. These predictions remain open for future investigation.

In general, reward, cost, difficulty, and learning rate have
orderly influences on task performance. Context was here sim-
ply implemented as a unit active throughout the block, and for
simplicity, only this unit was associated to the ACC. More gen-
erally, however, also the task stimuli or other contextual ele-
ments are likely to be associable to ACC effort neurons, con-
sistent with a broad empirical literature (Crump et al., 2006;
Crump and Milliken, 2009). For example, if more incongru-
ent stimuli appear in the upper than in the lower location,
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FIGURE 4 | (A) Proportion congruency data from Bugg and Chanani.

Labels C and I indicate congruent and incongruent, respectively.

(B) Simulated PC effect. (C) Simulated accuracy across different

levels of reward and task difficulty. (D) Simulated accuracy across

different levels of learning rate and cost. (E) Simulated congruency

effect across reward and difficulty. (F) Simulated congruency effect

across learning rate and cost. (G) Simulated PC effect across

reward and difficulty. (H) Simulated PC effect across learning rate

and cost. Black dots in (C–H) indicate the parameter used to

generate (B).

stimuli at the upper location have a smaller congruency effect
(even in stimuli with matched frequencies) (Crump and Mil-
liken, 2009). Lehle and Huebner (2008) demonstrate a sim-
ilar effect for (irrelevant) color rather than location cues.
Such context effects can be easily implemented in the current
model.

Simulation 3: The Sequential Congruency
Effect

Methods
Besides the proportion of congruent and incongruent trials in
a block (Simulation 2), also congruency of the previous trial
influences current-trial congruency. In particular, the congru-
ency effect is smaller after an incongruent trial (Gratton et al.,
1992), called the sequential congruency effect or Gratton effect
(Notebaert and Verguts, 2008; Fischer et al., 2010). It is a major
inspiration for theories of cognitive control and ACC (Botvinick
et al., 2001; Egner and Hirsch, 2005; Verguts and Notebaert,

2008; Grinband et al., 2011). It is often interpreted as an instance
of reactive control (Braver, 2012): Because of difficulty experi-
enced on the previous trial, subjects invest more effort on the
next. Low-level trial-to-trial priming effects (Mayr et al., 2003)
do not account (completely) for the sequential congruency effect
(Ullsperger et al., 2005; Notebaert and Verguts, 2007; Duthoo and
Notebaert, 2012).

Model and parameter settings were the same as in Simula-
tion 2 except that (as in empirical paradigms for sequential con-
gruency) the proportion of congruent stimuli was 50%. Besides
accuracy and congruency effect, we now plot the critical interac-

tion contrast
(

X
pC
c − X

pC
i

)

−

(

X
pI
c − X

pI
i

)

whereX
pC
c andX

pI
c are

mean accuracies for congruent stimuli, if the previous trial was
congruent vs. incongruent, respectively (similar for incongruent
stimuli, subscript i). More positive values of this contrast indicate
a greater sequential congruency effect. In the current Simulation,
(only) the stimulus determines whether to boost or not; block
would make no sense in this case as there is just a single block
type (50% congruent stimuli).
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Results and Discussion

Figure 5A displays accuracy as a function of current and previous
congruency from a typical data set (Fischer et al., 2008). There is
a congruency effect and an interaction with previous-trial con-
gruency (sequential congruency effect). The same is true in the
model (Figure 5B).

Figures 5C–F are similar to Figures 4C–F. Figure 5G displays
the effect of reward and task difficulty on the sequential con-
gruency effect. The sequential congruency effect is only present
if both reward and difficulty are sufficiently high. Only in this
case does the model consider it worth “boosting,” or changing its
strategy depending on the previous-trial congruency. Figure 5H
shows the effect of learning rate and cost. In the blockwise PC
effect, the influence of learning rate was small, because the effect
builds up across an entire block; the effect disappeared only for
very low learning rates (see Figure 4H). This is not the case for
the sequential congruency effect (Figure 5H); because the effect
depends on the previous trial only (even if averaged across an
entire block), it is only present when learning is rapid.

In the model the blockwise PC and sequential congruency
effect both derive from local estimation of effort requirements.
Another way of seeing this is that Equation (6) takes an expo-
nentially weighted average of the net value (reward— effort cost)
of boosting across all earlier trials, with largest weight on the
last trial. In a way, the sequential congruency effect is a local
(one trial) blockwise effect. However, they are different effects:

The learning environment for the sequential congruency effect
is just a single trial (i.e., the previous one), making it much less
robust than the PC effect (compare noise in Figures 5G, 4G; and
the large effect of learning rate in 5 h but not in 4 h). In this
way, dissociations between the two effects, where the PC extends
across tasks but the sequential congruency effect does not (Funes
et al., 2010), can be accounted for. Another interesting distinc-
tion between the two effects relates to the required interval [e.g.,
measured as response-stimulus interval (RSI)] between trials to
obtain the effect. As the sequential congruency effect depends on
rapid learning between trials, it may not (robustly) occur for very
short RSIs, for which there is indeed some evidence (Notebaert
et al., 2006). In contrast, the proportion congruency effect should
not (or much less so) depend on RSI. This dissociation remains
to be tested explicitly.

Simulation 4: Effort Discounting

Methods
Recent studies on effort discounting typically use a T-maze setup
(Salamone et al., 1994; Denk et al., 2005) where animals choose
between a low-reward (LR) food and a high-reward (HR) food.
Each option is located in one arm of the T-maze. The HR choice
is also more difficult because obtaining the food requires climb-
ing over a barrier. Control animals go for the HR choice, but
DA-impaired animals instead choose the LR; hence, preference
reverses as a result of DA impairment. This setup is simulated

FIGURE 5 | (A) Sequential congruency effect from Fischer et al. (2008). On

the X-axis, small letters (c, i) indicate previous-trial congruency; capital letters

(C, I) indicate current-trial congruency. (B) Simulated sequential congruency

effect. (C) Simulated accuracy across different levels of reward and task

difficulty. (D) Simulated accuracy across different levels of learning rate and

cost. (E) Simulated congruency effect across reward and task difficulty. (F)

Simulated congruency effect across learning rate and cost. (G) Simulated

sequential congruency effect across reward and task difficulty. (H) Simulated

sequential congruency effect across learning rate and cost. Black dots in

(C–H) indicate the parameter used to generate (B).
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here.We consider the effect of focal (in VS, e.g., with 6-OHDA) or
systemic blocking of dopamine (e.g., with haloperidol) (Salamone
et al., 1994). Both focal and systemic lesions block dopaminergic
input into VS and thus impair the limbic loop (Salamone and
Correa, 2012). Importantly, choice is not influenced by the
dopaminergic manipulation when there is no barrier; in this
case, animals choose the HR. Hence, the effect of dopaminer-
gic impairment is not due to learning, memory, attentional, or
motor-related factors. Also, the effects of VS lesion are very dif-
ferent from the effects of food devaluation (e.g., prefeeding, Sala-
mone and Correa, 2012). The animals just don’t want to climb
over the barrier to obtain the food anymore after dopaminergic
(VS) lesion.

We first trained the model to make it appreciate the differ-
ence between the HR and LR choices. On half of the training
trials, the model is shown the left (but not the right) arm of
the maze, with the choice for a left response, right response, or
stay response (choosing not to enter any of the two arms); see
Figure 3C. In these trials, the animal must choose between going
left and staying where it is, perhaps because climbing is too costly.
On the other half of the training trials, it is shown the right arm
of the maze (but not the left); in these trials, the animal chooses
between going right and staying where it is. Thus, we mimicked
the training procedure where animals are exposed to the two
arms separately to estimate each arm’s value.

We arbitrarily designated the left arm in the maze as the LR
and the right arm as the HR choice. When there was a barrier,
the HR choice was also more difficult to obtain. In particular, the
implemented S-R matrix was then

wSR =

(

10 0.01 0
0 0.8 1

)

with rows 1 and 2 corresponding to left (LR) and right (HR) stim-
ulus respectively; and columns 1 and 3 to left and right action,
respectively. Themiddle column corresponds to remaining in the
middle between the two arms, the “staying where it is” option.
In this way, the Go left action will typically lead to reaching the
left arm, but a Go right action will require boosting to overcome
ending up in the middle.

To model the situation without a barrier, the S-R matrix is
symmetric for Go left and Go right actions:

wSR =

(

10 0.01 0
0 0.01 10

)

(9)

Simulation 4 implements a choice paradigm inwhich an animal is
queried which of two choices (LR or HR) it prefers. For this pur-
pose, we also calculate values of situations s (V unit in Figure 2)
on trial n:

V
π

n (s)= V
π

n−1(s)+ α

(

R− c · xCost − V
π

n− 1(s)
)

Training consisted of 200 trials. After training, we calculate pref-
erences for the two options (LR or HR) from their respective
values V. We again used a softmax for this choice:

Pr(HR)=
exp

(

γVπ
200(HR)

)

exp
(

γVπ
200(HR)

)

+ exp
(

γVπ
200(LR)

) (10)

For comparison with empirical data in which control animals
were compared with dopamine-impaired animals (6-OHDA
lesion in VS) (Salamone et al., 1994), we implemented a control
model (as in Simulations 1–3), and a model with a dopamine-
depleted limbic loop. In this case also, and consistent with experi-
mental rodent and human paradigms (Walton et al., 2002; Shiner
et al., 2012), animals were trained with an intact system. To
mimic the impaired gate of VTA to limbic loop leading to loss
of effort, values (in Equation 10) were now considered over Q(s,
No Boost) values rather than across V(s) values. The rationale
is that the animal must estimate the values of left and right arm
choices. These values are V(s) = Pr(Boost | s) ∗ Q(s, Boost) +
Pr(No Boost | s) ∗ Q(s, No Boost), which simply becomes Q(s, No
Boost) if Boosting is unavailable. These values can be obtained
either with amodel-free procedure (Monte-Carlo sampling of the
world’s contingencies) or a model-based procedure (Daw et al.,
2005; Solway and Botvinick, 2012). In the latter, the animal starts
from the Q-values and simulates possible consequences to obtain
the V-values. To approximate these two possibilities in a simple
way, choosing in the intact model occurred based on theV(s) val-
ues; in the dopaminergically lesionedmodel, it occurred based on
the Q(s, No Boost) values.

Average performance is calculated across 100 model replica-
tions. To explore the model’s parameter space, we again crossed
reward and task difficulty, and learning rate with cost. The same
parameter settings were used as in Simulations 2 and 3.

Results and Discussion

Figure 6A shows the data of a typical experiment (Experiment 2,
test week 1 from Salamone et al., 1994). When there is no barrier,
both control and lesioned animals go for the HR arm (first two
bars); when there is a barrier (last two bars), the lesioned animals
avoid the HR arm. Figure 6B shows the corresponding simulated
two-way interaction. The first two bars simulate the no-barrier
case (symmetric weight matrix, Equation 9). As in the empiri-
cal data, there is a clear preference for the HR arm. In contrast,
when a barrier is introduced (last two bars), the control model
still prefers the HR arm, but the lesioned model avoids it.

As before, to explore the parameter space, we vary the reward
of the difficult option. In Simulation 4, we call this the HR choice,
but obviously when reward <1 (white line in Figure 6C) it is no
longer the high reward choice (because it is then lower than for
the LR choice). However, for consistency we maintain the termi-
nology. The clearest effect is that of reward. If the HR is lower
than the LR, the interaction is not present (below white line in
Figure 6C). It is indeed adaptive not to choose the “high reward”
option in this case.

Figure 6D shows how this interaction depends on learning
rate and cost. Like before, when learning rate is zero, there is no
effect at all (model cannot learn to act adaptively). Finally, there
is a clear effect of cost: When the cost of boosting becomes too
high, the model does not want to work anymore. At first glance,
it seems odd that a mere change in gain can cause a preference
reversal. However, it can be explained by the following analogy:
Suppose one can choose between a task with success probability
0.9 and reward of 1 when successful, and a task with success
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FIGURE 6 | (A) Data from Salamone et al. (1994). On the X-axis, Co,

Control; Ba, Barrier; Le, Lesion. On the Y-axis is the percentage of high-effort

(rather than low-effort) choices. (B) simulated interaction for one parameter

point (indicated by a black dot in C,D). (C) Simulated interaction across

different levels of reward and difficulty. (D) Simulated interaction across

different levels of learning rate and cost.

probability 0.5 and reward of 1.5 for success. In this case, the
expected value of the first task is higher. Suppose we now increase
the gain of both tasks, so their success probabilities becomemuch
higher, say 0.99 and 0.9, respectively. Then, the expected value
of the second task is higher, which leads to a preference rever-
sal. A similar scenario occurs in our simulation in which DA
impairment decreases the probability of success of the difficult
task.

Simulation 5: Balancing Rewards and
Costs in Variable-Interval Schedules

Methods
The next physical effort paradigm we simulate is responding in
behavioral reinforcement schedules. A classic finding is hyper-
bolic responding: Response rate increases rapidly as a function of
average reward rate at lower levels of reinforcement, but levels
off at higher reinforcement rates (Catania and Reynolds, 1968;
Harris and Carpenter, 2011). An interpretation is that respond-
ing faster is well worth it at lower levels of responding, but as
the cost of responding increases, equilibrium is obtained, balanc-
ing reward and effort. Response rate does not increase beyond
that point. This behavior can be described by a hyperbolic curve
z = a1x/(1+a2x) with x representing reinforcement rate and z
representing response rate.

Following modeling work of Niv et al. (2007) and empirical
work of Catania and Reynolds (1968), we implement a variable-
interval reinforcement schedule. At each time step (out of 100),
there is a probability p of reinforcement (when a response is
given). Hence, the average delay between reinforcements is 1/p,
and so p (actually, 1/p) is our manipulation of delay. The proba-
bility p varies from 0 to 1 in steps of 0.02 across simulations. To
implement a cost associated with fast lever pressing, we used a
simplified version of a scheme implemented in earlier modeling

work (Niv et al., 2007), with cost equal to a constant (system-
atically manipulated from 0 to 9) for the minimum delay (of
1) between lever presses (simulated responses) and cost equal
to zero otherwise. Similar results were obtained with smoothed
versions of this cost function.

The response mapping is shown in Figure 3D. Delay between
lever presses is implemented by a tapped delay line (Brown et al.,
1999). Q-values Q(delay, Boost) and Q(delay, No Boost) are cal-
culated for the Boost and No Boost options, respectively. Ten
time points are implemented (so delay varies between 1 and
10). Parameter settings were the same as in earlier simulations.
The same equations and formalism as before were used, but the
weight matrix wSR consists of a vector of 1’s, so responding (lever
pressing) takes a particularly simple form:

Pr(lever press)=
exp

(

ACCboost + bias
)

1+ exp
(

ACCboost + bias
)

with bias = −3, implementing a tendency to withhold respond-
ing except when boosted by the limbic loop. Parameters were
the same as before except that γ = 6. Hundred simulations are
implemented for each level of p, with 200 trials each. Responses
are recorded only in the last 50 trials, when learning is stabilized.

As one measure of model performance, we consider hyper-
bolic goodness-of-fit (R2 value). If the probability of responding
increases linearly, this results in a low fit of the hyperbolic model;
indeed, the hyperbolic model cannot mimic the linear model
because it has no intercept term. Hence, this R2 value summarizes
the extent to which response rate “flattens off” (hyperbolically)
rather than increases linearly with increasing reinforcement
rate.

As a more direct measure of model performance, we con-
sider the number of alternations between responding and not
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responding the model makes. Each run (i.e., bout of uninter-
rupted responses) is ended by such an alternation, so the shorter
the runs, the more alternations there will be. The cost function
dictates that every boost (and therefore every response) imme-
diately after a boost is costly but otherwise, it is not. A model
that takes this information appropriately into account always
alternates responding with not responding, leading to 50 runs
(because 50 trials are recorded). A model that responds on every
trial produces just one run. Hence, a higher number of runs
means more sensitivity to the cost function. For this dependent
variable, we produce heat maps like in Simulations 2–4, now
systematically exploring reward and cost parameters. Task diffi-
culty has nomeaning in these simulations, so the parameter space
exploration process is reduced.

Results and Discussion

Figure 7A shows model response rate as a function of reward
rate (full black line; reward and cost parameter indicated by
upper black dot in heat map of Figure 7C). The fitted hyper-
bolic curve is illustrated with small black dots in 7a. The hyper-
bolic goodness-of-fit equals R2 = 0.72. The model learns that it
should not boost on the very first time step after reinforcement,
but boosting is valuable right after, especially for high reward
rates. The net effect is a negatively accelerated response curve:
Responding increases quickly for low response rates (X-axis in
Figure 7A), but levels off and eventually balances reward rate

with effort. Figure 7C (upper black dot) shows the mean num-
ber of runs for this parameter point, averaged across reward rate
values (X-axis in Figure 7A). Themodel generates a high number
of runs, almost alternating responding with not responding.

Figure 7B shows the response rate curve for a lower reward
value (lower black dot in heat map of Figure 7C). The hyper-
bolic goodness-of-fit is lower in this case (R2 = 0.45). Also, the
number of runs is much lower (Figure 7C); the model does not
alternate responding and not responding.

Turning to the complete heat map, the model generally pro-
duces more runs for higher rewards, because boosting is more
valuable when reward is higher. Further, if cost is very low, the
model doesn’t alternate: If there is no cost associated to boost-
ing, one can respond more often, producing fewer runs. Again,
the model combines reward and cost information to determine
its optimal strategy.

In addition to an opportunity (or time) cost, as implemented
here, various other costs may be at work, including a switch cost
as implemented by Niv et al. (2007). In the current paradigm, this
is not possible, but the setup can easily be extended such that it
does (i.e., when multiple responses are available). Future work
can explore the interactions between the different types of cost.

General Discussion

We modeled effort exertion both from an optimality and from a
neurocomputational perspective.We demonstrated that adaptive

FIGURE 7 | (A) Response rate curve with reward rate = 2.1 (corresponding to upper black dot in C). (B) Response rate curve with reward rate = 0.3 (corresponding

to lower black dot in C). (C) Mean number of runs for different reward and cost values. Dotted line is best-fitting hyperbolic curve.
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boosting can optimize value across reward, cost, and task dif-
ficulty. A major debate on the functionality of the limbic loop
and its components concerns whether it codes for value or effort
(Knutson et al., 2005; Croxson et al., 2009; Bissonette et al., 2013).
There is overwhelming evidence for both (Botvinick et al., 2009;
Croxson et al., 2009; Bissonette et al., 2013; Kurniawan et al.,
2013), suggesting that an integrative view is needed. The current
work provides one, and shows that value and effort can be inte-
grated into a single RL framework. As Holroyd and Yeung (2012)
noted “the proposal that ACC motivates goal-directed behavior
relies on intuitive but computationally imprecise terms such as
‘effort’ and ‘energy’ (p. 122). The current model deals with this
problem by providing a plausible computational mechanism for
adaptive effort exertion.

The model contained a number of simplifications, or formu-
lated more productively, avenues for future extension. In the
neurocomputational model, boosting is binary rather than con-
tinuous. Relatedly, we adopted a tabular RL approach, where a
single stimulus or state updates its value on any trial. Both can be
overcome by combining RL with function approximation meth-
ods (Sutton and Barto, 1998). Second, we implemented effort
by gain modulation. Other options include choosing between
model-based and model-free processing (Daw et al., 2005), toler-
ating punishment in the face of upcoming rewards (Tanaka et al.,
2004), or increasing cortical learning rate (Behrens et al., 2007;
Silvetti et al., 2013a). All of these are reasonable options, depend-
ing on task specifics. They can be considered as meta-options in
the terminology of the current paper: In a hierarchical reinforce-
ment learning framework, the type of control to be exerted can
be considered a higher-level choice to be made (Shenhav et al.,
2013; Holroyd and McClure, 2015). Third, we have not exhaus-
tively mapped the effort network (e.g., basolateral amygdala;
Floresco and Ghods-Sharifi, 2007). Fourth, the model estimates
just a single characteristic of the reward distribution, namely
the reward mean. However, also other distributional character-
istics, most prominently reward variance (i.e., risk) have received
strong attention in recent years (Preuschoff et al., 2006). Reward
variance has been proposed as a key determinant for choosing
between behavioral controllers (Daw et al., 2005), and may be
important in choosing the amount of effort to put into a task. One
final limitation is that, because of our “breadth first” approach,
we were not able to distinguish between variants of the specific
tasks and experimental paradigms that wemodeled. For example,
we could not here address differences between Stroop and Simon
tasks (in the cognitive domain), nor make detailed comparisons
of ACC vs. VS lesions (Salamone et al., 1994; Walton et al., 2002).
Such issues will be addressed in future work.

Value
A large literature associates ACC with performance monitoring
(Botvinick et al., 2001; Holroyd and Coles, 2002; Ridderinkhof
et al., 2004; Verguts and Notebaert, 2009). Recent models pro-
pose that a core function of ACC is value estimation, or that ACC
is a Critic (Alexander and Brown, 2011; Silvetti et al., 2011, 2014).
These models account for several performance monitoring find-
ings in ACC, including error detection (Falkenstein et al., 1991;
Gehring et al., 1993), error likelihood (Brown and Braver, 2005),

and conflict (Botvinick et al., 2001). However, such models con-
sider the reward only of external stimuli, and thus cannot account
for the basic effort-related findings discussed in this paper. For
example, this value perspective predicts more ACC activation for
cues indicating easy rather than difficult stimuli (because subjects
prefer easy stimuli; Vassena et al., 2014). In contrast, the current
model considers a different type of value, the (Q-)value of boost-
ing, which is consistent with more activation for cues predicting
difficult stimuli (cf. Figure 1), as empirically observed (Vassena
et al., 2014).

Effort
Recent work already investigated effort processing from an RL
perspective (Niv et al., 2007; Rigoux and Guigon, 2012; Shenhav
et al., 2013; Holroyd and McClure, 2015). Rigoux and Guigon
(2012) implement a model that optimizes a combination of
reward and effort from an engineering control theory perspective.
However, they did not conceptualize modulating an action (such
as boosting in the current model) as a separate process that is sub-
ject to RL. Moreover, they did not specify a neural substrate for
their model. Niv and co-workers also investigated effort from an
RL perspective (Niv et al., 2007). Like in the current model, they
conceptualized effort investment as an option subject to RL prin-
ciples. In particular, they considered the delay between actions
(e.g., lever presses in a variable-interval schedule) as a choice with
two types of (effort) cost attached to it (opportunity cost, ener-
getic cost). A system of Bellman equations was solved to find the
optimal delay. It is not clear, however, how animals can choose
an abstract quantity like delay, or optimize the corresponding
equations. In our model, delay is instead determined implicitly,
in the sense that different delays (different time intervals since
the last lever press) have a different Q-value. Furthermore, in our
model, these values are computed online using locally available
information. Finally, the Niv et al. (2007) model focused on phys-
ical effort only. Another recent model focusing on physical effort
is by Holroyd and McClure (2015). In their model, ACC exerts
hierarchical control over striatum, and (rodent) prelimbic cortex
exerts control over ACC. Control is here implemented by ACC
suppressing effort costs in striatum if doing so is worthwhile for
obtaining higher rewards.

It was recently proposed that ACC calculates the expected
value of control (Shenhav et al., 2013). In particular, ACC cal-
culates the value of each possible control signal and its inten-
sity. However, the signals and their intensities remained largely
unspecified, making it difficult to determine how, after choos-
ing a signal and corresponding intensity, this signal and inten-
sity are implemented and used by the cognitive system. Also,
this paper focused on cognitive effort only. Instead, our model
is the first to simulate neural and behavioral data in a broad
range of species and tasks. This broadness derives from our mod-
ular approach, where task and effort investment are two separate
learning problems, each with its own utility function.

Despite several differences, a common theme running through
many of these proposals (Niv et al., 2007; Shenhav et al., 2013;
Holroyd and McClure, 2015), including the current one, is that
effort investment is considered as an action (called option in this
paper), that is subject to RL principles, just like basic actions are.
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Another commonality is the notion of hierarchy (Shenhav et al.,
2013; Holroyd and McClure, 2015). Also in our model, process-
ing can be considered to be hierarchical in the sense that effort
consists of optimizing the (gain) parameters in the (cortical) task
network. Future empirical work should disentangle the various
options that have been proposed.

Cognitive Control
In the model, only the value of current stimulus and option are
updated. For this reason, it can be formulated as Hebbian learn-
ing. In this sense, it is similar to our earlier model (Verguts and
Notebaert, 2008), which formulated cognitive control as Heb-
bian learning modulated by evaluative signals (e.g., reward or
conflict). However, the current model is much broader, cover-
ing not only cognitive but also physical effort. Second, the cur-
rent model shows that reinforcement-modulated Hebbian learn-
ing not merely fits the data, but also provides a perspective on
why such learning is appropriate. In this sense, it provides both
a descriptive and normative perspective on effort allocation and
control.

Limbic, Motor, and Cognitive Loops through BG
Besides limbic and motor loop, a third well-described loop is
the loop via the dorsolateral prefrontal cortex and head of the
caudate nucleus (Alexander et al., 1986; Pierce and Kumare-
san, 2006). This loop also provides a modulatory influence on
cortex, for example, by gating information and thus enabling
working memory (O’Reilly and Frank, 2006). We propose that
the dopaminergic pathway itself modulates the modulatory BG
loops, thus allowing the BG loops to learn. However, dopamine
has a second role in supporting performance itself via a differ-
ent pathway (Braver and Cohen, 2000). Both roles have been
documented (Schultz et al., 1997; Salamone and Correa, 2012;
Shiner et al., 2012). Further, a gradient exists in the SN/VTA
complex, with more ventromedial dopamine neurons respond-
ing to reward-related events, and more dorsolateral neurons
responding to task-relevant events (Matsumoto and Takada,
2013).

Noradrenaline and the Signal-To-Noise Ratio
Our model implemented effort by adaptively changing the SNR
of the stimulus-to-action mapping. Modulation by changing the
SNR was also proposed in adaptive gain theory (Aston-Jones and
Cohen, 2005). This model proposed that noradrenaline increases
SNR when a task-relevant stimulus is presented (Usher et al.,
1999). Related models proposed that noradrenaline adapts SNR
based on reward and response conflict to balance exploration
vs. exploitation (McClure et al., 2005; Cohen et al., 2007). How-
ever, even though adaptation was dynamic in these models, it
was hard-wired under what conditions SNR changes are needed.
If noradrenaline is to change SNR, it needs similar adaptive

learning modulation as described in the current paper, perhaps
delivered by dopamine as well.

Conclusion

Our model integrates a number of factors that have usually been
treated independently: benefit (reward) and cost (effort) compu-
tation; cognitive and physical effort; dopamine and its dual role in
cognition; the modulatory role of the BG loops; motivational and
value processing in limbic structures (ACC, VS); and monitoring
and action functions of ACC. This allows for theoretical clarity
and unification and leads to several empirical predictions. Many
were already mentioned throughout the text; we here enumerate
a few broader predictions. First, investing effort is both learn-
able and context-dependent. The cognitive control literature has
generated a huge number of context-dependent cognitive con-
trol effects (Crump et al., 2006; Blais et al., 2007; Notebaert and
Verguts, 2008; Braem et al., 2011).We predict more generally that
context-specificity is a core feature of effort investment. Another
prediction is that exerting cognitive and physical effort relies on
a similar circuitry. Hence, impairments in cognitive and phys-
ical effort exertion would be correlated. Another prediction is
that connectivity between stimulus and action processing areas
increases when the subject is cued that a difficult task (requiring
high effort) is coming up. Furthermore, this connectivity should
be modulated via limbic loop activation. This may be tested by
fMRI functional connectivity methods. Finally, the model con-
nects to clinical syndromes. For example, ADHD is characterized
by blunted effort exertion. Earlier models of ADHD focused on
reward learning (Williams and Dayan, 2005; Cockburn and Hol-
royd, 2010; Silvetti et al., 2013b) or motivation (Sonuga-Barke
et al., 2010). In the current model, reward learning and moti-
vation are related but separate components; even though they
are behaviorally correlated, different neural pathologies can be
characterized by different performance deficiencies. Similarly,
because of the modularity of effort, it should in principle be pos-
sible to have impaired effort processing (Treadway et al., 2009)
but intact delay processing; this also remains to be tested. To
sum up, the model provides a point of departure for bridging
brain and behavior in the ill-understood but ubiquitous produc-
tion of cognitive and physical effort, across species, in health and
disease.
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Appendix

Suppose task-relevant input (e.g., ink color in the Stroop task)
has a bottom-up influence of strength 1 to the response level;
and task-irrelevant input (e.g., words in the Stroop task) has a
bottom-up influence of I (typically I > 1). To counteract the
influence of the irrelevant dimension, top-down signals bias the
task-relevant input with a gating strength of Z and 1-Z for task-
relevant and irrelevant dimensions, respectively (Botvinick et al.,
2001). Consequently, when a congruent stimulus is presented,
the total input to the correct and incorrect response are, Z+(1-
Z)I and 0, respectively; and when an incongruent stimulus is

presented, total input to the correct and incorrect response are Z
and (1–Z)I, respectively. This can be implemented with the S-R
matrix

(

Z + (1 − Z)I 0
(1 − Z)I Z

)

with rows 1 and 2 for congruent and incongruent stimuli, respec-
tively, requiring response (column) 1 and 2, respectively (as
in the main text). This matrix is consistent with Figure 3B

and is approximated by the one we used in Simulations 2
and 3.
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