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It is unclear whether Hebbian-like learning occurs at the level of long-range
white matter connections in humans, i.e., where measurable changes in structural
connectivity (SC) are correlated with changes in functional connectivity. However,
the behavioral changes observed after deep brain stimulation (DBS) suggest the
existence of such Hebbian-like mechanisms occurring at the structural level with
functional consequences. In this rare case study, we obtained the full network
of white matter connections of one patient with Parkinson’s disease (PD) before
and after long-term DBS and combined it with a computational model of ongoing
activity to investigate the effects of DBS-induced long-term structural changes.
The results show that the long-term effects of DBS on resting-state functional
connectivity is best obtained in the computational model by changing the structural
weights from the subthalamic nucleus (STN) to the putamen and the thalamus
in a Hebbian-like manner. Moreover, long-term DBS also significantly changed
the SC towards normality in terms of model-based measures of segregation and
integration of information processing, two key concepts of brain organization. This
novel approach using computational models to model the effects of Hebbian-
like changes in SC allowed us to causally identify the possible underlying neural
mechanisms of long-term DBS using rare case study data. In time, this could
help predict the efficacy of individual DBS targeting and identify novel DBS
targets.

Keywords: deep brain stimulation, Hebbian-like learning, Parkinson’s disease, DTI, subthalamic nucleus

Introduction

Deep brain stimulation (DBS) is a well-established treatment for several neurological conditions
including Parkinson’s disease (PD; Benabid et al., 2009; Lozano and Lipsman, 2013). However,
the underlying neural mechanisms of DBS and its long-term effects on brain connectivity remain
unclear. This limitation restricts the efficacy of DBS since the identification of individual DBS
targets and the settings of stimulation parameters cannot be optimally performed beforehand.
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Uncovering these aspects will improve the clinical benefits of
DBS in the treatment of such diseases.

In general terms, the effects of DBS must be closely linked
to at least three factors: (1) the stimulation parameters such
as frequency, amplitude, pulse width and duration; (2) the
physiological properties of the neural tissue (which may be
dependent on disease state); and (3) the interactions between the
electrode and the surrounding neural tissue and specific anatomy
of the targeted region (Kringelbach et al., 2007, 2010). This third
factor includes the extended brain-wide connectivity pattern
from the electrode where this specific structural ‘‘fingerprint’’ of
connectivity is an important factor for the efficacy (Fernandes
et al., 2015). Thus rather than solely acting locally, the
evidence clearly shows that DBS affects a network of neural
elements; foremost myelinated axons,and to a lesser degree cell
bodies. Thus the most likely mechanism of DBS is through
stimulation-induced modulation of the activity of macroscopic
brain networks (Montgomery and Baker, 2000; Vitek, 2002;
McIntyre and Hahn, 2010; Kringelbach et al., 2011). This has
been confirmed by optogenetic experiments in rodents which
show that the therapeutic effects within the subthalamic nucleus
(STN) can be accounted for by direct selective stimulation of
afferent axons projecting to this region (Gradinaru et al., 2009).
It is not clear, however, which of the many connections from
a given DBS target are most influential in providing a clinical
benefit and whether DBS creates long-term changes in brain
connectivity.

In this case study, we exploit the unique opportunity of
having preoperative and five-month postoperative diffusion
tensor imaging (DTI) data from a single patient with DBS in the
STN for the treatment of PD. This allowed us to reconstruct the
three-dimensional networks of white-matter connections—or
structural connectivity (SC)—before and after long-term DBS,
which we used to simulate the corresponding spontaneous
dynamics using a whole-brain computational model (Deco et al.,
2013b).

We hypothesized that computational modeling of the effects
of changes in SC following DBS would allow us to identify the
significant, causal neural mechanisms of DBS compared to not
applying DBS. In order to do this, we calculated the change
of brain activity induced by the DBS by simulating resting
state activity before and after DBS. We analyzed under which
conditions the predicted change of neuronal activity correlates
with the changes in the SC observed 5 months after operation,
i.e., assuming the existence of Hebbian-like learning, where the
weights in the model were changed in a Hebbian-like manner.
We were able to test this by systematically changing the weight of
the structural connections from the STN to itself and its known
projections in the putamen, caudate and thalamus. We thus used
established principles of Hebbian-like learning to change the
functional dynamics between STN and its projections to find the
optimal weights that best describe the long-term changes in SC
induced by DBS.

Finally, we calculated the overall impact of long-term DBS
on measures of integration and segregation, representing two
fundamental aspects of brain organization and information
processing (Deco et al., 2015).

Materials and Methods

Brief Description of Analysis Pipeline
In this case study, we investigated the underlying neural
mechanisms of long-term DBS in terms of connectivity changes
by using a computational dynamic mean field (DMF) model
(Deco and Jirsa, 2012; Deco et al., 2013b) on pre- and post-
operative DTI data. Briefly, we analyzed the data as follows (and
further described in details below):

1. Structural connectivity. Structural connectomes were
constructed for the pre- and post-operative data. We
also computed the difference between pre- to post-operative
connectomes (SC∗). In addition, we generated a group-
averaged connectome from healthy participants to optimize
the DMF model (see Figures 1, 2A and ‘‘Structural Brain
Networks’’ Section).

2. Computational dynamical mean field model. The DMF model
was optimized in the same way as described in our previous
case-study (van Hartevelt et al., 2014), i.e., by fitting the FC
and SC from healthy individuals [see Figure 2B and ‘‘Model
of Spontaneous Functional Connectivity (FC)’’ Section].
As shown in previous studies (Cabral et al., 2014), this
model accurately captures many features of the resting-state
dynamics of FC.

3. Finding optimal fit of model. The DMF model was applied to
the pre-operative structural connectome (SC_pre) to generate
the pre-operative functional resting-state activity (FC_pre).
Crucially, we then added the four established targets of the
DBS electrode in STN (itself, thalamus, caudate and putamen)
(I∗), and used the DMF model on FC_pre with I∗ to generate
the putative post-operative functional resting-state activity
(FC_pos). This allowed us to compute the difference between
the pre- and post-operative FC matrices (FC∗). We then
systematically optimized the parameters of I∗ to find the best
possible fit, i.e., we compared the effects of changing I∗ to
get the maximal correlation between each of the SC∗ and FC∗

pairs (see Figure 2C).
4. Determine the causal contribution of each STN projection.

Once we had found the optimal fit of weights for STN
projections (I∗), we systematically varied each of the four
structural weights while holding the other weights constant
(see Figure 3A). This allowed us to determine which of
these projections best predict the effects of STN DBS on
postoperative FC.

5. Determine the global influence of long-term Hebbian-like
changes in SC following DBS. We used the DMF model
to compute measures of integration and segregation of
information processing in the pre- and post-operative brain
compared to the healthy brain (see ‘‘Functional Measures’’
Section).

Patient and Healthy Participants
We acquired DTI data preoperatively and 5 months
postoperatively after continuous DBS in a 45-year-old female
PD patient. The patient’s main symptoms included on/off
fluctuations and dyskinesias. The patient received continuous
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FIGURE 1 | Pipeline for generating the connectivity matrices. We
collected pre and post diffusion tensor imaging (DTI) data from a patient and
then generated the whole-brain tractography for all voxels (bottom left). In
addition to the 90 cortical and subcortical regions in the automated anatomical
labeling (AAL) template, we incorporated the subthalamic nucleus (STN),
based on the binarised version of a probabilistic mask (Forstmann et al.,

2012). This resulted in a total of 92 cortical and subcortical regions (46 per
hemisphere). We reconstructed the whole-brain connectivity matrix between
these 92 brain regions using the methods described in van Hartevelt et al.
(2014). Due to the electrode artifact in the left hemisphere (see bottom left), in
the subsequent analyses we only used the right hemisphere connectivity
matrices.

DBS on and off over 5 months during stimulation optimization.
In order to plan a lead revision (warranted by adverse side
effects including emotional lability) post DBS DTI data were
acquired. The new target for the lead revisions was the internal
Globus Pallidus. Following DBS surgery, the medication was
continued with Pramipexole 0.7 one and a half tablets thrice
daily. Stalevo was reduced to 50 mg thrice daily (from 150
mg in the morning, 50 mg twice daily and 100 mg in the
evening) and Amantadine was stopped completely (from 100
mg twice daily). During the periods when the DBS was turned
off, the patient was advised to return to her preoperative
medication regime. Whereas right DBS lead titration resulted
in symptom reduction, left DBS lead titration was more
problematic and resulted in adverse side effects. A possible
explanation for this is the suboptimal positioning of the
electrode. During the 5 months between DTI acquisitions the
stimulation parameters changed due to fine tuning and titration
of the DBS electrodes. Additional DTI data were acquired
for nine healthy participants (three females, age range 22–40
years). This study was approved by the National Research

Ethics Service (NRES) committee South Central—Berkshire in
Bristol.

Surgical Procedure
The DBS electrodes were implanted in the bilateral STN. Prior
to surgery, anatomical T1 and T2 MRI scans with 1 × 1 ×
1 mm voxel size were acquired for electrode implant protocol
planning. The surgery was performed under local anesthesia
using a Cosman–Roberts–Wells stereotactic. See Kringelbach
et al. (2009) for more details on the surgical procedure.

Image Acquisition
All DTI data for the patient and healthy participants were
acquired on a Philips Achieva 1.5 Tesla MR scanner in Oxford.
Whole brain diffusion weighted imaging was performed using
a single-shot echo planar sequence. The scanning parameters
were echo time (TE) = 65 ms, repetition time (TR) = 9390 ms,
reconstructed matrix 176 × 176 and reconstructed voxel size of
1.8 × 1.8 mm and slice thickness of 2 mm. We used 33 optimal
nonlinear diffusion gradient directions (b = 1200 s/mm2) and one
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FIGURE 2 | Outline of brain model analysis and optimization. (A) First,
we created the difference (SC*) between the pre- and post-operative
structural connectivity (SC) matrices (SC_pos-SC_pre; see Figure 1) (van
Hartevelt et al., 2014). (B) The functional connectivity matrix (FC_pre) was
generated with a dynamic mean-field (DMF) model using SC_pre. (C) We
then iteratively generated the functional connectivity post-DBS (FC_pos)
using the computational model with SC_pre and the I*, the weights of the

known connections from the STN. We subsequently optimized I* such that
the difference between FC_pre and FC_pos (FC*) was made to fit SC*. In
this way, we estimated the optimal working weights from the STN. Finally,
we calculated the contribution of each of the connections from the STN to
the changes in functional connectivity caused by DBS by varying the
weights of each of the connections and measuring the impact on the fit
(see Figure 3).

non-diffusion weighted volume (b = 0) for the DTI acquisition.
The post-DBS DTI data was acquired with DBS turned off.

Structural Brain Networks
The whole-brain structural networks were constructed in a two-
step process used successfully in previous published studies
(Cabral et al., 2013; van Hartevelt et al., 2014; Fernandes et al.,
2015). First, the brain was parcellated into different regions or
nodes. Secondly, the edges, or connections between nodes, were
estimated using probabilistic tractography (Figure 1). Each of
these two steps is described in detail in the following.

Parcellation of the Brain
The brain was parcellated into 90 cortical and subcortical regions
(45 for each hemisphere) using the automated anatomical
labeling (AAL) template (Tzourio-Mazoyer et al., 2002).
Additionally a mask of the STN from Forstmann et al. (2012) was
incorporated to get a total of 92 cortical and subcortical regions
(46 per hemisphere). In order to preserve as much information
as possible, the parcellation of the brain was done in DTI native
space.

We used the Flirt tool (FMRIB, Oxford; Jenkinson et al., 2002)
for linearly coregistration of the b0 image in DTI space to the T1
structural image. The T1 image was in turn coregistered to the

T1 template of ICBM152 in MNI space (Collins et al., 1994). The
resulting transformations were concatenated and inversed and
subsequently applied to transform the AAL template (Tzourio-
Mazoyer et al., 2002) and the STNmasks (Forstmann et al., 2012)
from MNI space to DTI native space. This transformation of the
template was conducted using a nearest-neighbor interpolation
method to ensure that the discrete labeling values were
preserved.

To minimize the effects of the DBS electrode artifact, a binary
mask of the electrode lead in the post-DBS DTI data was created.
This mask was subtracted from the brain masks and data of the
pre-DBS DTI data as well as from the DTI data of the healthy
controls.

Whole-brain Network Connectivity
We used FMRIB’s Diffusion Toolbox (FDT), which is a part
of FSL (version 5.0, FMRIB, Oxford)1 to process the DTI data.
The preprocessing involved coregistering the diffusion-weighted
images to a reference volume using an affine transformation
for the correction of head motion. This step also includes an
eddy current correction. Next, the local probability distribution

1http://www.fmrib.ox.ac.uk/fsl/
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FIGURE 3 | Determining the contribution of subcortical connections of
STN. (A) We found the optimum fit of I* and then varied each of the model
parameters of the connections from the STN to the putamen, caudate,
thalamus and STN itself to estimate their contributions to the changes in
functional connectivity caused by DBS. Compared to no DBS, the optimum fit

was highly significant (p < 10–7). (B) The figure clearly demonstrates the
importance of the changes in connectivity weights to the thalamus and the
putamen with the consequences of the best fit in thalamic connectivity shown in
top right (light yellow) and poorest fit shown in bottom right (light blue) (with a
star indicating significance levels of p < 0.05).

of fiber direction was estimated at each voxel using the
default bedpostx parameters of FSL v5.0 (Behrens et al., 2003).
Using the parameter estimation from bedpostx, the probtrackx
algorithm (allowing for automatic estimation of two fiber
directions within each voxel) was used, improving the tracking
sensitivity of non-dominant fibers in the brain (Behrens et al.,
2007).

We estimated the connectivity probability by applying
probabilistic tractography using the default sampling settings of
5000 streamline fibers per voxel. The connectivity from a seed
voxel i to another voxel j was defined by the proportion of fibers
passing through voxel i that reach voxel j (Behrens et al., 2007).
In a brain region, or node, consisting of n voxels, 5000∗n fibers
were sampled. The connectivity Cij from region i to region j is
calculated as the number of sampled fibers connecting the voxels
in region i to the voxels in region j divided by n, with n being the
number of voxels in the seed region i.

The connectivity value for a given region to each of the
91 other regions was calculated. As probabilistic tractography
depends on the seeding location, the connectivity from i to j is not
necessarily equivalent to that from j to i. The connectivity values
are highly correlated though across the brain for all participants
(the least Pearson r = 0.70, p < 10–50). The symmetrical,

undirectional connectivity Cij between regions i and j was
calculated by averaging the two connectivity values. Therefore,
we considered the SC between the two areas, where Cij = Cji. The
connectivity values were calculated using in-house Perl scripts
and were normalized for the regions’ volume with n voxels. The
connectivity matrices were created for the preoperative condition
(SC_pre), the postoperative condition (SC_pos) and one average
connectivity matrix for the healthy subjects (SC_normal).

Due to the artifact of the DBS lead in the left hemisphere
in the postoperative DTI data (see bottom left of Figure 1),
only the sub-network corresponding to the right hemisphere
was considered. In other words, we only used the 46 × 46
matrix corresponding to the right hemisphere (without inter-
hemispheric connections) and not the full 92 × 92 connectivity
matrix as shown in Figure 1. All further analyses and simulations
were done using the right hemisphere only for preoperative,
postoperative and healthy connectivity matrices.

Model of Spontaneous Functional Connectivity
To illuminate the impact of DBS induces local structural changes
on whole-brain activity, we used a DMF model to simulate
the spontaneous dynamics of each brain area in the structural
connectome (Deco and Jirsa, 2012; Deco et al., 2013b). The

Frontiers in Behavioral Neuroscience | www.frontiersin.org 5 June 2015 | Volume 9 | Article 167

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Behavioral_Neuroscience/archive


van Hartevelt et al. Evidence for Hebbian learning

model is a reduction of the spiking network model, which
includes the whole dynamics of excitatory and inhibitory
populations of spiking neurons interconnected by AMPA, GABA
and NMDA receptors and their respective equations (Wong
and Wang, 2006). It describes the mean field activity of each
brain area with a single one-dimensional equation and the
level of excitation/inhibition of each node is balanced in order
to maintain negligible short-range correlations and long-range
functional correlations are introduced by excitatory inputs
received from coupled brain regions according to the structural
connectome. Thus the global dynamics of coupled brain areas
can be simply and consistently described by the following set of
coupled differential equations:

dSi(t)
dt
= −

Si
τS
+ (1− Si)γH(xi)+ συi(t), (1)

H(xi) =
axi − b

1− exp
(
−d(axi − b)

) , (2)

xi = wJNSi + GJN
∑
j

CijSj + I0, (3)

where H(xi) and Si denote the population rate and the average
synaptic gating variable at the local cortical area i (from 1 to N =
46 areas in our case), respectively. w = 0.9 is the local excitatory
recurrence and Cij corresponds to the coupling weight between
the areas i and j. Note that Cij is estimated from the SC, i.e., in
proportion to the number of connections (or connectivity value)
detected between areas i and j, and therefore this parameter
is changed between pre-DBS, post-DBS and control data. G is
the global coupling weight that scales all couplings uniformly.
Parameter values for the input–output function (2) are a =270
VnC, b = 108 Hz, and d =0.154 s. The kinetic parameters are γ =
0.641/1000 (the factor 1000 is for expressing everything in ms),
and τs =100 ms. The synaptic couplings are JN = 0.2609 nA and
the overall effective external input is I0 = 0.3 nA. In equation
(1) υ i is uncorrelated standard Gaussian noise and the noise
amplitude at each node is σ = 0.001 nA.

We used the Balloon-Windkessel hemodynamic model to
transform the mean field activity into (simulated) BOLD signal,
This model describes the transduction of neuronal activity into
BOLD signal (Friston et al., 2003). The level of synaptic activity
in each brain region represented by the synaptic variable Si, is
used to compute the BOLD-signal estimation in that specific
brain region as in (Deco and Jirsa, 2012; Cabral et al., 2013; van
Hartevelt et al., 2014). The simulated BOLD signal was down-
sampled at 2 s to have the same temporal resolution typically used
in fMRI. The simulated FC between all brain areas is obtained
by computing the temporal correlation matrix of the simulated
BOLD signals.

The optimal fit of the model was calculated using an
exhaustive search, i.e., we fitted all combinations of inputs
(STN, thalamus, putamen and caudate) scanning them from
values of −0.6 to 0.6 in steps of 0.05. From this search, we
found the optimal working point of the model which is where
the strengths of inputs from those subcortical areas yielded a

maximal correlation between the differences in FC (FC∗) and SC
(SC∗), i.e., where there is a maximal Hebbian-like correlation.

In order to determine the contribution of each individual
connection on this fit, one of each of the four individual inputs
from these subcortical areas were systematically changed while
the other points were fixed at the optimal fit. Thus to determine
the influence of the STN, for example, we systematically changed
the values of the STN from −0.6 to 0.6, while keeping the values
of the other three regions for the optimal fit. This process was
then repeated for the putamen, caudate and thalamus, while
keeping all other inputs fixed at the values of the optimal fit.

Functional Measures
Two fundamental aspects of brain organization are the
segregation of brain areas (that differ in terms of local functional
specialization) and their global integration during perception
and behavior (Tononi et al., 1994; Deco et al., 2015). As such,
we investigated how these properties were affected before the
surgery and to what extent DBS helped recover them towards
normal values.

Segregation
To measure the segregation, we first estimate the mutual
information between BOLD signals, which can be easily
calculated—assuming Gaussianity of the mean BOLD
responses—using the following equation:

I(χ1;χ2; . . . ;χN) = − log
(
det(C)

)
, (4)

where xi refers to the BOLD signal of the i = 1, N nodes (brain
areas) of the brain network and C is the correlation matrix
between them, which corresponds to the FC.

The input segregation is then simply defined by

S = 1−
I

Imax
, (5)

where Imax is an appropriate normalization specifying the
maximal mutual information condition.

Integration
Wemeasure the integration of FC based on a measure of the size
of the largest connected component.More specifically, for a given
absolute threshold θ between 0 and 1, the functional connectivity
matrix FC can be binarized (using the criteria |FCij| < θ; which
determines if it will be given a value of 0 and 1) and the largest
component extracted as a measure of integration. The largest
component is the length (number of nodes) of the connected sub-
graph of the undirected graph defined by the binarized matrix
(which itself is considered as an adjacency matrix). This is the
largest sub-graph in which any two vertices are connected to each
other by paths, and which connects to no additional vertices in
the super-graph. Finally, to get a measure that is independent
of the threshold, this curve can be integrated in the range of
the threshold between 0 and 1. This integration measure is
normalized by the maximal number of connected brain areas
(that is, all N areas) for each integration step and by the
number of integration steps such that the maximal integration
is normalized to one.
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Network Measures from Graph Theory
The analyses of the DTI data resulted in three 46 × 46 matrices,
SC_pre, SC_pos and SC_normal, which can be analyzed as
graphs. The brain networks were characterized using common
measures from graph theory, namely the connection density,
global efficiency, clustering coefficient, small-world index and
hierarchy. We used the Brain Connectivity Toolbox to calculate
all these global graph measures (Rubinov and Sporns, 2010;
Sporns, 2011). These graph measures have been used and
described in a previous study of brain connectivity in DBS (van
Hartevelt et al., 2014).

These global graph measures were calculated for all three
different anatomical brain networks, i.e., SC_pre, SC_pos and
SC_normal. The average and standard deviation of the individual
outcomes were then calculated and reported.

Results

We investigated the consequences of having a DBS electrode
implanted in the STN using the SC matrices, SC_pre and SC_pos,
arising from the DTI of a PD patient before and 5 months
after DBS surgery. Since the SC remains mostly unchanged
over relatively short periods of time in healthy subjects (Cheng
et al., 2012), we considered the difference between these matrices,
SC∗, as alterations induced by DBS in the patient’s structural
connectome (see Figure 2A).

A DMF model was used to run simulations (see ‘‘Materials
and Methods’’ Section) first using the SC SC_pre, from which
we obtained the resulting FC_pre (see Figure 2B). We then
iteratively optimized the weights of the known connections
from the STN, namely to the putamen, the thalamus, the
caudate and the STN itself, to estimate FC_pos such that the
difference between FC_pre and FC_pos, FC∗, optimally fitted
SC∗ (see Figure 2C). This step is based on the assumption
that the global network dynamics of a brain working at the
critical instability border amplifies the underlying structure of
anatomical connections (Deco et al., 2013a). In other words,
at the optimal working point, the FC maximally reflects the
underlying SC and hence, FC∗ maximally reflects SC∗.

Once the optimum fit was found, we investigated the
contribution of each of these brain regions to the changes
in FC caused by DBS (see Figure 3). We found that the
optimal connection strengths were −0.5 for the putamen,
0.4 for the thalamus, 0.4 for the caudate and 0.3 for the
STN. Using this optimal fit with these connection strength
values, show how individual variation of the coupling strength
values influences the level of Hebbian-like learning induced
(Figure 3), i.e., the correlation between the change in SC (SC,
SC_pos-SC_pre) and the change predicted by the simulation
according to the FC (functional connectivity, DBS—no DBS).
The figure shows the correlation as a function of connection
strength, indicating with a star those with a significance
value of p < 0.05. Only the connection weights to the
thalamus show a sensitive influence on the induction or not
of the overall plasticity (i.e., of inducing high correlations
between changes in SC and predicted changes in FC), while
the other subcortical nuclei are inducing the same level of

plasticity if the weights are within the right range (e.g.,
putamen below −0.2). Thus the thalamus would appear to
be the most critical location for the DBS to induce optimum
changes.

To further investigate the structural changes induced by
DBS in the functional networks in terms of segregation and
integration of information processing, we estimated these two
measures in FC_pre, FC_pos and FC_normal (the latter obtained
with the model from SC_normal). As expected, we found that
both the segregation and integration measures improved after 5
months of DBS, although not to the level found in the normal
population (see Figure 4).

Finally, we used measures from graph theory to investigate
the effects of long-term DBS on global network SC. The results
that are reported in Table 1 show that there was no effect
of DBS on global measures of connection density, average
clustering coefficient, global efficiency, small-world index or
hierarchy.

Discussion

The results in this unique case study show that the changes
in SC following long-term DBS can be used together with
advanced computational modeling to uncover the underlying
neural mechanisms of DBS. Using the rare opportunity of
having pre- and post-DBS DTI in a patient with PD, we
investigated the functional consequences of changes in SC
after long-term DBS. We mapped the optimum changes in
connectivity weights from the implanted electrode in the STN
and demonstrated that the optimal fit of connectivity weights
from the STN to the putamen, caudate, STN itself and the
thalamus was significantly changed the fit of the model, i.e.,
was significantly better than using no DBS. Importantly, we
were also able to show that the functional changes induced by
DBS not only led to clinical improvements but also significantly
recovered the measures of segregation and integration towards
normality. Specifically, our results show that DBS exerts
its effects on network-wide brain functional connectivity
through local Hebbian-like changes in specific connections from
the STN.

We have previously shown significant structural changes
following long-term DBS suggestive of a global change (van
Hartevelt et al., 2014). The present results significantly extend
these findings by showing that the STN. DBS is causing specific
changes in the connectivity from the STN and that there
is an optimum connection weighting of connections to the
thalamus, caudate, putamen and STN. This is important as it

TABLE 1 | Graph theoretical measures for pre, post and normal
connectomes.

SC_pre SC_pos SC_normal

Connection density (%) 45.09 45.94 46.51 (SD 8.35)
Average clustering coefficient 0.6680 0.6955 0.6924 (SD 0.0432)
Global efficiency 0.7295 0.7341 0.7336 (SD 0.0520)
Small-world index 1.191 1.212 1.2634 (SD 0.2809)
Hierarchy 0.1369 0.1233 0.1271 (SD 0.0355)
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FIGURE 4 | Segregation and integration. Segregation and integration
measures in the simulated functional networks before and after DBS (FC_pre
and FC_pos) compared to the ones found in the simulated functional network

obtained using the connectivity from the healthy population (FC_normal). Both
measures improved after 5 months of DBS, although not to the level found in
the normal population.

offers novel evidence on the underlying neural mechanisms of
DBS.

The present findings offer new insights into how DBS reaches
its efficacy and could potentially be combined with the findings
of a specific connectivity fingerprint for successful DBS cases
(Fernandes et al., 2015). This might open up new possibility for
future studies and might allow us to further elucidate the exact
underlying mechanisms of DBS. Among other things, this might
improve pre-surgical targeting as this would allow us determine
which areas are important to be connected to the target for DBS
in order to achieve a successful outcome.

Using the whole-brain computational modeling approach,
as described in this paper, might also be applicable in
other disorders. It could be a possibility to investigate how
unbalanced functional connectivity networks might be restored,
or rebalanced, to a healthy regime by altering specific weights
or connections in order to find the optimal fit with a healthy
functional connectome (Kringelbach et al., 2011). The potential
benefits of this technique would not only be limited to
neurodegenerative disorders but would be possible to extend to
neuropsychiatric disorders (Deco and Kringelbach, 2014).

This is the first study investigating the underlying
mechanisms of previously shown long-term structural changes

(van Hartevelt et al., 2014) related to long-term DBS for PD.
Although this data is unique and has allowed for the first time
to investigate the underlying mechanisms of DBS in vivo using
advanced whole-brain computational modeling, it should be
emphasized that this is a case study. Due to the unique nature of
DBS and the complications it brings forth, it is, at this point in
time, extremely difficult to obtain more neuroimaging data for
this particular patient group. Despite this being a case study, the
results obtained from this data with the advanced graph analysis
and whole-brain computational modeling has given us a unique
insight into the potential underlying mechanisms of long-term
DBS.

While the results of this unique case study using novel
methods are exciting there is one important limitation linked
to the imaging artifact introduced by DBS. The externalized
lead on the left side of the brain causes a significant dropout
in MRI signal leading to the limited use of only the right
hemisphere. Although this is a limitation, it should be noted
here that titration of the right electrode resulted in significant
symptom improvement in the patient, whereas titration of the
left electrode was more bothersome and was accompanied by
adverse side effects. In addition, this case study also carries
further potential limitations linked the course of medication
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typically found in advanced PD and especially changes in
the medication regime during the long-term DBS period
investigated.

It should also be noted that we did not specifically test
different learning algorithms. Thus it is possible that the causal
changes in STN connectivity could be achieved by other learning
rules, which are not Hebbian-like. This would be of considerable
interest to test in future studies.

Overall, this unique case study provides the first indication
that DBS selectively changes the connectivity weights from the
region where the electrode is implanted with consequences at
the level of macroscopic functional networks. This is highly
suggestive of neural Hebbian-like changes in white matter tracts
induced by long-term DBS. This novel approach opens the
possibility for computational models to predict the efficacy of

individual DBS targeting pre-surgery and may even help identify
novel DBS targets.
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