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Brain-machine interface (BMI) research assumes that patients with disconnected

neural pathways could naturally control a prosthetic device by volitionally modulating

sensorimotor cortical activity usually responsible for movement coordination. However,

computational approaches to motor control challenge this view. This article examines

the predictions of optimal feedback control (OFC) theory on the effects that loss of

motor output and sensory feedback have on the normal generation of motor commands.

Example simulations of unimpaired, totally disconnected, and deafferented controllers

illustrate that by neglecting the dynamic interplay between motor commands, state

estimation, feedback and behavior, current BMI systems face translational challenges

rooted in a debatable assumption and experimental models of limited validity.

Keywords: brain-machine interface (BMI), optimal feedback control, dynamical systems, motor control,

neuroprosthetics

Introduction

Current BMI research (Bensmaia and Miller, 2014) aims at extracting movement parameters
believed to be encoded in motor cortical areas that would enable neuroprosthetic control after
peripheral disconnection. However, despite encouraging early laboratory monkey experiments
(Taylor et al., 2002; Carmena et al., 2003; Moritz et al., 2008; Velliste et al., 2008; Ethier et al.,
2012), cortical neuroprosthetic control (Hochberg et al., 2012; Collinger et al., 2013) is poor
compared to natural movements and highly dependent on visual feedback. Understanding the
mechanisms underlying poor BMI performance is the key to clinical translation; currently funded
efforts focus on identifying failure mechanisms associated with degraded neural signal acquisition
from chronically implanted electrode arrays, unreliable motor decoding of such neural signals, and
delivery of poor sensory feedback (Miranda et al., 2015). This article considers a fundamental failure
mechanism largely underappreciated by the BMI community: the assumption that sensorimotor
cortical activity engaged during unimpaired movement remains available for prosthetic control
after peripheral disconnection.

Especially relevant to BMI research, the OFC theory of motor coordination (Todorov
and Jordan, 2002) highlights the dynamic interplay between motor commands and sensory
feedback, discouraging ideas of neural coding/decoding and emphasizing neural dynamics when
interpreting sensorimotor function (Scott, 2012; for a recent review of OFC and its possible
biological underpinnings see Scott et al., 2015; Shenoy et al., 2013). This is supported by work
demonstrating the influence of sensory feedback on ongoing M1 activity (Herter et al., 2009;
Suminski et al., 2010; Pruszynski et al., 2011), studies describing changes in neural tuning at
different time scales (Sergio et al., 2005; Hatsopoulos et al., 2007; Churchland et al., 2012)
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and under different feedback conditions (Gaunt et al., 2013), and
work showing altered EEGmovement-related information in the
absence of kinaesthetic feedback (Galán et al., 2015).

The OFC framework further predicts that loss of motor
output and sensory feedback will have an impact on the
normal generation of motor commands; although these might
still be initiated, they are likely to be altered compared
with those responsible for producing unimpaired movement.
Such a prediction poses relevant questions to BMI research
that need addressing: is it possible at all after peripheral
disconnection to use sensorimotor cortical activity for reliable
cortical neuroprosthetic control? If not, what is needed? And, in
such a scenario, how can studies with able-bodied experimental
subjects contribute to advancing the development of reliable BMI
systems? The following sections illustrate the predictions of an
infinite-horizon OFC model (Qian et al., 2013) in situations
with different types of peripheral disconnection, and discuss the
implications for the BMI field.

Peripheral Disconnections in OFC

Figure 1 illustrates the OFC framework. To achieve a goal such as
an arm movement, optimal feedback controllers generate motor
commands that minimize a cost function (which might include
error and energy expenditure) based on their belief about the
current state of the arm and the world. Such a belief is formed
by integrating through an optimal estimator the state changes
observed through delayed afferent feedback with those predicted
by forward models, which use knowledge about the system
dynamics acting on a copy of the motor commands. Note that

FIGURE 1 | Optimal feedback control, putative neural

substrates, and peripheral disconnections. Diagram illustrating

OFC framework, its possible neural basis and both simulated

peripheral disconnections: complete disconnection (red) and

deafferentation (gray). See section “Peripheral disconnections in

OFC” for details.

motor commands and sensory feedback are both susceptible to
corruption by noise. References (Shadmehr and Krakauer, 2008;
Scott, 2012; Shadmehr and Mussa-Ivaldi, 2012; Scott et al., 2015)
provide further detail on the computational and neural basis of
the OFC framework in voluntary motor control.

Understanding the causal links between different movement
phases such as preparation and execution is especially relevant
to cortical neuroprosthetic control (Shenoy et al., 2011). An
interesting property of the infinite-horizon OFC model utilized
here (Qian et al., 2013) is the integration of movement control
and postural maintenance, without artificial separations. This
occurs through the application of steady-state solutions for state
estimation, movement execution and postural maintenance. The
state estimator and controller are computed in a preparatory
phase before movement starts, but motor commands can only
be determined during the movement attempt as they depend
on estimated states and sensory feedback. Therefore, movement
properties such as duration and trajectory, as well as the motor
commands themselves, emerge from the model with inherent
trial-to-trial variability. In brief, Qian et al. (2013) consider
a linear dynamical system governed by stochastic differential
equations:

dx = (Ax+ ϕBu) dt + Fxdβ + Yudγ + Gdω, (1)

dy = Cxdt + Ddξ, (2)

where x is the state n-vector, u is the control k-vector (motor
command), and y is the sensory feedback vector. β and γ

are scalar Wiener processes, and ω and ξ are n- and k-
vector Wiener processes modeling noise in control and sensory
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feedback, all independent from each other and standardized
so that over a time step dt, the corresponding Gaussian white
noise processes have variance dt. A, B, C, D, F,G and Y are
constant matrices; A and B define the motor plant according to
Newtonian mechanics and the muscle force equation, C and D
define observation and observation noise, F and Y define state-
and control-dependent noise (multiplicative or signal dependent
noise), and G defines control-independent noise. ϕ is a scalar
modeling efferent disconnection: if the system remains intact
then ϕ = 1, if otherwise motor commands are blocked then
ϕ = 0. The current state x is not available for control and is
estimated according to a linear Kalman filter (Kalman, 1960):

dx̂ =
(
Ax̂+ Bu

)
dt + K

(
dy− Cx̂dt

)
, (3)

where the first term is the prediction based on a forward internal
model and an efference copy of the control signal, and the second
term is the correction based on the discrepancy between observed
and predicted sensory feedback.

The motor command is a linear function of x̂:

u = −Lx̂, (4)

and estimator gain K and controller L are determined
by optimizing costs. According to Phillis’s infinite-horizon
formulation (Phillis, 1985), the estimator cost is defined as the
steady-state variance of the estimation error x̃ ≡ x− x̂,

J1 = lim
t→∞

E
[
x̃TUx̃

]
, (5)

and the controller cost as the steady-state cost per unit of time,

J2 = E

[
lim
t→∞

1

t

∫ t

0

(
xTQx+uTRu

)
dt

]
, (6)

where the first termmeasures accuracy of the reaching target, the
second term measures energetic cost, and matrices U,Q, and R
are constant and symmetric.

The simulations reproduced unimpaired single-joint
reaching movements of the forearm at the elbow as in
(Qian et al., 2013), but additionally tested two different
types of peripheral disconnection (see Figure 1): complete
disconnection (disconnected, K = ϕ = 0) and deafferentation
(deafferented, K = 0). First, estimator gain K and controller
L were numerically obtained from an unimpaired controller
as in (Qian et al., 2013); note that they only depend on plant
and cost parameters. Then, optimal steady state estimator gain
K and controller L were applied to move the hand (n = 20
trials) toward a target placed 50 cm away according to the
system dynamics defined by unimpaired, disconnected, and
deafferented conditions. (Matlab code obtained from N. Qian
upon request and modified to simulate deafferentation and
complete disconnection).

Figure 2 shows time-resolved profiles of hand position,
motor command, and their variance with respect to the
average, generated by the system dynamics defined by
unimpaired, disconnected, and deafferented controllers. The

model reproduced typically-observed properties of unimpaired
movements with trial-to-trial variability (Qian et al., 2013)
(Figures 2A–D, unimpaired). By contrast, the disconnected
controller generated (Equation 4) highly stereotyped
(Figures 2B,D; disconnected) motor commands based on
estimates that solely rely on the predictions of a forward model
using efference copy (Wolpert and Miall, 1996; Wolpert et al.,
1998) (note that K = 0 in Equation 3). Such motor commands
generated no overt output, however, due to the efferent block
(Figures 2A,C; disconnected).

These results seem to suggest that not only is the motor
command intact in the disconnected state, but it is actually
less variable than in the unimpaired condition. Does this mean
that decoding of the motor command would lead to effective
movements of a neural prosthetic? Such decoding can be
modeled using a deafferented controller, where efferents remain
connected, revealing what movements would be generated from
the stereotyped command seen in the disconnected state. This
revealed highly variable movement trajectories, resulting from
the accumulation of errors over time in the state estimate which
must rely, in the absence of sensory feedback, on only forward
model predictions from efference copy. The monotonic increase
of state variance reproduced movement profiles displayed by
patients suffering from sensory neuropathies without visual
feedback (Sanes et al., 1984; Gordon et al., 1995) (Figures 2A,C;
deafferented). Paradoxically, the generation of motor commands
with trial-to-trial variability ensures successful movements
(Todorov and Jordan, 2002) (Figure 2 unimpaired), whereas
the lack of such variability ensures movement imprecision
(Figure 2 deafferented). These examples illustrate that the lack
of sensory feedback from the periphery suffered by disconnected
and deafferented controllers has an impact on the generation of
motor commands via poor state estimation. Execution of such
motor commands (e.g., by a decoder driving a neural prosthetic)
unavoidably leads to poor motor control.

Discussion

Current BMI systems aim to extract neural information from
sensorimotor cortical areas to enable prosthetic control to the
paralyzed. However, the above examples illustrate that these
areas, considered as optimal feedback controllers (see Figure 1;
Shadmehr and Krakauer, 2008; Scott, 2012), are likely to
generate motor commands leading to poor prosthetic control
when disconnected from the periphery. An ideal bidirectional
biomimetic approach which restored both sensory and motor
function would theoretically allow for feedback-corrected state
estimation and restore reliable control; recent work on hand
prosthetics enabling effective modulation of grasping force by
conveying nearly “natural” sensory feedback (Raspopovic et al.,
2014) supports this notion. However, such interfacing at higher
levels of the neuraxis is beyond current technical developments
(Bensmaia and Miller, 2014). More feasible might be an
implementation of bidirectional interfacing based on learned
non-biomimetic associations (Bensmaia and Miller, 2014).
Studies with able-bodied experimental subjects demonstrating
volitional control of sensorimotor cortical activity (Fetz, 1969),
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FIGURE 2 | Simulations of reaching movements produced by

unimpaired, disconnected, and deafferented controllers. Simulated

single-joint reaching movements of the forearm (n = 20) toward a target

placed 50 cm from starting position. (A) Position (B) motor command (C)

position variance with respect to the average. (D) Motor command variance

with respect to the average.

neural adaptation during efferent BMI control (Jarosiewicz
et al., 2008; Ganguly and Carmena, 2009) and discrimination
of evoked percepts by intracortical microstimulation (ICMS)
to somatosensory cortex (Romo et al., 1998; London et al.,
2008; O’Doherty et al., 2011) all support that this approach
may have merit, although it remains unknown whether this will
deliver sufficiently rich sensory feedback to enable precise cortical
neuroprosthetic control. At present, deafferented patients who
only rely on visual feedback appear to provide an upper bound
on current cortical neuroprosthetic systems’ performance.

In Figure 1we have assigned putative neural structures to each
component of the OFC model. In reality the system is likely to
be distributed, with a single box in that diagram implemented
by multiple neural circuits at different levels of the neuraxis.
Feedback is also distributed, being received for example by
both spinal and cortical circuits. One consequence of such an
arrangement may be that the full motor command can never be
read out from one neural structure on its own.

How do the ideas presented above fit with experimental
results from the BMI field? Two FDA clinical trials involving
patients with paralysis (Hochberg et al., 2012; Collinger et al.,
2013) showed impoverished cortical control compared to natural

movements, in agreement with these concepts. Other than
these reports, the majority of BMI work involve able-bodied
non-human primates (Shenoy and Carmena, 2014), with intact
sensory feedback loops from the periphery. In just a few instances
was peripheral disconnectionmodeled with nerve blocks at upper
arm (Moritz et al., 2008) and elbow (Pohlmeyer et al., 2009;
Ethier et al., 2012), but even in those cases feedback above
the block was intact. The ability to use residual sensorimotor
loops has been previously demonstrated in amputees (Kuiken
et al., 2007; Raspopovic et al., 2014), where access to motor
representations of the missing limb appears conditional upon
the re-establishment of peripheral connections (Reilly et al.,
2006). Evidence for effective neuroprosthetic systems based
on extracting control signals from sensorimotor cortical areas
totally disconnected from the periphery is currently lacking.
We argue that neuroprostheses which seek to exploit preserved
sensorimotor loops may offer the most promising control
alternatives on theoretical grounds.
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