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The goal of the study was to quantify error prediction processes via neural correlates in
the Electroencephalogram (EEG). Access to such a neural signal will allow to gain insights
into functional and temporal aspects of error perception in the course of learning. We
focused on the error negativity (Ne) or error-related negativity (ERN) as a candidate index
for the prediction processes. We have used a virtual goal-oriented throwing task where
participants used a lever to throw a virtual ball displayed on a computer monitor with the
goal of hitting a virtual target as often as possible. After one day of practice with 400 trials,
participants performed another 400 trials on a second day with EEG measurement. After
error trials (i.e., when the ball missed the target), we found a sharp negative deflection in
the EEG peaking 250 ms after ball release (mean amplitude: t = −2.5, df = 20, p = 0.02)
and another broader negative deflection following the first, reaching from about 300 ms
after release until unambiguous visual knowledge of results (KR; hitting or passing by the
target; mean amplitude: t = −7.5, df = 20, p < 0.001). According to shape and timing of
the two deflections, we assume that the first deflection represents a predictive Ne/ERN
(prediction based on efferent commands and proprioceptive feedback) while the second
deflection might have arisen from action monitoring.

Keywords: error prediction, error-related negativity, motor task, ballistic throwing task, forward modelling,
electroencephalography

Introduction

Prediction plays a role at many different levels in motor control. Athletes, for instance, are
experts in predicting movement outcomes in their sport. Basketball players can rate whether
a free throw will be successful or not even shortly after the ball leaves their hand. But also in
everyday live, we constantly predict the outcome or the process of our movements. Prediction
is the reason why we cannot tickle ourselves because we know the sensory effect in advance
and are therefore not overtaken by the action (Weiskrantz et al., 1971). In addition, predictions
can also alert us to erroneous performance and the need for adaptations to changing task
demands and environmental circumstances. By means of electroencephalography (EEG),
more concretely with event-related potentials, it is possible to observe error processing in
the brain. Among these potentials, the Ne/ERN is a negative deflection in fronto-central
regions that emerges with or shortly after an erroneous motor response, typically in speeded
choice reaction time tasks (e.g., flanker task), prior to sensory feedback about the movement
outcome such as knowledge of results (KR; Falkenstein et al., 1991; Gehring et al., 1993).
Different theoretical accounts of the Ne/ERN have explained its functional significance with
reference to error detection (i.e., the comparison of expected/planned and actual outcomes;
Falkenstein et al., 1991), response conflict (Botvinick et al., 2001), and reinforcement learning
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(Holroyd and Coles, 2002), respectively. In the absence of KR
however, all of these possible functions of the processes shining
up in the Ne/ERN necessarily require a prediction about the
course and/or outcome of an action in order to detect deviations
from an intended course of action, or to evaluate a conflict
between concurrently active responses. Based on the emergence
of the Ne/ERN prior to the availability of KR, it is reasonable to
assume that the Ne/ERN makes use of the predictive output of
the central nervous system.

There are studies supporting these assumptions. In an
auditory-motor task (re-producing piano tones) Lutz et al.
(2013) found that the Ne/ERN amplitude of participants
increased during learning, whereas another EEG error
component occurring after provision of feedback did not
exhibit any practice-related changes. The authors argued that
while participants learned the auditory-motor mapping of the
task, prediction of their movement effects became increasingly
reliable and that these predictions finally manifested in the
Ne/ERN signal when they conducted an error. At the end of
the experiment, the Ne/ERN was larger in self-inflicted errors,
which could be predicted, relative to externally evoked errors,
which could not be predicted in this experiment. Moreover,
Peterburs et al. (2012) could show that in an antisaccade
task the Ne/ERN of cerebellar patients was significantly
reduced compared to healthy persons. They conclude that the
cerebellum, which is conceived to house predictive forward
models in its microstructures (Miall and Wolpert, 1996; Miall,
1998; Wolpert et al., 1998), contributes to the generation of the
Ne/ERN. Studies from the group of Holroyd and colleagues
add to these findings. In a series of similar experiments where
a specific stimulus-response mapping had to be learned,
the authors could show that the Ne/ERN emerges after an
erroneous response, but prior to external feedback (Holroyd
and Coles, 2002; Nieuwenhuis et al., 2002), and that the anterior
cingulate cortex (source of Ne/ERN) is active when only internal
information about a conducted error is available (Holroyd et al.,
2004).

However, the predictions the system has to make in the
described studies are more of a cognitive nature as they primarily
refer to the outcome of an action (thus evaluating whether
the decision on WHAT action should be selected was correct)
as opposed to predictions about kinematics and dynamics
of movements (thus evaluating HOW a particular action is
executed). In the literature we can also find ERP studies using
explicit motor tasks that, nonetheless, are differently located
on that WHAT-HOW-scale. One can distinguish between goal
attainment errors (‘‘high-level’’ errors; Krigolson and Holroyd,
2006) such as one’s failure to achieve an intended action goal
and execution errors ("low-level’’ errors; Krigolson and Holroyd,
2006) i.e., deviations between actual and desired movement
kinematics. Especially Krigolson and Holroyd have suggested
that the Ne/ERN is elicited when ‘‘high-level’’ errors are made,
for instance, when participants fail to reach a target (Krigolson
and Holroyd, 2007a; Krigolson et al., 2008), respond incorrectly
with the wrong hand or force level (de Bruijn et al., 2003),
or avoid a collision with a non-target (Krigolson and Holroyd,
2006, 2007b). Whereas ‘‘low-level’’ errors should be rather

associated with activity in posterior parts of the brain. Studies
addressing ‘‘low-level’’ errors are, however, not that clear in their
results. When participants deviated from a designatedmovement
trajectory, Ne/ERN like fronto-central activity was found
by Krigolson and Holroyd (2006, 2007a,b). When, however,
the trajectory deviation was correctable, negative activation
in posterior parietal cortex (Krigolson and Holroyd, 2007a;
Krigolson et al., 2008) as well as medial-frontal activity (Anguera
et al., 2009) was found. These rather contradictory results
might be explained by methodological differences between the
studies. Beyond that, one has to note that all tasks had an
overall action goal (reaching for, or staying on a target). Hence,
an error in movement execution (‘‘low-level’’) can lead to a
‘‘high-level’’ error. This ‘‘high-level’’ error can be predicted in
case corrections are expected to fail. We, therefore, propose
that it is not only the actual failure to achieve a particular
action goal, but also the anticipated failure that can give rise
to a fronto-central error negativity (Ne) in the frontal ‘‘high-
level’’ error system. The anticipation, in that case, is based on
predictive systems using internal and external information about
the movement.

Since in all tasks of the presented studies the prediction about
the action goal takes place while the movement is still executed
and therewith coincides with potential corrective movements
[whether they were possible (Anguera et al., 2009) or not
(Krigolson and Holroyd, 2007b)]. Thus, execution and the
correction process, respectively, might also contribute to the
Ne and the Ne/ERN-signal could not solely be attributed to
prediction processes. Hence, for any generalizable conclusions
with respect to sensorimotor prediction it is necessary to
transfer the current findings to a task that allows separating
these processes. Ballistic goal-oriented throwing tasks are
suitable for this purpose because, here, predictions about
task success or failure (hit vs. miss, ‘‘high-level’’) are based
on relatively complex information processing from different
sources (i.e., motor commands, proprioceptive feedback) about
movement execution (‘‘low-level’’). In addition, ballistic tasks
are too fast for online corrections and throwing tasks, in
particular, allow no corrections after release. Moreover, the
KR in such tasks is delayed with respect to movement
termination due to the flight time of the object to be
thrown.

Here, we used a virtual goal-oriented throwing task where
participants had to throw a virtual ball displayed on a computer
monitor with the aim to hit a virtual target as often as possible
by manipulating a real lever. After error trials (i.e., when the
ball missed the target), we found two Ne/ERN like negative
deflections in the EEG signal that are discussed in light of error
prediction as well as feedback processing.

Materials and Methods

Participants
Twenty-nine participants (six males) with a mean age of 23.2
(SD = 6.3) were tested. They had normal or corrected-to-normal
vision and performed all trials with the right hand, irrespective
of whether this was their dominant or non-dominant hand (for
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explanation see below). They gave written informed consent in
accordance with the Declaration of Helsinki and the protocol
was approved by the Ethical Review Board of the Justus-Liebig-
University, Giessen.

Task and Apparatus
The experimental task was a semi-virtual, goal-oriented throwing
task where participants had to hit the goal in series as often as
they could. Monetary rewards of 30, 20, and 10 e were given to
the subjects achieving the three longest hit series. The throwing
task, that has been used in other studies (e.g., Müller and Sternad,
2004; Maurer et al., 2011, 2014; Pendt et al., 2011), is based on
a British pub game in which a ball is suspended from a string
attached to the tip of a vertical post. The player has to throw
the ball around the post in order to knock down a target skittle
on the other side (Figure 1). The movements of the participants
in the experimental task were real, whereas the ball flight was
virtual. Sitting frontal to the computer screen, participants rested
their forearm on a metal lever (the manipulandum) with a metal
support padded with foam rubber. They saw the work space of
the task, including a virtual version of the manipulandum, in two
dimensions from a bird’s eye view on a computer screen from
which they sat approximately 1 m away. The post in the center
of the work space was represented by a cone of 25 cm radius at
position x = 0.0 m, y = 0.0 m. A circular target of 5 cm radius
was presented with its center 35 cm to the right and 100 cm
above the center of the post. The virtual lever was represented
as a solid bar of 40 cm length, fixed at one end (Figure 1),

corresponding to the real horizontal manipulandum that was
fixed to a vertical support and pivoted around an axle centered
directly underneath the elbow joint. Themanipulandum could be
adjusted to a comfortable height for each participant. Rotations
of the manipulandum were measured by a magnetic angle
sensor (resolution 12 bit, 0.09 deg) with a sampling rate of
1000 Hz.

To hold the virtual ball with the virtual lever on the display, a
switch at the free end of the metal lever had to be touched by the
participant. Upon releasing the contact, an electrical current was
disrupted and this accounted as trigger for releasing the virtual
ball. To throw, participants first closed the switch with their index
finger, then rotated the forearm in an outward horizontal motion
and simultaneously released the switch. The ball traversed on a
trajectory initialized by the angle and velocity of the participant’s
arm at the moment of release. Both the movements of the virtual
lever and the simulated trajectory of the ball were displayed on
the screen in real time. The ball’s trajectory was determined
by the simulated physics of the task and described an elliptic
path around the pole (Müller and Sternad, 2004). The task
itself has no unique solution to achieve the goal providing an
additional challenge to select a solution (Müller and Sternad,
2009). Additionally, the center post between lever and target
impeded trivial solutions, i.e., releasing with zero velocity. The
target was hit by the ball when the minimal distance between ball
trajectory and center of the target was less than 10 cm. The result
measure was defined as the number of subsequent target hits (hit
series).

FIGURE 1 | Sketch of the real throwing task (A). A ball is suspended on a
string and swings around the center post, with the objective of knocking down
the skittle at the opposite side. Experimental set-up (B). Participants operate a
manipulandum to throw the virtual ball on the monitor in front of them with the
goal to hit the target located behind the center post. The circle to the left of the

lever represents the position from where participants have to start the
movement (it starts out to be red and then turns to green signaling participants
that they are free to move). The angular displacement of the participant’s
forearm is measured by a magnetic angle sensor and recorded by the
computer.
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Experimental Design and Procedure
Participants performed the task on two days. The first day
served as practice. On the second day, EEG-recording was
conducted. On both days, the session was terminated with
the first error after the 400th trial. Therefore, total number
of trials could vary between participants. Participants were
instructed to throw the ball with their right hand in a counter-
clockwise trajectory around the center post in order to hit the
target in series as often as possible. Movement direction was
clockwise, similar to performing a Frisbee backhand. Due to
technical reasons we also instructed left-handed participants
to throw with the right hand. We did not expect that this
affected our results since the task is easy to perform with
the non-dominant hand and if left-handers should indeed,
for instance, show a poorer error prediction, we would
expect a conservative error and no fundamental distortion of
results.

The release signal of the electrical switch at the
manipulandum was forwarded to the EEG-amplifier and
used as synchronization trigger ‘‘release’’. An additional trigger
‘‘feedback’’ was exported at the moment of minimal distance
between ball trajectory and target. Time between release and
this KR feedback varied minimally between trials of individual
participants and ranged from 817 to 910 ms over all participants
(dependent on throwing strategy).

To prevent a fast rhythmic execution of throws a red-
colored starting light emerged at the beginning of each trial (see
Figure 1). Participants were instructed to move the virtual lever
with the ball at its end into the red circle that thereby changed to
yellow. After 1 s of holding the ball steady in the circle, it turned
green, after which participants were free to move. Note that they
were not instructed to throw in reaction to the signal. By this
procedure, time between release of one trial and the beginning of
the subsequent one was on average 2.2 s. A trial was considered
valid when, after the green signal, the manipulandum exceeded
an angular velocity of 50◦/s followed by the ball release.

EEG-Recordings and Data-Preprocessing
For EEG and electrooculogram (EOG) recordings, we used
a 16 channel AC/DC amplifier with Ag/AgCl active scalp
electrodes (V-Amp, Brain Products). Electrodes were placed
with an electrode cap (actiCap, Brain Products) according to
the international 10–20 system on F3, Fz, F4, FCz, C3, Cz,
C4, P3, Pz, P4. The ground electrode was placed on Fpz, the
online reference electrode on the left mastoid (to avoid artifacts
from right-hand movements). A second reference electrode was
located on the right mastoid which was used for offline re-
referencing by means of averaged mastoids. Eye electrodes were
placed on the external canthi of both eyes as well as above
and below the right eye to measure horizontal and vertical
eye movements. Being an active electrode system, electrode
impedance was kept below 25 k�. The data were digitized at a
sampling rate of 500 Hz. EEG and EOG were filtered online with
a highpass filter at 0.01 Hz. EEG data was additionally filtered
offline with a phase-shift free Butterworth filter (0.2–30 Hz
bandpass). Ocular artifacts were removed from continuous EEG
signal using Infomax Independent Component Analysis (Makeig

et al., 1996, 1997). EEG was segmented into epochs around the
release trigger, beginning 600 ms before ‘‘release’’ and ending
1000 ms after ‘‘release’’. The segments were baseline corrected
by subtracting the average amplitude of the complete signal.
Single segments were then additionally visually inspected in
order to remove epochs that contain artifacts. Since the time
of KR (when the ball hits or misses the target) in relation
to release differed between participants, we additionally re-
referenced the EEG epochs with respect to the trigger ‘‘feedback’’
and created segments starting 1000 ms before and 800 ms after
KR feedback.

Behavioral Data Processing—Classification
of Errors and Successful Trials
In the experimental task an error was defined when the ball
missed the target since the goal for the participants was to
subsequently hit the target as often as possible. The trials in the
error category were expected to produce an at least larger error
signal in the EEG relative to the trials in the hit category. The
ball missed the target when the minimal distance of its trajectory
to the target center was larger than 10 cm (because the ball’s
and target’s radius was 5 cm each). The two classes of result
(‘‘hit’’, ‘‘error’’) were clearly discriminable for the subject since
only in case of a hit, a collision sound was presented and the
target ball was knocked out of its position. To allow for a better
discrimination between ‘‘hits’’ and ‘‘errors’’ in the analyses we
excluded marginal hits and misses close to this 10 cm-distance.
The distances, however, varied between participants, i.e., some
subjects had many central hits with zero or close to zero distance
and marginal misses while others had more marginal hits and
misses with large distances instead. Hence, we did not define
a fixed transition value from hits to misses but rather created
individual categories. Firstly, we sorted the trials with respect
to distance within each participant. Secondly, we classified up
to 50 trials of the lower end of the distance vector with a
distance smaller than 5 cm as hits and up to 50 trials with a
distance larger than 12 cm as errors. During artifact rejection,
a varying number of segments were removed for individual
participants. Five participants, where the procedure did not yield
at least 20 trials per category, were excluded from all further
analyses.

As an additional behavioral measure, we determined the
relative number of total target hits (not necessarily in series) in
percent for all participants in order to be able to discriminate
between participants with respect to task performance. We
used this measure as opposed to the longest hit series because
the hit series is very much dependent on other variables like
noise or arousal (e.g., due to a possible higher performance
pressure with increasing hit series length). We observed that
some participants differed strongly from all others with respect
to this performance criterion. In addition, we need to point out
that the release angle and its dispersion are crucial determinants
of performance. Performers who yield high numbers of hits
are typically quite constant regarding their release angle (one
can say, they know ‘‘where’’ to throw). In contrast, performers
with a high dispersion in release angle have not found an
adequate throwing strategy, i.e., they still search and try
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different angles. We can assume that such participants vary
their throwing strategy unusually and any correlation between
neural activation and error might be grounded on a different
basis in these participants relative to all others. Thus, we also
checked differences between participants with respect to angle
dispersion. Participants who deviated at least ±2 standard
deviations in performance (relative number of total target
hits) or release angle dispersion were dismissed from further
analyses. In consequence, we discarded data sets of three more
participants.

Analysis of Error Related Signals
EEG epochs of error trials and hits trials were averaged for
each participant. Then, a difference wave between the two
categories was computed. The Ne/ERN is typically found at
the 10–20 location FCz. We, therefore, chose to perform all
further analyses on activity recorded at the FCz electrode.
Since this is, to our knowledge, the first study to analyze
error related signals in a ballistic throwing task, we could not
predefine a time window after release where the occurrence of
such a signal would be expected. Hence, we used the grand
average of the difference wave to define the time window

over which we then computed the mean amplitude of the
difference waves for each participant. With a one-sample
t-test we tested whether the mean amplitude deviated negatively
from zero. Since task performance differed strongly between
participants, we tested a possible influence on error prediction
by correlating the percentage of target hits with the error signal
amplitude. Results were regarded as significant when p < 0.05.

Results

Behavioral Results
Over all participants, we yielded on average 39.6 target hits and
33.8 errors for the grand average. With respect to performance,
there was a large difference between participants. On average,
they hit the target in the second (the experimental) session
in 75.1% of trials (SD = 13.1%). The range was between 48.1
and 95.7%. Note that the total number of trials also varied
between participants since the experiment was only terminated
after the last ongoing hit series exceeding 400 trials. Here, the
range was between 400 and 437. The total number of trials did,
however, not correlate with the number of target hits (r = 0.17,
p = 0.41).

FIGURE 2 | (A): Grand averages of error trials (red) and hit
trials (black) synchronized to the moment of release (motor
response) and (B): the corresponding mean amplitudes of the
difference waves between errors and hits for the first and
second deflections. (C): Grand averages synchronized to the
moment of KR-feedback and (D): corresponding mean
amplitudes. The time windows over which the mean amplitudes
were calculated are marked by a green line for the first

deflection and a blue line for the second deflection,
respectively. The time between release and KR-feedback
differed between participants due to different throwing
strategies and velocities. To avoid false interpretations due to
temporal smearing we re-synchronized the EEG epochs with
respect to feedback (see text). In consequence, in the grand
average the non-synchronized event [feedback in (A), release in
(C)] varies in time (indicated by dashed lines).
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Electrophysiological Results
Figure 2A depicts the grand average of error and hit trials of
all participants synchronized to throwing release. In error trials
we found one sharp negative deflection in the EEG peaking
250 ms after ball release and another broader negative deflection
reaching from about 350 ms after release until unambiguous
visual KR. A small negative deflection was also visible in hit
trials around 250 ms. Nevertheless, the mean amplitude of the
difference wave in this time window differed significantly from
zero (t = −2.5, df = 20, p = 0.02, Figure 2B). We also found
a significant difference in the difference wave for the second
deflection (t = −7.5, df = 20, p < 0.001, Figure 2B). After
referencing the EEG epochs to the moment of KR feedback,
the negative deflection in hit trials disappeared while both
deflections in error trials were still present (Figure 2C). The
difference wave deviated significantly from zero in the first
time window (t = −2.6, df = 20, p = 0.02, Figure 2D) and
in the second time window (t = −8.0, df = 20, p < 0.001,
Figure 2D).

The correlation between task performance and the amplitude
of the first deflection is illustrated in Figure 3. The statistical
analysis revealed a significant negative correlation (r = −0.54,
p = 0.01). With respect to the second deflection, we similarly
found a medium negative correlation which was, however, not
significant (r = −0.35, p = 0.12).

Discussion

The goal of the study was to quantify error prediction in
a complex motor task via event-related potentials in the
Electroencephalogram (EEG). We used a semi-virtual throwing
task where the prediction about task success or failure was based
on kinematics and dynamics of the movement. Participants had
to hit a virtual target with a virtual ball by performing a throwing
movement with a real lever. As result we found differences in
the EEG for throws hitting the target relative to throws missing
the target. In these error trials, we found a sharp negative
deflection peaking 250 ms after ball release and another broader
negative deflection reaching from about 300ms after release until
unambiguous visual KR (hitting or passing by the target). Since
event-related potential analyses are based on averaging of several

FIGURE 3 | Correlation between task performance (percentage of
target hits) and the mean amplitude (µV) of the first deflection.

trials, the varying times between release and KR could have
caused temporal smearing. To avoid false interpretations due to
such smeared signals, we re-referenced the EEG segments to the
moment of KR feedback. As a result, the two deflections were still
present and can therefore be regarded as relatively robust error
signals. In contrast, a small negative deflection in hit trials that
was visible whit reference to release vanished after re-referencing
to the moment of feedback.

Now, to interpret the two error signals it is important to
understand that the present study combines two different error
processing streams:

a. error processing based on prediction from active movement
execution,

b. error processing based on passive action monitoring.

In a, the movement is executed and an error is predicted prior to
any information about the movement outcome. We assume that
this prediction is accomplished via a forward model of the task.
Forward models-neural networks that model the input-output
relations of the musculoskeletal plant-have long been postulated
to be used in generating predictions about future states of the
sensorimotor system given its current state and an outgoing
motor command (Heuer, 1983;Miall andWolpert, 1996; Kawato,
1999). An efference copy of the motor command is used to
simulate, or in other words predict, the consequent sensory
effects of the movement. In the throwing task, release angle and
release velocity are the determining variables with respect to task
success. According to shape and timing of the first error signal,
we suppose that this first signal represents an error prediction
process. However, we think that this prediction process is not
merely based on efferent commands. The first error signal has an
onset of on average about 200 ms after release. This time window
may be sufficient to also use incoming visual and proprioceptive
information about the movement execution (Jeannerod, 1988).
There is evidence that humans integrate sensory feedback with
the prediction about sensory consequences of actions to achieve
a more accurate estimate of the actual state of the body and the
environment (Wolpert et al., 1995; Desmurget andGrafton, 2000;
Shadmehr et al., 2010). Thus, we interpret the first error signal as
a result of scenario a where the error is predicted on the basis
of efferent commands and afferent (proprioceptive and visual)
information about the throwing movement (participants could
see their arm as well as the virtual lever moving on the computer
monitor).

In contrast, the second error signal might arise from
processing stream b, concretely the monitoring of visual
information about the ball flight. This processing stream can also
apply when passively observing the ball flight without having
actively executed the throw. Concretely, participants saw the
complete ball flight after release on the computer screen and
therewith the ball approaching the target. Thus, with increasing
flight time, it becomes easier to extrapolate the ball trajectory
and thus to estimate task success. We assume that the closer
the ball comes to the target, the more this processing stream
might resemble feedback processing. With the difference that the
information about the result is not a binary signal conveyed at
a single point in time after movement termination. It is rather
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an accumulation of certainties about whether the ball hits or
misses the target. This accumulation might have given rise to
the second error signal. In order to confirm these interpretations
and to disambiguate the two error processing streams, error
prediction and action monitoring need to be disentangled in
further experiments.

Irrespective of the concrete functional significances of the two
error signals, the study showed that also in a complex throwing
task Ne/ERN-like components emerge prior to unambiguous
feedback about the movement outcome (knowledge of result,
KR). Hence, prediction contributes in any case at least
partly to the generation of these components. Moreover, the
signals occurred after movement termination. Thus, movement
execution and potential corrective submovements can be
excluded as contributors to the Ne/ERN. The study hereby
extents the findings about the Ne/ERN in tasks with rather
cognitive prediction demands and in continuous motor tasks
with correction possibilities to tasks where the prediction is more
of a motor nature and separated from movement execution.

Lutz et al. (2013), Peterburs et al. (2012), and Holroyd
and colleagues (Holroyd and Coles, 2002; Nieuwenhuis et al.,
2002; Holroyd et al., 2004) also conclude from their results
that the prediction process contributing to the Ne/ERN is
accomplished by a forward model. If this conclusion is true, it
could reversely be used to gain information about the quality
of the forward model. The theory of forward models postulates
that an improvement of the forward model should result in
faster learning (Jordan and Rumelhart, 1992). Participants in
the present study differed in performance. Thus, assuming that

these performance differences arose from different learning rates,
they might be a function of the quality of the forward model.
In consequence, one would expect a larger amplitude in the
first error signal (assumingly representing prediction processes)
in participants with high performance and vice versa. Mean
amplitude of this signal and the percentage of target hits showed
this correlation. We, therefore, suggest that task performance is
positively correlated with error prediction and that this could
be an indicator of the first error signal representing error
prediction by means of forward processing. Perspectively, there
are further studies necessary to confirm these interpretations.
The prediction process needs to be completely separated from
processes like action monitoring so as be able to clearly associate
it to the underlying neural signals.

Author Contributions

LMmade substantial contributions to the conception and design
of the work, the acquisition and interpretation of the work,
drafted the work, approved the final version to be published and
agreed to be accountable for all aspects of the work.

HMa made substantial contributions to the conception of the
work, the interpretation of the work, revised the work, approved
the final version to be published and agreed to be accountable for
all aspects of the work.

HM made substantial contributions to the interpretation of
the work, revised the work, approved the final version to be
published and agreed to be accountable for all aspects of the
work.

References

Anguera, J. A., Seidler, R. D., and Gehring, W. J. (2009). Changes in performance
monitoring during sensorimotor adaptation. J. Neurophysiol. 102, 1868–1879.
doi: 10.1152/jn.00063.2009

Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., and Cohen, J. D. (2001).
Conflict monitoring and cognitive control. Psychol. Rev. 108, 624–652. doi: 10.
1037/0033-295X.108.3.624

de Bruijn, E. R. A., Hulstijn, W., Meulenbroek, R. G. J., and van Galen, G. P.
(2003). Action monitoring in motor control: ERPs following selection and
execution errors in a force production task. Psychophysiology 40, 786–795.
doi: 10.1111/1469-8986.00079

Desmurget, M., and Grafton, S. (2000). Forward modeling allows feedback control
for fast reaching movements. Trends Cogn. Sci. 4, 423–431. doi: 10.1016/s1364-
6613(00)01537-0

Falkenstein, M., Hohnsbein, J., Hoormann, J., and Blanke, L. (1991). Effects of
crossmodal divided attention on late ERP components. II. Error processing
in choice reaction tasks. Electroencephalogr. Clin. Neurophysiol. 78, 447–455.
doi: 10.1016/0013-4694(91)90062-9

Gehring, W. J., Goss, B., Coles, M. G., Meyer, D. E., and Donchin, E. (1993).
A neural system for error detection and compensation. Psychol. Sci. 4, 385–390.
doi: 10.1111/j.1467-9280.1993.tb00586.x

Heuer, H. (1983). Bewegungslernen. Stuttgart: Kohlhammer.
Holroyd, C. B., and Coles, M. G. H. (2002). The neural basis of human

error processing: reinforcement learning, dopamine and the error-
related negativity. Psychol. Rev. 109, 679–709. doi: 10.1037/0033-295x.109.
4.679

Holroyd, C. B., Nieuwenhuis, S., Yeung, N., Nystrom, L., Mars, R. B., Coles,
M. G. H., et al. (2004). Dorsal anterior cingulate cortex shows fMRI response
to internal and external error signals. Nat. Neurosci. 7, 497–498. doi: 10.
1038/nn1238

Jeannerod, M. (1988). The Neural and Behavioural Organization of Goal-Directed
Movements.Oxford [England], New York: Clarendon Press; Oxford University
Press.

Jordan, M. I., and Rumelhart, D. E. (1992). Forward models: supervised learning
with a distal teacher. Cogn. Sci. 16, 307–354. doi: 10.1207/s15516709cog1603_1

Kawato, M. (1999). Internal models for motor control and trajectory
planning. Curr. Opin. Neurobiol. 9, 718–727. doi: 10.1016/s0959-4388(99)
00028-8

Krigolson, O. E., and Holroyd, C. B. (2006). Evidence for hierarchical error
processing in the human brain. Neuroscience 137, 13–17. doi: 10.1016/j.
neuroscience.2005.10.064

Krigolson, O. E., and Holroyd, C. B. (2007a). Hierarchical error processing:
different errors, different systems. Brain Res. 1155, 70–80. doi: 10.1016/j.
brainres.2007.04.024

Krigolson, O. E., and Holroyd, C. B. (2007b). Predictive information and
error processing: the role of medial-frontal cortex during motor control.
Psychophysiology 44, 586–595. doi: 10.1111/j.1469-8986.2007.00523.x

Krigolson, O. E., Holroyd, C. B., Van Gyn, G., and Heath, M. (2008).
Electroencephalographic correlates of target and outcome errors. Exp. Brain
Res. 190, 401–411. doi: 10.1007/s00221-008-1482-x

Lutz, K., Puorger, R., Cheetham, M., and Jancke, L. (2013). Development of event
related negativity together with an internal model of audio-motor associations.
Front. Hum. Neurosci. 7:471. doi: 10.3389/fnhum.2013.00471

Makeig, S., Bell, A. J., Jung, T.-P., and Sejonwski, T. J. (1996). ‘‘Independent
component analysis of electroencephalographic data,’’ in Advances in Neural
Information Processing Systems, eds D. Touretzky, M. Mozer and M. Hasselmo
(Cambridge, MA: MIT Press), 145–151.

Makeig, S., Jung, T.-P., Bell, A. J., Ghahremani, D., and Sejonwski, T. J. (1997).
Blind separation of auditory event-related brain responses into independent
components. Proc. Natl. Acad. Sci. U S A 94, 10979–10984. doi: 10.1073/pnas.
94.20.10979

Frontiers in Behavioral Neuroscience | www.frontiersin.org 7 August 2015 | Volume 9 | Article 209

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Maurer et al. Neural correlats of error prediction

Maurer, H., Pendt, L. K., and Müller, H. (2011). Sensitivity to error tolerant
solutions in a redundant virtual throwing task. BIO Web of Conf. 1:00059.
doi: 10.1051/bioconf/20110100059

Maurer, L. K., Sammer, G., Bischoff, M., Maurer, H., and Müller, H. (2014).
Timing accuracy in self-timed movements related to neural indicators of
movement initiation. Hum. Mov. Sci. 37, 42–57. doi: 10.1016/j.humov.2014.
06.005

Miall, C., and Wolpert, D. M. (1996). Forward models for physiological motor
control. Neural Netw. 9, 1265–1279. doi: 10.1016/s0893-6080(96)00035-4

Miall, R. C. (1998). ‘‘The cerebellum, predictive control and motor coordination,’’
in Sensory Guidance ofMovement, eds G. R. Bock and J. A. Goode (West Sussex,
England: John Wiley and Sons), 272–290.

Müller, H., and Sternad, D. (2004). Decomposition of variability in the execution
of goal-oriented tasks: three components of skill improvement. J. Exp.
Psychol. Hum. Percept. Perform. 30, 212–233. doi: 10.1037/0096-1523.30.
1.212

Müller, H., and Sternad, D. (2009). ‘‘Motor learning: changes in the structure
of variability in a redundant task,’’ in Progress in Motor Control: A
Multidisciplinary Perspective, ed. D. Sternad (Berlin: Springer), 439–456.

Nieuwenhuis, S., Ridderinkhof, K. R., Talsma, D., Coles, G. H., Holroyd, C. B.,
Kok, A., et al. (2002). A computational account of altered error processing
in older age: dopamine and the error-related negativity. Cogn. Affect. Behav.
Neurosci. 2, 19–36. doi: 10.3758/cabn.2.1.19

Pendt, L. K., Reuter, I., and Müller, H. (2011). Motor skill learning, retention and
control deficits in parkinson’s disease. PLoS One 6:e21669. doi: 10.1371/journal.
pone.0021669

Peterburs, J., Gajda, K., Koch, B., Schwarz, M., Hoffmann, K.-P., Daum, I., et al.
(2012). Cerebellar lesions alter performance monitoring on the antisaccade
task—an event-related potentials study. Neuropsychologia 50, 379–389. doi: 10.
1016/j.neuropsychologia.2011.12.009

Shadmehr, R., Smith, M. A., and Krakauer, J. W. (2010). Error correction, sensory
prediction and adaptation in motor control. Annu. Rev. Neurosci. 33, 89–108.
doi: 10.1146/annurev-neuro-060909-153135

Weiskrantz, L., Elliott, J., and Darlington, C. (1971). Preliminary observations on
tickling oneself. Nature 230, 598–599. doi: 10.1038/230598a0

Wolpert, D. M., Ghahramani, Z., and Jordan, M. I. (1995). An internal model
for sensorimotor integration. Science 269, 1880–1882. doi: 10.1126/science.
7569931

Wolpert, D. M., Miall, R., and Kawato, M. (1998). Internal models in the
cerebellum. Trends Cogn. Sci. 2, 338–347. doi: 10.1016/s1364-6613(98)
01221-2

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2015 Maurer, Maurer and Müller. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution and reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 8 August 2015 | Volume 9 | Article 209

http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Behavioral_Neuroscience/archive

	Neural correlates of error prediction in a complex motor task
	Introduction
	Materials and Methods
	Participants
	Task and Apparatus
	Experimental Design and Procedure
	EEG-Recordings and Data-Preprocessing
	Behavioral Data Processing—Classification of Errors and Successful Trials
	Analysis of Error Related Signals

	Results
	Behavioral Results
	Electrophysiological Results

	Discussion
	Author Contributions
	References


