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Altered medial prefrontal cortex (mMPFC) and amygdala function is associated with
anxiety-related disorders. While the mPFC-amygdala pathway has a clear role in fear
conditioning, these structures are also involved in active avoidance. Given that avoidance
perseveration represents a core symptom of anxiety disorders, the neural substrate
of avoidance, especially its extinction, requires better understanding. The present
study was designed to investigate the activity, particularly, inhibitory neuronal activity in
mPFC and amygdala during acquisition and extinction of lever-press avoidance in rats.
Neural activity was examined in the mPFC, intercalated cell clusters (ITCs) lateral (LA),
basal (BA) and central (CeA) amygdala, at various time points during acquisition and
extinction, using induction of the immediate early gene product, c-Fos. Neural activity
was greater in the mPFC, LA, BA, and ITC during the extinction phase as compared
to the acquisition phase. In contrast, the CeA was the only region that was more
activated during acquisition than during extinction. Our results indicate inhibitory neurons
are more activated during late phase of acquisition and extinction in the mPFC and
LA, suggesting the dynamic involvement of inhibitory circuits in the development and
extinction of avoidance response. Together, these data start to identify the key brain
regions important in active avoidance behavior, areas that could be associated with
avoidance perseveration in anxiety disorders.

Keywords: c-Fos, gamma-aminobutyric-acid (GABA), intercalated cell (ITC), glutamic acid decarboxylase (GAD),
parvalbumin, lever-press, rat

Introduction

Avoidance is a common feature of anxiety disorders (American Psychiatric Association, 2000). As
avoidance behavior is a key behavioral component of anxiety disorders, learning to extinguish such
behavior is a fundamental concept embedded in cognitive behavioral therapy for anxiety disorders,
including post-traumatic stress disorders (PTSD) and phobias (Rau et al., 2005; Rauch et al., 2006).
Thus, a better understanding of the neurobiological basis of active avoidance and its extinction
will provide important insights into future behavioral and pharmacological treatment for clinical
anxiety.
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Malfunctions in medial prefrontal cortex (mPFC)—amygdala
circuit have been identified in patients suffering PTSD, social
anxiety disorder (SAD) and general anxiety disorder (GAD;
Schwartz and Rauch, 2004; Cottraux, 2005; Guyer et al., 2008).
Imaging studies indicate that one of the most consistent findings
in PTSD patients is hypoactive ventral mPFC combined with
hyperactive amygdala following provocation (Milad et al., 2006;
Phan et al., 2006; Rauch et al, 2006). Avoidance develops
slowly over time in anxiety disorders, so avoidance learning
in animals may provide an opportunity to study the dynamic
and progressive neurobiological changes associated with the
development of anxiety disorders.

In animal studies, brain regions associated with avoidance
behavior include prefrontal cortex (PFC), and amygdala, as well
as hippocampus, striatum, medial septum and periaquaductal
gray (Kirkby and Kimble, 1968; Bailey et al., 1986; Quirk and
Gehlert, 2003; Mobbs et al., 2007; Straube et al., 2009; Pang
et al., 2011; Cominski et al., 2014). Electrolytic lesion of the
infralimbic cortex (IL) impaired active avoidance learning but
facilitated freezing behavior in rats, while central amygdala
(CeA) lesion resulted in the opposite behavioral changes
(Moscarello and LeDoux, 2013). Rats that previously failed
to learn shuttle avoidance can acquire such task following
CeA lesion, suggesting ventral mPFC and CeA are playing
opposite roles in avoidance learning (Choi et al, 2010).
Using an Immunocytochemistry (ICC) approach, Duncan
et al. reported that shuttle-box avoidance elicited c-Fos
activity in the mPFC, cingulate cortex (CG), and medial
amygdala in rats (1996). We recently showed that elevated
c-Fos activation in mPFC is associated with faster extinction
in rats (Jiao et al, 2011). Elevated and prolonged neural
activity in mPFC was also observed in well-trained SD rats,
represented by delta-FosB accumulation using Western blot
(Perrotti et al., 2013). In addition, we found that rats that
exhibited deficits in avoidance extinction also displayed lower
gamma-aminobutyric acid (GABA) neuron counts and neuronal
activation in basolateral amygdala, suggesting inhibitory
modulation is important to ensure successful extinction (Jiao
et al, 2011). The present study was conducted to further
define the activity of inhibitory neurons in the mPFC and
amygdala during the acquisition and extinction of lever-press
avoidance.

Materials and Methods

Animals

Sixty-six male Sprague-Dawley (SD) rats (approximately 60 days
of age at the start of the experiment) were obtained from
Harlan Laboratories (Indianapolis, IN) and housed in individual
cages with free access to food and water. Rats were housed
in a room maintained on a 12:12 h light/dark cycle for at
least 2 weeks prior to the start of the experiment. Experiments
occurred between 0700 and 1700 h in the light portion of the
cycle (light onset occurred at 0600 h). All procedures received
prior approval by the VA NJ Health Care System Institutional
Animal Care and Use Committee in accordance with AAALAC
standards.

Lever-Press Avoidance Training

As previously described (Servatius et al., 2008), training
was conducted in 16 identical operant chambers (Coulbourn
Instruments, Langhorn, PA) enclosed in 16 sound-attenuated
boxes. The unconditional stimulus (US) was a scrambled 1.0-mA
electric foot-shock delivered through the grid floor (Coulbourn
Instruments, Langhorn, PA). The CS was a 1000-Hz 75-dB tone
(10 dB above background noise). The inter-trial interval (I'TI)
was 3 min in duration and signaled by a blinking light above the
lever.

The avoidance training procedure was composed of 10
sessions of acquisition (A01-A10) and six sessions of extinction
(E01-E06), based on previous studies (Servatius et al., 2008;
Beck et al., 2010). Avoidance training consisted of 20 trials
per session. A session occurred three times per week (sessions
separated by 2-3 days). Each session began with a 60 s stimulus-
free period. A trial commenced with the delivery of the auditory
CS. During the acquisition phase, a lever-press during the
first 60 s shock free (warning) period turned off the CS and
prevented the delivery of US; this response was designated an
“avoidance” response. If no avoidance response was made, a
shock period (shock duration = 0.5 s, inter-shock interval = 3 s,
100 shocks maximum/trial) was initiated 60 s after the start of
the trial. The CS was presented during the warning and shock
periods. Following a lever press during the shock period or
if the maximum shock period elapsed, the CS and shock co-
terminated and the ITI was initiated. A lever press during the
shock period was designated an “escape” response. Extinction
sessions were similar to acquisition sessions except no shocks
were delivered during trials. “Avoidance” responses during
the extinction sessions were lever presses with latencies less
than 60 s. A rat that failed to emit a lever press response
by the end of the fourth acquisition session was removed
from the study. Six rats were dropped from the study for this
reason.

Neural activity was assessed at four times in acquisition and
two times in extinction. Rats were randomly assigned to be
sacrificed after the 2nd, 4th, 8th or 10th acquisition session
(session A02, A04, A08 or A10) or after the 1st or 6th extinction
session (session E01 or E06) based on A% data with stratification
after session A01, and are referred to as group ACQ02, ACQ04,
ACQO08, ACQ10, EXT01 and EXT06, respectively.

Data analysis. One-way ANOVA design with main factor
of group was used to study the dependent measures in each
session to determine whether differences occurred between
groups on avoidance ratio, escape ratio, and shock number
during the acquisition phase, and avoidance ratio during the
extinction phase. A second ANOVA with repeated measurement
of session was conducted for each group to assess the
change in behavior across acquisition and extinction sessions.
Post hoc testing was conducted using Tukey’s test for pair-
wise comparison between groups. All data are expressed as
means + the standard error of the mean. Due to recording
errors, data from two rats in group EXTOl and 1 rat in
group EXTO06 were missing from session AOl. Therefore,
the missing subjects were not included in the analysis for
session AO1.
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Immunocytochemistry (ICC)

Ninety-120 min after the end of a session (A02, A04,
A08, A10, EO1 or E06), rats were deeply anesthetized with
sodium pentobarbital (150 mg/kg) and transcardially perfused
with 200 ml of saline solution, followed by 200 ml of 4%
paraformaldehyde solution. Brains were extracted, post-fixed in
4% paraformaldehyde at 4°C overnight, and then stored at 4°C
in 0.1 M phosphate buffer (PB) solution containing 30% (w/v)
sucrose until the brains sank.

Coronal brain sections (50 microns) were prepared on a
freezing microtome, and every 6th sections collected from the
mPFC (bregma: +4.20 mm ~ +2.53 mm) and the amygdala
(bregma: —2.04 mm ~ —3.24 mm; Paxinos and Watson, 1998)
were immunostained. To reveal the neural activity during
acquisition and extinction of avoidance learning, we quantified
c-Fos immunoreactivity (ir; a product from the expression of
the immediate early gene c-fos) as a marker of neural activity
(Chaudhuri et al., 2000). Given the important role of inhibitory
circuits especially in anxiety (McCabe et al., 2004; Berretta
et al., 2005), we were particularly interested in the activation
of inhibitory (mostly GABAergic) neurons. We stained for
parvalbumin (PV), as previously described, to detect GABAergic
neurons (Jiao et al, 2011). PV, a calcium-binding protein, is
expressed in more than 55% of GABAergic neurons in the
basal amygdala (BA) in various species (Sorvari et al., 1996;
Ambalavanar et al, 1999; Kemppainen and Pitkdnen, 2000;
Gabbott et al., 2006; Davila et al., 2008), and in about 35%
mPFC GABAergic neurons in rat (Gabbott and Bacon, 1996;
Gabbott et al.,, 2006). However, some PV-ir negative neurons
could be GABAergic neurons. In the intercalated cell clusters
(ITCs), which is composed of groups of small to medium size
fast-firing GABAergic neurons located between BA and CeA
(Royer et al., 1999; Royer and Paré, 2002; Manko et al., 2011),
anti-glutamic acid decarboxylase isoform 67 (GAD67, the rate-
limiting enzyme of GABA synthesis) antibody was used to define
GABAergic neurons (Izumi et al., 2011). Double labeling of c-Fos
and PV or GADG67-ir was assessed to evaluate selective neuronal
activation in each region of interest (ROI).

ICC procedures were conducted as previously described
(Pang et al., 2001; Miller et al., 2005; Jiao et al., 2011). Sections
were stained for c-Fos, followed by a second staining for PV
or GADG67. Briefly, sections were incubated in rabbit anti-
c-Fos IgG (sc-52, 1:1000, Santa Cruz, CA), mouse anti-PV
(P3088, 1:1000, Sigma-Aldrich, MO), or mouse anti-GAD67
(MAB5406, 1:1000, Chemicon, CA); sections for c-Fos and
PV staining were incubated overnight at room temperature
while sections for GAD67 staining were incubated for 48 h
at 4°C. Following incubation in primary antibodies, sections
were incubated in secondary antibodies (biotinylated donkey
anti-rabbit IgG, or biotinylated donkey anti-mouse IgG (1:200,
Jackson ImmunoResearch, PA) for 2 h at room temperature.
Visualization was performed using the avidin-biotin method
(Vector Laboratories, Burlington, CA) with nickel-enhanced
diaminobenzidine for c-Fos and diaminobenzidine alone for PV,
or GADG67.

c-Fos-ir nuclei were counted in all ROIs; double labeled c-
fos/PV-ir perikarya were counted in the anterior CG, prelimbic

(PL), and IL cortices of the mPFC, and the lateral amygdala
(LA)/BA; only c-Fos nuclei were counted in the ITCs (defined by
darker GAD-ir area). Estimates of the number of immunostained
neurons or nuclei were obtained using standard stereology
procedures (West, 1993; West et al., 2009) and were conducted
blind to the training conditions of the animal. Volume measures
for each of the brain regions were also determined. The optical
fractionator method (Stereo Investigator v.7.0, MicroBrightField,
Colchester, VT) was used to obtain the estimates of cell
number on a microscope with an x-, y-, z-axis motorized
stage (ASI MS-2000, Applied Scientific Instrumentation, Eugene,
OR). Cells containing c-Fos- and c-fos/ PV-ir double labeling
were identified using a 40x objective lens. Double-labeled cells
were defined by observing a PV-positive soma (light brown
in cytoplasm) with a black nucleus in the center (c-Fos). The
counting frame had a height of 10 pm and was 80 pm x 80 pm
in size for basal and LA, 150 um x 100 um in size for CeA, 50 um
x 100 um in size for ITC, and 50 um X 50 pum in size for medial
prefrontal area. Seven to 8 animals per group were counted for
analysis in mPFC regions, 5-7 animals per group were counted
in BA, and 5-6 animals per group were counted in the CeA and
ITC.

Data analysis. A one-way ANOVA with main factor of group
(sacrifice time) was used to assess for differences in neural activity
within each ROI. General neural activity was represented by the
density of c-Fos-ir cells (number of c-Fos-ir cells/volume) while
GABAergic activation was represented by the ratio of the density
of c-Fos—PV-ir double labeled neurons to the density of single
labeled PV-ir neurons. Neural activation was also compared
between phases (acquisition or extinction). Post hoc testing was
conducted using Tukey’s test for pair-wise comparison between
groups. Additional t-tests were performed to compare c-Fos-ir
cells and activation in PV-ir neurons between ACQ10 and EXT01
or EXT6. All data are expressed as means =+ the standard error of
the mean.

Results

Acquisition and Extinction of Lever-Press
Avoidance

As judged by avoidance ratio, all groups acquired the task
similarly at sacrifice time (main factor = group, ps > 0.05).
Groups EXTO01 and EXT06 extinguished similarly in the first
extinction session, p > 0.05 (Figure 1A). No group differences
were found for any of the other measures (i.e., escape ratio and
shock number per session, Figures 1B,C; ps > 0.05). As expected,
rats avoided more in later acquisition sessions compared to
early sessions in all groups (ACQO4, F(3,7) = 33.48; ACQOS,
F763 = 20.23; ACQIO, Fog1) = 5.43; EXTOL, Fgz5 = 5.66;
EXTO06, F(g7,) = 6.15; ps < 0.0001) except for group ACQO2.
Moreover, the number of shocks reduced with training (ACQ04,
F(3)27) = 30.69; ACQOS, F(7)63) = 16.08; ACQIO, F(g)gl) = 6.1;
EXTO1, F(g7) = 3.04; EXT06, F(g72) = 3.18; ps < 0.01). During
extinction, rats avoided less in later extinction sessions compared
to early extinction sessions (EXTO06, Fs45 = 3.89, p < 0.01).
These data suggest that rats in each of the groups acquired and
extinguished avoidance responses similarly and that observed
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FIGURE 1 | Avoidance response, escape response and shock number
received in acquisition (10 sessions) and extinction (6 sessions) were
expressed as avoidance (A, arrows indicate time points of c-Fos-ir
evaluation) and escape (B) ratios and the average numbers of received
shocks in each session during acquisition (C). Each data point represents
group mean + S.E.M. (n = 8-10/group; data of 2 subjects from group EXTO1
and 1 subject from group EXT06 were lost from session AO1 due to a power
failure during training).

difference in immediate early gene product is likely resulting
from training phases (i.e., acquisition vs. extinction) and training
stages (i.e., session).

Neural Activity of the mPFC

Acquisition

Rats from ACQ10 exhibited the highest number of c-Fos-ir cells
compared to other acquisition groups (Figure 2A), suggesting
that mPFC neurons are still active during asymptotic avoidance

p < 0.001), post hoc ps < 0.05, suggesting enhanced inhibitory
tone in the mPFC as active avoidance response is fully developed
(Figure 2B). (for detailed analysis results, see Table 1).

Extinction

Compared to the acquisition phase, all three sub-regions of
the mPFC had greater neural activity during the extinction
phase than acquisition phase (CG: F(42) = 10.79; IL: 10.3; PL:
8.31; ps < 0.01; Figure 2A). However, c-Fos-ir did not differ
between ACQ10 and EXTO01 nor between EXT01 and EXTO06,
suggesting enhanced mPFC activity might be the continuation
of mPFC activity in late acquisition while c-Fos-ir cell counts
sustained during extinction when response dropped. In addition,
a greater proportion of PV-ir neurons was activated in all
three sub-regions of mPFC during extinction compared to
acquisition phase (CG: F(142 = 18.25; IL: 8.68; PL: 10.61;
ps < 0.01; Figure 2B). Interestingly, there is a trend showing
PV-ir neurons are more activated in EXTO01 compared to,
ACQIO0 in CG (tqs) = 1.77, p = 0.10), and EXT06 in CG
and IL (t13) = 1.68 and 1.76, ps = 0.11 and 0.10), suggesting
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TABLE 1 | Statistical report of densities of c-Fos-ir and percent of activated PV-ir cells in ROIs during acquisition or extinction phase in rats.

ROI Factors df() p-value F-value p-value F-value p-value F-value
[cFos-ir] [PV-ir] [PV/cFos-ir])/[PV-ir]%
CG PHASE (A vs. E) 1.42 *p = 0.002061 10.79 p =0.375824 0.8 *p = 0.000109 18.25
GROUP:A 3.25 *p = 0.003798 5.78 p =0.172296 1.8 *p =0.021156 3.87
GROUP:E 1.13 p =0.985742 0 p =0.457561 0.59 p =0.116396 2.83
IL PHASE (A vs. E) 1.42 *p = 0.002553 10.30 p =0.706402 0.14 *p = 0.00523 8.68
GROUP:A 3.25 *p = 0.009889 4.69 p =0.341157 117 *p = 0.004285 5.64
GROUP:E 1.13 p =0.596609 0.29 p =0.989788 0 p =0.102325 3.09
PL PHASE (A vs. E) 1.42 *p = 0.006186 8.31 p =0.91058 0.01 *p = 0.002226 10.61
GROUP:A 3.25 *p =0.001134 7.29 *p = 0.006574 5.15 *p = 0.000796 7.75
GROUP:E 1.13 p =0.63967 0.23 p =0.818013 0.06 p =0.217036 1.68
BA PHASE (A vs. E) 1.34 *p =0.001534 11.87 *p = 0.002308 10.86 *p =0.001681 11.64
GROUP:A 3.21 p =0.084539 2.53 p =0.101036 2.35 *p =0.017232 4.24
GROUP:E 1.9 p =0.372144 0.88 p =0.757981 0.10 p = 0.585622 0.32
LA PHASE (A vs. E) 1.34 *p =0.010545 7.33 p =0.276316 1.22 *p =0.001673 11.65
GROUP:A 3.21 p =0.124649 2.15 p =0.806754 0.33 p =0.610954 0.62
GROUP:E 1.9 p =0.92212 0.01 p =0.561943 0.36 p =0.717509 0.14
[cFos-ir]
CE PHASE (A vs. E) 1.32 *p =0.001938 1.4
GROUP (A) 3.18 *p =0.004185 6.28
GROUP (E) 1.10 p =0.620524 0.26
[cFos-ir]
IITC PHASE (A vs. E) 1.33 *p =0.001611 11.81
GROUP (A) 3.19 *p = 0.045495 3.23
GROUP (E) 1.10 p =0.8436 0.04
miTC PHASE (A vs. E) 1.32 *p =0.005616 8.82
GROUP (A) 3.18 *p = 0.002965 6.78
GROUP (E) 1.10 p=0.7765 0.09

*Denotes ps < 0.05.

greater inhibitory activity is associated with the transition to
extinction.

Neural Activity in Sub-Nuclei of the
Amygdala

BA and LA

Acquisition

In the LA and BA nuclei, the numbers of c-Fos-ir cells remained
the same during acquisition sessions (ps > 0.05; for detailed
analysis results, see Table 1). However, activity of inhibitory
PV-ir neurons in the BA increased as acquisition proceeded
(Fi.25) = 4.24, p = 0.0172), while activity of inhibitory PV-ir
neurons in the LA did not change across acquisition sessions,
p > 0.05. The increased activity of inhibitory neurons in the BA
as avoidance is acquired may be due to increased glutamatergic
inputs from mPFC. Post hoc analysis showed greater BA PV-
ir activation in ACQ10 compared to ACQO02 group, p < 0.05
(Figure 3B).

Extinction
Compared to the acquisition phase, BA and LA were activated
to a greater extent during the extinction phase (F 34 = 11.87

(BA) and 7.33 (LA), ps < 0.005 and 0.05 respectively),
suggesting enhanced BA activity during extinction learning
(Figure 3A). Particularly in the BA, there were more c-Fos-
ir cells from EXTO1 compared to ACQI10, t1276), p < 0.05,
suggesting increased BA activity is associated with transition
to extinction. Greater activity of inhibitory PV-ir neurons was
observed in both the BA and LA during extinction compared
to the acquisition phase, F(34 = 11.64 (BA) and 11.65
(LA), ps < 0.005 (Figure 3B). However, neither c-Fos-ir nor
activated PV-ir neurons, altered between early and late extinction
sessions.

ITCs

Acquisition

ITC area was defined by GAD67 staining as depicted in
Figure 4B. The number of c-Fos-ir neurons increased while
acquisition proceeded in both medial and lateral ITC (IITC:
F(1)33) = 11.81; mITC: F(1’32) = 8.82; ps < 0.05; Table 1).
Particularly in the mITC, the number of c-Fos-ir cells was
higher on later sessions compared to early sessions, post hoc
analysis ps < 0.05 (Figure 4A; for detailed statistical analysis
results, see Table 1). Since ITCs are composed mainly of
GABAergic neurons, elevated ITCs activity during acquisition
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strongly suggests that the inhibitory tone develops as rats are
acquiring the avoidance task.

Extinction

ITCs activity was greater during the extinction phase than
acquisition phase. Although c-Fos-ir cell counts did not differ
between ACQ10 and EXTO01, a significant increase in c-Fos-ir cell
counts was observed in EXTO06 in both IITC and mITC, #(10,2.53)
and #(10,2.44)> ps < 0.05, suggesting transition to extinction did not
significantly increase such activity simultaneously, instead, in a
delayed mode.

CeA

Acquisition

During the acquisition phase, the number of c-Fos-ir neurons
increased with training and peaked in session A08, then reduced
to the early acquisition level in session A10. This pattern
indicates that CeA may be actively involved in learning active
avoidance, but is less involved as learning proceeds to asymptotic
performance.

Extinction

In contrast to activity in other ROIs, CeA was activated to a lower
degree during the extinction phase compared to acquisition
phase, p < 0.005 (Figure 5). Moreover, CeA neural activity
remained at such a low level during the entire extinction phase
suggesting that CeA activation may be inhibited when avoidance
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FIGURE 4 | Densities of c-Fos-ir cells in the lateral and medial
intercalated cell cluster (ITC) were depicted. (A) Densities of c-Fos-ir cells
in the IITC and MITC. Each data point represents group mean + S.E.M. (*ps <
0.05; n = 5-6/group). (B) mITC and IITC were defined by GAD67 staining that
was visualized by DAB (x 1.25 objective lens). C-Fos-ir cells in the mITC and
IITC were visualized by DAB-NICl, (x40 objective lens).

is acquired and when shock is no longer present (Figure 5, for
detailed statistical analysis results, see Table 1).

Discussion

Here we report differential activity of mPFC and amygdalar
sub-regions during lever-press avoidance and extinction. In the
mPFC and most amygdalar sub-regions, activity increased in
late acquisition sessions (A08-A10) when avoidance response
was acquired and peaked in extinction phase when shock was
no longer present. GABAergic neurons in the mPFC had a
similar pattern, more activated in the mPFC in later acquisition,
even more in early extinction (E1), but less activated in late
extinction (E6). In contrast, activity in the CeA increased
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FIGURE 5 | Density of c-Fos-ir cells in the central amygdala (CeA). Each
data point represents group mean + S.E.M. (*ps < 0.05; n = 5-6/group).
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during early acquisition sessions, peaked in A08 and reduced in
late acquisition and extinction. Therefore, different patterns of
activity were observed in mPFC, BA, LA and ITC compared to
CeA. These data suggest that general activity, and particularly
inhibitory neuronal activation within mPFC-amygdala circuit
shifts in a time-dependent manner during acquisition and
extinction of lever press avoidance. Together, these data suggest
that altered activity observed in similar regions in the present
study using avoidance paradigm in rats and in imaging studies
in patients with anxiety disorders (Schwartz and Rauch, 2004;
Cottraux, 2005; Guyer et al., 2008).

The role of mPFC and amygdala in avoidance task has
been previously studied, however mainly using lesion technique
in rodents (Choi et al., 2010; Moscarello and LeDoux, 2013;
Beck et al, 2014). Pre-training lesion provides a useful tool
to evaluate well defined structure-dependence of a task, (Wan
et al., 1994). However, compensatory changes in response to
lesions may complicate interpretation. We recently reported
that mPFC, striatum and amygdala neural activity assessed
by c-Fos and delta-FosB was associated with avoidance and
extinction in lever-press avoidance (Jiao et al., 2011; Perrotti
et al, 2013). However, these studies only evaluated time
points at asymptotic avoidance performance and at the end
of extinction learning. In order to understand the role of
amygdala and mPFC in the acquisition and extinction processes
of avoidance, the present study monitored neural activity
at various time points during avoidance acquisition and
extinction.

The importance of mPFC neural activity in active avoidance
and extinction has been recognized and appreciated in recent
works using lever-press or shuttle-box avoidance paradigms
(Duncan et al., 1996; Jiao et al., 2011; Moscarello and LeDoux,
2013). These studies demonstrated that avoidance learning
induced prominent c-Fos expression in the mPFC and CG
(Duncan et al, 1996) while IL lesion impaired avoidance
learning (Moscarello and LeDoux, 2013). We reported
that rats that failed to extinguish lever-press avoidance
exhibited lower c-Fos expression in the mPFC compared
to rats that successfully extinguished such response (Jiao
et al, 2011). Thus mPFC is actively involved in both
acquisition and extinction of active avoidance task in
rats.

It is known that mPFC is a heterogeneous structure (Gabbott
et al., 1997; Vertes, 2004). In fear conditioning and extinction,
PL is associated with fear learning while IL is important in
extinction learning (Milad and Quirk, 2002; Quirk et al., 2006;
Sierra-Mercado et al,, 2011). If fear and avoidance share the
same pathway, we would expect greater PL activation during
acquisition and greater IL activation during extinction. However,
we found that the pattern of c-Fos-ir changes was similar in
the PL and IL in avoidance. In support of our data, Moscarello
and LeDoux (2013) reported that IL is needed to acquire shuttle
avoidance, and to reduce warning signal-elicited freezing, yet PL
lesion did not affect acquisition. In shuttle avoidance, the cue
that is initially paired with the shock induces fear and facilitates
freezing behavior, subsequently preventing a shuttle response.
Thus fear needs to be overcome while shuttle avoidance is being

acquired. Our results support and extend those of Moscarello
and LeDoux in that IL activity is increased during lever press
avoidance was acquired. In contrast to Moscarello and LeDoux,
PL neural activity was also increased during acquisition of lever
press avoidance; these differences may due to different avoidance
paradigms used in these studies. We also observed an interesting
trend on the activation of PV-ir neurons in this area. While
there are more activated PV-ir neurons following A10, there is
a trend showing increased number of activated PV-ir neurons
after E1 (e.g., CG) and decrement after E6 (e.g., IL). Given
c-Fos-ir cell counts remained similar following A10, we speculate
that there might be increased excitatory activity in the mPFC
during late extinction. However, this speculation requires further
investigation.

In the ITCs, c-Fos-ir expression progressively increased as
learning proceeded from acquisition to extinction of lever-
press avoidance. Accumulated evidence demonstrates that ITCs
is critical for fear extinction, specifically, for the expression
of extinction (Herry et al, 2008; Likhtik et al., 2008; Manko
et al., 2011). This cell cluster receives input from vmPFC and
modulates fear extinction through the CeA, a feed-forward
inhibition mechanism of extinction (Quirk and Gehlert, 2003;
Milad et al., 2004; Hefner et al., 2008; Likhtik et al., 2008; Manko
et al., 2011). Thus the greater ITCs activity here could lead to
reduced “fear” component in late acquisition sessions and in
extinction via increasing excitatory input from mPFC neurons.
Based on the present data, we speculate that when animals reach
near asymptotic avoidance performance (i.e., receiving very few
shocks), CeA activity is suppressed by increased ITCs input
induced by enhanced mPFC activity.

As described above, we observed an inverse relationship in
neural activity between CeA and mPFC-ITCs circuits, which is
an increase of c-Fos-ir cells counts in the mPFC and non-CeA
amygdala in late acquisition accompanied by a decrease of c-Fos-
ir cell counts in the CeA following A08. The inverse relationship
of c-Fos-ir in the mPFC and CeA is supported by the anatomical
connection between these two structures and their physiological
roles in aversive learning that we addressed earlier (Morgan and
LeDoux, 1999; Rosenkranz et al.,, 2003; Amano et al., 2010).
Lesion/deactivation in the CeA facilitated shuttle avoidance by
reducing freezing (Choi et al, 2010; Moscarello and LeDoux,
2013), suggesting that CeA activity inhibits the acquisition of an
active avoidance task. Thus rats exposed to shocks would have
high CeA activity during early acquisition phase when avoidance
response has not yet been fully acquired. However our study
showed that the peak CeA activation occurred on session A08
but not A02 when avoidance responding is near asymptote.
Similarly, higher c-Fos-ir in the CeA has been reported in
rats that are “good” avoiders compared to “poor” avoiders in
shuttle-box avoidance, suggesting that elevated CeA activity is
associated with active avoidance learning (Martinez et al., 2013).
Other than freezing, CeA is associated with arousal, sympathetic
and parasympathetic responses to stimuli (LeDoux, 2007). It is
possible that elevated CeA activity is due to other factors such
as valence (i.e., bad/good behavioral outcome) state (Moul et al.,
2012). In addition, it is known that CeA is highly heterogeneous,
for instance, a large portion of CeA neurons are interneurons that
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inhibit CeA output (McDonald and Augustine, 1993; Pitkanen
et al., 1997; Sah et al,, 2003). Thus it is possible that the high
CeA activity on session A08 could due to increased interneuron
activation and lead to reduced CeA output. Therefore, the
highest CeA activation observed on A08 may be the result
of accumulative neural activation, but not necessarily indicate
highest levels of fear.

In addition, our findings indicate that both LA and BA regions
remained active during extinction of lever-press avoidance. The
involvement of BA and LA in acquisition is expected since this
region is necessary to acquire and perform an active avoidance
task (Silveira et al., 2001; Anglada-Figueroa and Quirk, 2005).
However, the extended activity during extinction suggests that
the extinction of active avoidance requires both structures. We
also found elevated activity in inhibitory PV-ir cells in the
LA during extinction. As BA receives robust inputs from LA,
increased inhibitory activity in the LA may lead to decreased
output to the BA. Moreover, increased PV-ir neuronal activity
was observed in BA following A10 and remained the same
during extinction while overall BA activity was higher following
El, suggesting different neuronal population may be involved.
For instance, BA neurons that fired to fear-associated CS or
extinction-associated CS are innervated by projections from
heterogeneous origins such as ventral hippocampus or mPFC
(Repa et al., 2001; Herry et al., 2008). Thus, it is possible that
activities from distinct neuronal populations associated with
acquisition or extinction of avoidance learning are overlapping
during late acquisition and early extinction, resulting in different
activity patterns in the BA through LA.

It is important to note that the neuronal activity of the
brain areas investigated here did not change in relation to shock
number. Early in training, rats experienced the most amount
of shocks in A0l and then reduce number of shocks through
out the acquisition phase. In contrast, nPFC and amygdala sub-
regions, except CE, had neuronal activity increasing through
out the acquisition phase, and some even through extinction
when there were no shocks experienced. Even activity in
the CE nucleus did not exactly reflect shock number as its
activity was highest at A08, but not A01. Previous studies have
implicated that fear is greatest early in avoidance training and
gradually reduces as avoidance is learned (Coover et al., 1973;
Servatius et al., 2008). Thus, the neuronal activity reported
in this study does not exactly correlate with the expected
dynamics of fear during avoidance learning. Moreover, previous
studies show that activity in the amygdala increase during fear
conditioning in humans and animals, paralleling the conditioned
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