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HIGHLIGHTS

• We use a simple gambles design in an fMRI study to compare two conditions:

ambiguity and conflict.

• Participants were more conflict averse than ambiguity averse.

• Ambiguity aversion did not correlate with conflict aversion.

• Activation in the medial prefrontal cortex correlated with ambiguity level and ambiguity

aversion.

• Activation in the ventral striatum correlated with conflict level and conflict aversion.

Studies of decision making under uncertainty generally focus on imprecise information

about outcome probabilities (“ambiguity”). It is not clear, however, whether conflicting

information about outcome probabilities affects decision making in the same manner as

ambiguity does. Here we combine functional magnetic resonance imaging (fMRI) and

a simple gamble design to study this question. In this design the levels of ambiguity

and conflict are parametrically varied, and ambiguity and conflict gambles are matched

on expected value. Behaviorally, participants avoided conflict more than ambiguity, and

attitudes toward ambiguity and conflict did not correlate across participants. Neurally,

regional brain activation was differentially modulated by ambiguity level and aversion

to ambiguity and by conflict level and aversion to conflict. Activation in the medial

prefrontal cortex was correlated with the level of ambiguity and with ambiguity aversion,

whereas activation in the ventral striatum was correlated with the level of conflict and with

conflict aversion. These novel results indicate that decision makers process imprecise

and conflicting information differently, a finding that has important implications for basic

and clinical research.
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INTRODUCTION

Our ability to make effective decisions is considerably affected
by the quality of information we receive. Imagine that you are
attending the Kentucky Derby for the first time. You are joined
by two friends, both experienced race watchers, with inside
information about the race horses. Two horses seem promising,
and you ask for your friends’ advice in selecting one of these
horses to bet on. One of your friends is very confident that
horse A’s odds are twice as high as those of horse B, while
your other friend strongly disagrees and insists that he has solid
evidence supporting the exact opposite. How do you make a
decision in this case? If you equally trust both of your friends,
how would you pick one of the horses over the other one? Or
would you, perhaps, pick a third horse just to avoid having to
choose between them? Compare this scenario with a different
one, in which your friends agree that the likelihoods of both
horses to win are equally unclear. In which case are you more
comfortable making a choice, and in which case do you trust your
friends more? Both of these scenarios involve uncertainty around
outcome likelihoods, but the nature of this uncertainty is different
in the two scenarios. In the first one, there is a “conflict” between
two likelihood estimates. In the second, there is “ambiguity”
around the likelihood. The goal of this paper is to compare how
people make decisions under these two types of uncertainty, both
behaviorally and neurally.

Studies of decision making under uncertainty have provided
insights into the neural processing of missing information
about outcome probabilities (Platt and Huettel, 2008) and have
informed clinicians as to the neurobiological abnormalities that
might underlie the symptomatology of anxiety-based diseases
(Ernst and Paulus, 2005). Most of these studies have focused on
risk—a situation with known outcomes and known probabilities
of these outcomes (von Neumann and Morgenstern, 1944), and
ambiguity—a situation with known outcomes and unknown
probabilities (Ellsberg, 1961).

Definitions of ambiguity, however, have been somewhat
limited and inconsistent. Theoretical studies have defined
ambiguity as occurring “when there are questions of reliability
and relevance of information, and particularly where there
is conflicting opinion and evidence” (Ellsberg, 1961, p. 659);
whereas the majority of empirical studies have operationalized
ambiguity as a situation with imprecise information about
probabilities. Budescu and Wallsten (1995) pointed out this

Abbreviations: A, ambiguity condition; AA, ambiguity attitude; A-level, level

of ambiguity; ACC, anterior cingulate cortex; AFNI, Analysis of Functional

NeuroImages; AR(1), an autoregressive process when only the previous term in

the process and the noise term contribute to the output; BOLD, Blood-oxygenated-

level dependent signal; C, conflict condition; CA, conflict attitude; C level, conflict

level; fMRI, functional magnetic resonance imaging; GLM, generalized linear

model; laINS, left anterior insula; lPAR, left parietal cortex; STG, superior temporal

gyrus; lSTG, left superior temporal gyrus; MPRAGE, magnetization-prepared 180

degrees radio-frequency pulses and rapid gradient-echo sampling; MRI, magnetic

resonance imaging; OFC, orbito frontal cortex; rlOFC, right lateral orbitofrontal

cortex; PCC, posterior cingular cortex; PE, parameter estimate; PFC, posterior

frontal cortex; Pifs, posterior inferior frontal sulcus; PSC, percent signal change;

ROI, region of interest; SEU, Subjective Expected Utility Theory; STD, standard

error; TE, Echo Time; TR, repetition time.

inconsistency and suggested that people process ambiguous
information (a “true” value belongs to some known interval)
and conflicting information (two or more precise but divergent
messages about a “true” value are available) differently, and that
ambiguous and conflicting information have different effects on
the choice of decision-making strategies.

Note that the conflict in this context is somewhat different
from the decision conflict, or cognitive conflict, that has been
extensively researched by cognitive neuroscience. Decision
conflict occurs when people feel uncertain as to which option to
choose from a set of similarly attractive (or unattractive) options,
which can lead to suboptimal decision making (Pochon et al.,
2008). That is, decision conflict is typically used synonymously
with difficulty of selecting the objectively optimal response
in the presence of interference (i.e., noise). It is commonly
assumed that with higher cognitive (e.g., attentional, Petersen
and Posner, 2012) costs decision conflicts can be resolved, and
thus suboptimal outcomes (Pochon et al., 2008) can be avoided.
In fact, a number of decision tasks have been used to access
individual ability to resolve decision, or cognitive, conflicts, and
choose optimally even in the presence of strong interference
[the Stroop task, (Stroop, 1935), the Flanker task (Eriksen and
Eriksen, 1974), the Attention Network Test (Fan et al., 2002,
2009), and many others]. Conversely, in the example above,
additional cognitive effort cannot help in identifying the optimal
response; only additional information about your disagreeing
friends or two horses’ history may be, potentially, helpful. A
decision has to be made, however, before this information may
be available for resolving the informational conflict. That is,
“the efficient mind” has to accept that the optimal response
cannot be known, and thus additional cognitive effort under
these circumstances is not appropriate. The intuitive similarities
and differences between the informational conflict and cognitive
conflict are a fruitful research topic for future studies, but beyond
the scope of this paper.

So far only a handful of behavioral studies have explored
the difference between ambiguity and conflict, but the results
have been quite consistent: people tend to avoid conflicting
unambiguous messages from two equally believable sources in
favor of two informatively equivalent, ambiguous, but agreeing
messages from these sources (Smithson, 1999; Cabantous, 2007;
Cabantous et al., 2011), but see Baillon et al. (2012) for alternative
results. In the context of Kentucky Derby (see above), it implies
that most people would rather receive advice from two friends,
who both admit not knowing anything about horses (ambiguous
agreeing messages) than from two absolutely confident friends,
who strongly disagree about the chances of horses A and B
(conflicting unambiguous messages).

Conflict aversion is particularly strong for low and high
probability events (Baillon and Cabantous, 2009). Furthermore,
decision makers tend to perceive sources of conflicting
information as “not trustworthy,” but believe that they can trust
agreeing sources of ambiguous information (Smithson, 1999).
Intriguing results from Bugental et al. (1971) might even suggest
that a prolonged exposure to conflicting, but not ambiguous,
information might provoke the onset of some anxiety-based
disorders.
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Nevertheless, most research still treats conflict as identical
to ambiguity. We tested this hypothesis using a simple gambles
design in conjunction with functional magnetic resonance
imaging (fMRI). In this design ambiguity gambles are matched
with conflict gambles on expected value. The hypothesized
equivalence of ambiguity and conflict predicts that: (1) attitudes
toward ambiguity correlate with attitudes toward conflict, (2)
a largely overlapping set of brain regions is involved in the
processing of ambiguity and conflict, (3) behavioral attitudes
toward ambiguity and conflict are predicted by the activation in
this largely overlapping set of regions. However, our data reveal
persistent differences between how ambiguous and conflicting
data are processed. To the best of our knowledge, this is the
first study suggesting that conflicting information and ambiguous
information about outcome probabilities have qualitatively
different effects on decision making, both behaviorally and
neurally.

MATERIALS AND METHODS

Participants
Forty-two right-handed participants [21 males, mean age =

24.6 ± 5.2 (STD) years] with normal or corrected-to-normal
vision provided written informed consent in accordance with the
University of Kentucky Institutional Review Board guidelines,
and were compensated for their time. Four participants
were excluded from the analysis because of excessive head
motion (more than 1.7mm); data from six participants were
lost due to technical problems. Data from 32 participants
(16 males, mean age = 25.2 ± 5.6) were included in the
analysis.

Procedure and Stimuli
Before the fMRI session, participants were informed that in the
scanner they would be asked to play a series of lotteries. For
each lottery, they would have to guess the type of card that they
would draw from amixed deck of 100 different cards (e.g., Trivial
Pursuit, Pokémon, etc.). On each trial, participants could refuse to
gamble, in which case they received $3. If they chose to play the
lottery, they would receive $10 for a correct guess or nothing for
an incorrect guess (thus, the expected value of each lottery was
equal to the probability of winning multiplied by 10). Lotteries
were played under four different informational conditions: risk,
ignorance, ambiguity and conflict. Results from the first three
conditions have been reported elsewhere (Pushkarskaya et al.,
2010). Here we focus only on the effects of ambiguity and conflict
on decision making. We also include risk in our analyses as a
reference condition.

In all three conditions the 100-card mixed deck consisted of
cards of three different types. The quantity of “Type 1” cards
was always known (e.g., 94 Poker cards, Figure 1, top row);
its distribution was the same for all conditions. Since the total
number of all cards in the deck was always equal to 100, the
distribution of the total number of “Type 2” and “Type 3” cards
was also the same across all conditions. However, information

about the composition of Type 2 and Type 3 cards varied across
conditions (the experimental variable of interest in the study).

In the risk condition, the composition of Type 2 and Type
3 cards was fully known (the number of cards of Type 2 was
always equal to the number of cards of Type 3, Figure 1C-i).
In the ambiguity condition, only the total number of Type 2
and Type 3 cards was provided (e.g., total of six Pokémon and
Monopoly cards, Figure 1A-i), but the composition of Type 2
and Type 3 cards was not. In the conflict condition, participants
received conflicting information about the composition of Type
2 and Type 3 cards (e.g., either two Monopoly cards and four
Go-Fish cards or four Monopoly cards and two Go-Fish cards,
Figure 1B-i). Since the quantity of Type 1 cards was known
under all conditions, a risky option was always available to the
participants. Therefore, to investigate the effect of ambiguous and
conflicting information on decision making in both behavioral
and fMRI data analyses we used risk as a reference condition.

Thirty unique gambles were used in each uncertain condition.
Two randomly selected gambles from each condition were used
twice. The total number of trials in each condition, therefore,
was equal to 32. The full list of gambles is reported in Table S.1
(Supplementary Materials). Note that the task calibration has the
following four important features. First, the risk, ambiguity, and
conflict conditions were matched on expected value. A decision
maker, who is not affected by ambiguity or conflict, should
therefore treat both the ambiguity and conflict conditions in the
same manner as she treats the risk condition. In contrast, an
ambiguity (conflict) averse decision maker would bet on cards
of Type 2 or Type 3 less often under ambiguity (conflict) than
under risk, whereas an ambiguity (conflict) seeking decision
maker would bet on cards of Type 2 or Type 3 more often under
ambiguity (conflict) than under risk.

Second, in this design, outcome variance under ambiguity
was higher than under conflict under the assumption of an
uncertainty neutral decision maker. It has been suggested
that aversion to outcome variance (Preuschoff et al., 2006)
may explain the difference in choices under different types of
uncertainty. In our study, a decision maker sensitive to outcome
variance should avoid ambiguity more strongly than conflict.

We did not explicitly state in the instructions that all gambles
were matched on expected value, and that variance under
ambiguity was higher than under conflict, to avoid a possible
framing effect. We rather gave the participants a chance to form
their own beliefs about the underlying distribution of cards
under different conditions. One of the possible explanations of
ambiguity (or conflict) aversion is an irrationally pessimistic
belief that the unknown odds are always against a decisionmaker.
Arguably, participants’ choices can indicate whether these beliefs
are affected differently by different types of uncertainty.

Third, to manipulate the level of uncertainty, the total number
of Type 2 and Type 3 cards varied from 6 to 94. Thirty unique
combinations of cards of Type 1, Type 2, and Type 3 were used
in each type of uncertainty (See Supplementary Materials S.1).
Figure 1 presents the extreme cases, in which this total number
was either 6 (top row, the lowest of 32 levels of uncertainty) or
94 (bottom row, the highest of 32 levels of uncertainty). This
manipulation allows varying the level of unknown in ambiguity
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FIGURE 1 | Experimental design. Participants were asked to play a series of lotteries under several experimental conditions (A: ambiguity, B: conflict, C: risk). For

each lottery, they would have to guess the type of card that they would draw from a mixed deck of 100 different cards (e.g., Trivial Pursuit, Pokémon, etc.). On each

trial, participants could refuse to gamble, in which case they received $3. If they chose to play the lottery, they would receive $10 for a correct guess or nothing for an

incorrect guess. In the ambiguity condition, the total number of “Type 2” and “Type 3” cards was provided (e.g., total of six Pokémon and Monopoly cards, A-i). In the

conflict condition, participants received conflicting information about the numbers of Type 2 and Type 3 cards (e.g., two Monopoly cards and four Go-Fish cards vs.

four Monopoly cards and two Go-Fish cards, B-i). In the risk condition the number of cards of Type 2 was always equal to the number of cards of Type 3. Note that

the ambiguity gambles (A) are matched with the conflict gambles (B) and with risk gambles (C) on both expected value and variance under the assumption of a

rational decision maker. The total number of cards in Piles 2 and 3 in this paper is referred to as the level of ambiguity (conflict); 30 unique combinations of cards of

Type 1, Type 2, and Type 3 under each type of uncertainty were included in the experiment (see Supplementary Materials S.1); level of ambiguity (conflict) thus varied

from 6 (A-i, B-i, the lowest of 30 levels of uncertainty) to 94 (A-ii, B-ii, the highest of 30 levels of uncertainty).

trials and the level of disagreement in conflict trials in the task.
This, in turn, allowed us to search the fMRI data not only
for categorical effect of each type of uncertainty, but also for
parametric effects of the level of each type of uncertainty (Levy
et al., 2010; Bach et al., 2011b). For the rest of the paper the total
number of Type 2 and Type 3 cards is referred to as the level of
ambiguity or level of conflict.

Finally, the average winning probabilities of drawing Type 2
(and Type 3) cards from the deck in our design varied from 0.03
to 0.47; the average winning probabilities of Type 2 and Type
3 cards were matched across all lotteries. This is in contrast to
most experimental designs that only examine ambiguity around
an average winning probability of 0.5 (e.g., Ellsberg, 1961). A
limited number of studies that did examine ambiguity attitudes
around probabilities other than 0.5 found that participants do
not necessarily demonstrate ambiguity aversion in their choices
if average winning probabilities are lower than 0.35 (Kahn and
Sarin, 1988; Maafi, 2011). Thus, we did not necessarily expect our
participants to choose in an ambiguity avoidant manner in our
experiment. No prior study has investigated similar probability
ranges under conflict, and therefore whether our participants
would exhibit conflict avoidance remained an open question.

Participants were told that they would not receive any
feedback while in the scanner on whether they had won or lost
the gamble. Instead, after completion of the fMRI session, four

trials (one from each condition) were chosen randomly, and
participants drew a card from each of the four decks if they
chose to gamble, or received $3, if they chose the sure gain.
For each draw predicted correctly during the fMRI session, they
were paid $10; for each incorrect prediction, they were not paid.
Overall, the participant payments ranged from $10 to $50 (mean
payment = $38). Before the fMRI session, participants practiced
on a computer, and were quizzed on how well they understood
the instructions. Only after they had answered all of the questions
correctly were they invited to perform the task in the scanner.

Each gamble appeared on the screen for 6500ms, during
which participants pressed one of four buttons to either choose
the sure gain, or indicate their guess for the type of card
that will be drawn when the lottery is played (Type 1, 2 or
3, see Figure 1). Each gamble presentation was followed by
1000ms of fixation. Fixation-only trials of the same length as the
gamble trials were also included. Gamble and fixation trials were
pseudorandomly ordered according to a simulation algorithm to
maximize estimation efficiency (AFNI scripts available at http://
afni.nimh.nih.gov/afni/doc/howto/3); eight trials of each of the
five trial types (risk, ambiguity, conflict, ignorance, and fixation)
were presented in each run for a total of 8min. Participants
underwent four runs. Half of the participants saw the display with
a sure gain option on the right, and another half saw the display
with a sure gain option on the left.
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Imaging
A 3-tesla Siemens Trio MRI scanner with an eight-channel
parallel head coil was used. For each run, 200 echo planar
images were acquired (2500-ms TR, 30-ms TE, 81◦ flip angle,
38 axial slices, 64 × 64 matrix, 3.5-mm3 resolution). A T1-
weighted MPRAGE anatomical scan with 1-mm3 voxels and
a 1-min field-map scan were collected for each participant.
Stimuli were presented using a high-resolution rear-projection
system (Avotec, Stuart, FL) with button presses recorded using
a four-button fiber-optics response pad. E-Prime software
(Psychology Software Tools, Pittsburgh, PA) controlled the
stimulus presentation and the recording of responses with each
trial triggered by a scanner-generated optical pulse.

Choice Data Analysis
Descriptive Measures of Choice Behavior
First, we looked at how different types of uncertainty about
the composition of cards of Type 2 and Type 3 affected the
general choice patterns of our participants (for more details
see Supplementary Materials S.2.a). Under risk, a risk-neutral
decision maker would choose the option of the higher objective
expected value, defined as the probability of a gain multiplied by
the magnitude of that gain. In our task, such a decision-maker
should choose to bet on cards of Type 2 and Type 3 ten times.
Participants who chose risky lotteries less often are termed “risk
averse,” and those who chose the lotteries more often are termed
“risk-seeking.” Individual risk attitude (RA) thus was defined as

RA = 10− Number of bets on cards 2 or 3 under risk

An ambiguity-neutral decision maker would make the same
choices in ambiguous trials and in risky trials. To estimate
ambiguity attitudes (AA) we therefore compared how often
each participant bet on cards of Type 2 and Type 3 under
ambiguity and under risk. We used the same approach to
estimate individual conflict attitudes (CA).

AA =Number of bets on cards 2 or 3 under risk

− Number of bets on cards 2 or 3 under ambiguity

CA =Number of bets on cards 2 or 3 under risk

− Number of bets on cards 2 or 3 under conflict

Positive RA, AA, and CA values reflect uncertainty aversion, and
negative values reflect uncertainty seeking (for more details see
Supplementary Materials S.2.a).

Model-based Analysis of Choice Behavior
The model-free descriptive approach relies on less restrictive
assumptions than a model-based approach. These measures,
however, do not account for non-linearities in individual
sensitivity to rewards or for stochasticity in the choice behavior.
We therefore also conducted a model-based analysis of the
choice data that better accounts for these factors, as detailed
in Supplementary Materials (S.2.b). In this additional analysis,
we relied on a multinomial logit model (Congdon, 2003) that
generalizes the model used in Hsu et al. (2005). We fitted the
observed frequency of choice of each option (sure gain, Type 1

card, Type 2 card, and Type 3 card) with a logistic function of the
relative utility of each option:

pij = exp
(

Uij

)

/(

∑

k
exp (Uik)

)

,

where Uij is the ith individual’s subjective expected utility of the
jth alternative. The expected utilities, in turn, are determined
primarily by weights

Wij = x
θi
j π

γij
j ,

where xj is themonetary payoff for the jth choice option (j = 1 for
sure gain, j = 2 for Type 1, j = 3 for Type 2 or Type 3), πj is the
probability of winning that payoff, θi is subject i’s monetary utility
parameter, and γij is subject i’s probability weighting parameter
for the jth task condition (j = 1 for ambiguity gambles, j = 2
for conflict gambles, and j = 3 for ignorance gambles; for all risk
gambles γi = 1, to make the model identifiable).

Parameters of interest (γA, ambiguity attitudes, and γC,
conflict attitudes) were estimated as individual utility functions,
and can be interpreted as degrees of pessimism/optimism about
the unknown probabilities under each type of uncertainty
(further details are available in the Supplementary Materials
S.2.b).

fMRI Data Analysis
fMRI data were analyzed with the BrainVoyager QX 2.2 software
package (Brain Innovation). Preprocessing of functional scans
included discarding the first four volumes, slice scan time
correction, three-dimensional motion correction, linear trend
removal, high pass filtering of frequencies below three cycles per
scan, and AR(1) removal. The images were then coregistered
with each participant’s high resolution anatomical scan, rotated
into the anterior commissure–posterior commissure plane, and
normalized into Talairach space (Talairach and Tournoux, 1988).

Statistical Maps
Statistical analysis was based on a general linear model (Friston
et al., 1995). The main model consisted of three groups of
predictors: (1) to examine the main effect of each type of
uncertainty, four dummy predictors for mean activation in risky
trials (R), ambiguous trials (A), conflict trials (C), and ignorance
trials (I); (2) to evaluate the effect of increasing level of each type
of uncertainty, four parametric predictors for the total number of
Type 2 and Type 3 cards (the level of uncertainty, see Section
Procedure and Stimuli and Figure 1), for risky trials (R level),
for ambiguity trials (A level), for conflict trials (C level), and for
ignorance trials (I level); (3) to covary task difficulty across trial
types, a regressor based upon an impulse model that occurs in all
risk, ambiguity, ignorance, and conflict trials with a parametric
value equal to the trial response time (RT). The conflict stimuli
present more information on the screen than the other stimuli;
thus, the participants may require more deliberation in conflict
condition. This may lead to various confounds in fMRI analyses;
including trial-by-trial RT as a regressor in GLMs during fMRI
analyses may help to reduce these confounds (Yarkoni et al.,
2009).
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Each predictor time course was obtained by convolving boxcar
time course with a double-gamma hemodynamic response
function. Main effect boxcar predictors were defined by setting
values to 1 at time points at which the modeled condition was
defined and 0 at all other time points. Parametric predictors
were mean-centered for each scan. Activation during inter-trial
intervals and fixation period trials served as baseline. The activity
time course of each voxel in each run was converted to percent
signal change (PSC), and the main model was independently
fitted to each voxel’s PSC. The general linear model (GLM)
analysis yielded regression coefficients (i.e., parameter estimates,
PE) for each participant, that were used in a series of group-level
random-effects analyses.

Region of Interest Analysis
In addition to traditional whole brain analyses, we employed a
conservative out-of-sample confirmation approach to our region-
of-interest (ROI) analysis. To this end we split all participants
into two groups, matched on age, gender, and attitudes toward
different types of uncertainty (Supplementary Materials, S.4).
First (exploratory analysis), we performed a voxel-by-voxel
whole-brain search on data from one group only to identify
candidate ROIs. For each such region we created a sphere mask
with a center at a region’s peak and a radius of 10 voxels to be used
during the confirmatory step. Second (confirmatory analysis), we
sampled the time course from the second group of participants in
each ROI, averaged it across all voxels, and fitted it with the main
model. Only ROIs in which these confirmatory analyses yielded
the same results as the exploratory analyses are reported below.
We also report the total number of clusters revealed during
the exploratory step. We chose the out-of-sample confirmation
procedure as an alternative to the commonly accepted cluster size
correction to address the multiple comparison problem (Forman
et al., 1995) for the following reason. The unintended negative
consequences of the focus on decreasing Type I error-rates is
increased Type II error-rates (i.e., missing real effects), because
for a fixed sample size Type I and Type II error-rates have a
hydraulic trade off relationship. This tradeoff results in a bias
toward studying large rather than small effects, a bias toward
observing sensory and motor processes rather than complex
cognitive and affective processes (a focus of this study), and
deficient meta-analyses (Lieberman and Cunningham, 2009).
Lieberman andCunningham (2009) further recommend “placing
a greater emphasis on replication and meta-analysis to determine
which effects are real, and less emphasis on trying to determine
the final truth from individual studies” (p. 427). Our approach to
the data analyses follows their recommendations.

We primarily focus on two types of regions of interest (ROIs).
First, to test whether a largely overlapping set of brain regions is
involved in the processing of ambiguity and conflict we localized
brain regions where activation was sensitive to A level and C level
across trials on a group level.

Second, to test whether behavioral measures of attitudes
toward ambiguity and conflict are predicted by activation in
overlapping sets of regions we identified brain regions that
predicted participant specific ambiguity/conflict attitudes. To
that end we conducted a whole brain analysis, searching for

voxels in which activation under ambiguity/conflict correlated
with model-based measures of ambiguity/conflict attitudes (γA
and γC) across participants.

Calculation of significance values in the activation maps was
based on the individual voxel significance and on the minimum
cluster size (Forman et al., 1995). The probability of a false
positive was determined from the frequency count of cluster sizes
within the entire brain using aMonte Carlo simulation (using the
Brain Voyager QX 2.2 software package).

Replication of the Results of Prior Studies of Decision

Making Under Ambiguity
Amajor concern in any neuroeconomics study is generalizability
of the results across a variety of decision tasks. Therefore,
even though they are not central to our research goal, we also
conducted some of the fMRI analyses that have been employed
in prior studies of decision making under ambiguity that have
used decision tasks different from ours (we are not aware of any
neuroeconomics study of decision making under conflict we can
compare our results to).

First, we directly compared activation under ambiguity to
activation under risk (referred to as the main effect of ambiguity).
Such effects have been found in the posterior inferior frontal,
posterior parietal cortex, dorsolateral prefrontal cortex, and the
anterior insula (Hsu et al., 2005; Huettel et al., 2005, 2006;
Rustichini et al., 2005; Bach et al., 2009; Levy et al., 2010).
Note that Bach et al. (2011a) and (Lopez-Paniagua and Seger,
2013) demonstrate that activation revealed by the contrast of
ambiguity vs. risk and activation that is sensitive to the level of
ambiguity engage different brain areas. Second, we searched for
brain regions where the main effect of ambiguity correlated with
behavioral attitudes toward ambiguity (Huettel et al., 2006).

Potential Confound: Correlation with Subjective Value
Finally, to rule out the possibility that some of the revealed
effects would simply reflect changes in subjective value, we tested
for correlations between activity in each ROI and the subjective
value of the chosen option under ambiguity and under conflict.
To that end, we constructed a second GLM that consisted of
eight predictors: four dummy predictors for mean activation
in risky trials, ambiguous trials (A), conflict trials (C), and
ignorance trials, and four parametric parameters determining
the subjective value of the chosen option under risk, under
ambiguity, under ignorance, and under conflict. To construct
the subjective value of each gamble for each individual, we used
the same model that we employed to analyze the choice data
(Supplementary Materials S.2.b), and model-based measures of
individual attitudes toward different types of uncertainty that we
derived from the individual choice data.

RESULTS

Behavior
On each trial, participants chose between receiving a sure payoff
and gambling on the type of card that they will draw from amixed
deck (Figure 1). The deck contained 100 cards of three types.
The number of cards of one type was known (Type 1). However,
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the numbers of cards of the two other types (Types 2 and 3)
were not precisely known: on ambiguous trials the combined
number of cards of these two types was provided (Figure 1A),
while on conflict trials conflicting numbers from two different
sources were provided for each type (Figure 1B). Choice data
were recorded and analyzed.

Response Time by Uncertain Conditions
We compared response times under risk, ambiguity, and conflict,
using a paired t-test. Response time under risk was significantly
shorter than under ambiguity [t(31) = −3.139, p < 0.01, Cohen’s
d = −0.555] or conflict [t(31) = −4.714, p < 0.01, Cohen’s
d = −0.83]. Response time under ambiguity did not differ
significantly from response time under conflict [t(31) = −1.077,
p = 0.29, Cohen’s d = −0.19]. Response time under ambiguity
did not significantly correlate with ambiguity level (r = −0.08,
p = 0.66); response time under conflict did not significantly
correlate with conflict level (r = 0.08, p = 0.65).

Descriptive Measures of Choice Behavior
If risk, ambiguity, and conflict affect decision making in the same
manner then general choice patterns under risk, ambiguity, and
conflict should not differ significantly. A group level analysis of
the choice data, however, revealed that on average participants
bet on cards of Type 2 and Type 3 under conflict significantly
less often than under risk, but under ambiguity significantly
more often than under risk or conflict (mean for risk = 5.36 ±

0.62, mean for ambiguity = 8.58 ± 0.74, mean for conflict =
4.43 ± 0.67, out of 32 total choices, p < 0.01 for each contrast),
which suggests that our participants chose differently under
risk, ambiguity, and conflict. Next, we computed model-free
estimates of individual risk attitudes (RA), ambiguity attitudes
(AA), and conflict attitudes (CA), as detailed in Section Materials
and Methods. RA, AA, or CA of 0 implies a “rational” agent,
whose choices are not affected by uncertainty, while RA, AA,
or CA < 0 implies tolerance to risk, ambiguity, or conflict, and
RA, AA, or CA > 0 implies aversion to risk, ambiguity, or
conflict. The CA of two participants and AA of one participant
were classified as outliers (more than three standard deviations
from the mean); these participants were removed from further
analyses (see Supplementary Materials S.3.c). The remaining 30
participants, on average, were risk averse [mean RA = 4.57 ±

0.65, t(29) = 7.029, p < 0.001, Cohen’s d = 1.283] and conflict
averse [mean CA = 1.00 ± 0.32, t(29) = 3.084, p = 0.004,
Cohen’s d = 0.563] but ambiguity seeking [mean AA = −

3.22 ± 0.52, t(29) = −6.198, p < 0.001, Cohen’s d = −1.132],
and individual risk, ambiguity, and conflict attitudes did not
correlate with each other (SupplementaryMaterials, Table S.3.c.2,
Figure S.3.c.5). This contradicts the implication of the hypothesis
that risk, ambiguity and conflict affect decision making in the
samemanner; instead it suggests dissociation between these three
processes.

Model-based Analysis of Choice Behavior
Model-free measures of attitudes toward uncertainty do not
account for non-linearities in individual sensitivity to rewards or
for stochasticity in the choice behavior. We therefore conducted

a model-based analysis of the choice data that better accounts
for these factors, as detailed in Supplementary Materials (S.2.b).
The main parameters of interest were model-based measures of
attitudes toward ambiguity (γA) and attitudes toward conflict
(γC); γA(γC) >1, =1, <1 implies ambiguity (conflict) aversion,
neutrality, seeking.

Results of the model-based analyses confirmed the results of
the model-free analyses: (1) our participants on average were
conflict averse [mean γC = 1.69 ± 0.16, t(29) = 4.41, p <

0.001, Cohen’s d = 0.805] but ambiguity seeking [mean γA =

0.85 ± 0.20, t(29) = −4.01, p < 0.001, Cohen’s d = −0.732];
and (2) individual attitudes toward ambiguity did not correlate
with individual attitudes toward conflict [r = 0.29, p >

0.12, Figure 2]. Attitudes toward ambiguity were distributedlog-
normally in our sample, therefore in all further analyses we
used a log transformation. It is worth mentioning that including
two previously excluded outliers in the whole brain analyses
lead to the same, but more statistically significant, behavioral
patterns.

The lack of ambiguity aversion in our data is in contrast
to the results of the majority of prior studies (Camerer and
Weber, 1992), and might appear somewhat surprising. There
are two potential explanations for this finding. First, recall that
a small number of studies that examined ambiguity attitudes
around probabilities other than 0.5 found that participants do
not necessarily demonstrate ambiguity aversion in their choices
if average winning probabilities are lower than 0.35 (Kahn and
Sarin, 1988; Maafi, 2011). In our design, the average winning
probabilities of drawing Type 2 (and Type 3) cards from the deck
in our design varied from 0.03 to 0.47. Consequently, we did
not necessarily expect our participants to choose in an ambiguity
avoidant manner. Interestingly, even under low average winning
probabilities, we observe strong conflict avoidance. This suggests
that manipulating the average winning probabilities affects
ambiguity and conflict attitudes differently, which could be a
topic for future research.

Second, the comparative ignorance hypothesis of ambiguity
aversion (Fox and Tversky, 1995) suggests that ambiguity
aversion is produced by a comparison with “less ambiguous
events.” Our data, consistently with prior research on decision
making under conflict (Smithson, 1999; Cabantous, 2007;
Baillon and Cabantous, 2009; Cabantous et al., 2011), indicate
that decision makers tend to avoid conflict more strongly
than ambiguity. Possibly, conflict gambles in comparison
to ambiguous gambles appeared to our participants so
unattractive that this comparative context produced not
only strong conflict aversion but also ambiguity seeking
behavior.

Both hypotheses, as well as other potential explanations,
cannot be tested with the available data and call for further
research.

fMRI
Neural Correlates of Uncertainty Levels
To identify brain regions involved in the processing of ambiguous
and conflicting information we employed a conservative out-
of-sample confirmation approach (see Section Materials and
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FIGURE 2 | Behavioral results. Model-based measures of ambiguity attitudes (γA, x axis) and conflict attitudes (γC, y axis). Ambiguity attitudes did not correlate

with conflict attitudes (r = 0.29, p = 0.12).

Methods). Only ROIs that passed this strict criterion are reported
below.

First, we localized areas whose activity was correlated with the
level of ambiguity or the level of conflict (Figure 3). Exploratory
analyses identified six candidate ROIs for A-level [located in
the left dorsolateral prefrontal cortex, ventromedial prefrontal
cortex (vmPFC), the left temporal cortex, the left and the right
inferior parietal cortex, and the posterior parietal cortex] and 12
candidate ROIs for C-level [in the right middle frontal gyrus,
the right dorsolateral prefrontal cortex, the left ventral striatum,
the right temporal cortex, the posterior cingulate, the bilateral
insula, the right parietal (BA 2), and the left parietal (BA 40)].
Confirmatory analyses revealed that (1) higher activation was
associated with lower levels of ambiguity (Figure 3A, top) in
the ventromedial prefrontal cortex (vmPFC, x = 4, y = 10, z
= −10), and (2) higher activation was associated with higher
levels of conflict in the left ventral striatum (x = −5, y =

7, z = −3). As a follow up analysis, we conducted a whole-
brain search on the pooled sample (N = 30) for regions
where correlation between activation and the level of conflict was
significantly different from the correlation between activation
and the level of ambiguity (C-level > A-level). This analysis
confirmed that vmPFC and the left ventral striatum respond

differently to the ambiguity and conflict levels (Figure 3B, top).
Finally, we conducted a whole-brain search on the pooled
sample for regions where activation correlated similarly with
both ambiguity and conflict level (conjoined C-level and A-level).
This analysis did not reveal any significant correlation in either
the vmPFC or the striatum (Figure 3B, bottom) or in any other
brain region.

While the statistical maps revealed non-overlapping areas for
ambiguity and conflict levels, it is still possible that the average
activation in these areas that seem to be unique for one type
of uncertainty also provides information about the other type.
We therefore sampled activation in each of the ROIs whose
activity was correlated with the level of one type of uncertainty,
and examined its correlation with the level of the other type of
uncertainty. Activation in vmPFC did not correlate significantly
with the level of conflict and activation in the left ventral
striatum did not correlate significantly with the level of ambiguity
(Table 1, Figure 3).

These results contradict the hypothesis that a largely
overlapping set of brain regions is involved in the processing of
ambiguity and conflict, and suggest that vmPFC and striatum
play a unique role in the processing of either ambiguity or
conflict.
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FIGURE 3 | Encoding of ambiguity and conflict. (A) Random-effects group analysis showing areas that are correlated with the level of ambiguity (A, top) and

conflict (A, bottom). First (exploratory analysis), we analyzed data from one group only to identify candidate ROIs (A, left). For each such region we created a mask

with a center at a region’s peak and a radius 10 voxels. Second (confirmatory analysis), we sampled a time course from the second group of participants in each ROI,

averaged it across all voxels, and fit it with the main model (A, right). Bars represent group average general linear model (GLM) coefficients of ambiguity and conflict

levels in each ROI; the error bars represent standard errors. Only ROIs in which confirmatory analyses yielded the same results as exploratory analyses are reported in

the figure. (B) Random-effects group analysis showing areas that are correlated with the level of conflict significantly more strongly than with the level of ambiguity (B,

top), and areas that correlated similarly with both the level of ambiguity and the level of conflict (B, bottom). The functional maps are superimposed on a mean

normalized anatomical image. vmPFC, ventromedial prefrontal cortex; L, left; R, right.
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TABLE 1 | Correlations between neural activation and levels of uncertainty and behavioral parameters.

Region Talairach coordinates Size Correlation with the level of uncertainty Correlation with the attitudes toward uncertainty

x y z [mm3] PE ambiguity level PE conflict level PE ambiguity with

ambiguity

aversion (ln γ1)

PE conflict with

conflict aversion

(γ2)

vmPFC and ACC 4 10 −10 254 −0.015 0.001 0.14 −0.22

Medial prefrontal cortex 4 56 17 463 −0.004 0.003 0.61 −0.05

Left ventral striatum −5 7 −3 148 −0.006 0.002 0.086 0.098

Right ventral striatum 7 12 5 247 −0.004 −0.002 0.018 −0.67

vmPFC, ventromedial prefrontal cortex; ACC, anterior cingulate cortex; in bold—statistically significant correlations (p < 0.0005), in italic—statistically non-significant correlations (p >

0.15), random effects analysis.

Neural Correlates of Individual Uncertainty Attitudes
While correlation with the level of ambiguity or conflict is a
prerequisite for defining an area as involved in the processing
of that attribute, we also expect activity in such an area to
be correlated with behavioral attitudes across participants. We
therefore sampled activity from our two ROIs (vmPFC and
striatum) and examined their correlation with ambiguity and
conflict attitudes across our participants. None of these ROIs
correlated with ambiguity or conflict attitudes across participants
(Table 1).

We also conducted a whole-brain analysis, searching for
voxels in which activation under ambiguity/conflict was
correlated with ambiguity/conflict attitudes (γA/γC) across
participants using the out-of-sample confirmation approach (see
Section Materials and Methods). Exploratory analyses revealed
eight candidate ROIs for ambiguity attitudes (located in the
medial prefrontal cortex, the superior frontal gyrus, the bilateral
precentral cortex (BA 6), the bilateral temporal cortex, the right
parietal cortex (BA 7), the right posterior parietal cortex), and
nine candidate ROIs for conflict attitudes (the right ventral
striatum, the bilateral middle frontal gyrus (BA 8 and BA 9),
the bilateral precentral cortex (BA 6), the bilateral amygdala,
the right temporal cortex). The confirmatory analyses revealed
that ambiguity and conflict attitudes predicted activation in
two different regions (Table 1, Figure 4A). Ambiguity aversion
correlated positively with activation under ambiguity in the
medial prefrontal cortex (mPFC, Figure 4A top), activation
under conflict in this ROI did not correlate with conflict attitudes
(Figure 4B, left). Conflict aversion correlated negatively with
activation under conflict in the right ventral striatum (Figure 4A,
bottom), but activation under ambiguity in the striatum did
not correlate with ambiguity attitudes (Figure 4B, right). As
a follow-up analysis, we conducted a whole-brain search on
the pooled sample (N = 30) for regions where activation
under ambiguity/conflict was correlated with ambiguity/conflict
attitudes (γA/γC) across participants. These analyses confirmed
that mPFC and ventral striatum correlate differently with
ambiguity and conflict attitudes across participants. Finally,
in each ROI identified as sensitive to ambiguity, we examined
whether its activation also correlated with the level of conflict,
and vice versa. None of these correlations was significant
(Table 1). These results contradict the hypothesis that behavioral

attitudes toward ambiguity and conflict should be predicted by
the activation in a largely overlapping set of regions, and suggest
that mPFC and striatum play a unique role in the processing of
either ambiguity or conflict.

Including two previously excluded outliers in the whole brain
analyses lead to the same, but more statistically significant,
activation patterns.

Replication of the Results of Prior Studies of Decision

Making Under Ambiguity
Our follow up analyses replicated the increased activation during
decisions involving ambiguity compared to those involving risk
in the bilateral posterior parietal cortex, left amygdala, and
the posterior inferior frontal sulcus (Supplementary Materials,
figure S.5.a, Hsu et al., 2005; Rustichini et al., 2005; Huettel,
2006; Huettel et al., 2006; Bach et al., 2009, etc.). Our analyses
also replicated the positive correlation between the neural
ambiguity effect (compared to risk) and ambiguity aversion in the
right posterior inferior frontal sulcus (Supplementary Materials,
Figure S.5.b, Huettel et al., 2006). The last result is particularly
important in the context of the observed lack of ambiguity
aversion in our experiment. It suggests that the neural signatures
of ambiguity attitude are not only robust across experimental
designs, but also across behavioral effects (aversion vs. seeking).

Potential Confound: Correlation with Subjective Value
The vmPFC and striatum have been linked to the encoding of
subjective value (Kable and Glimcher, 2009; Levy et al., 2010;
Bartra et al., 2013). Arguably, both the level of ambiguity/conflict
and individual ambiguity/conflict attitudes are likely to correlate
strongly with the subjective value of the gambles, the observed
sensitivity to ambiguity/conflict level and ambiguity/conflict
attitudes might simply reflect sensitivity to changes in subjective
value. To examine this possibility, we looked for correlation
between the activity in each ROI and the subjective value of the
chosen option under ambiguity and under conflict. To construct
the subjective value of each gamble for each individual, we used
the same model that we employed to analyze the choice data
(Supplementary Materials S.2.b), and model-based measures of
individual attitudes toward different types of uncertainty that
we derived from the individual choice data. Activation in none
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FIGURE 4 | Preferences for ambiguity and conflict. (A) Random-effects group analysis showing areas that are correlated with ambiguity attitudes (A, top) and

conflict attitudes (A, bottom). First (exploratory analysis), we analyzed data from one group only to identify candidate ROIs (A, left). For each such region we created a

mask with a center at a region’s peak and a radius 10 voxels. Second (confirmatory analysis), we sampled a time course from the second group of participants in each

ROI, averaged it across all voxels, and fit it with the main model (A, right). Scatterplots represent relation between participants’ general linear model (GLM) coefficients

of main effects of ambiguity and conflict in each ROI and participants’ ambiguity and conflict attitudes. Only ROIs in which confirmatory analyses yielded the same

results as exploratory analyses are reported in the figure. Activation under ambiguity correlated with ambiguity aversion in medial prefrontal cortex (MPFC); activation

under conflict correlated with conflict aversion in the ventral striatum. (B) Scatter plots depict the results of the test for specificity of neural signatures of behavioral

measures. Participants’ coefficients of main effects of conflict did not correlate with participants’ conflict aversion in MPFC (B, left); participants’ coefficients of main

effects of ambiguity did not correlate with participants’ ambiguity aversion in the ventral striatum (B, right). The functional maps are superimposed on a mean

normalized anatomical image. L, left; R, right.
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of these regions correlated with subjective value under either
ambiguity or conflict.

DISCUSSION

Summary of Findings
Most research on decision making under uncertainty assumes
that conflicting information affects decision makers in the
same way as ambiguous information does (Viscusi and Magat,
1992; Cameron, 2005). Our results suggest that this is not the
case. Behaviorally, (1) participants avoided conflict more than
ambiguity, even though ambiguity and conflict were matched
on expected value and outcome variance under ambiguity
was higher than outcome variance under conflict, and (2)
ambiguity attitudes and conflict attitudes (by either model-
free or model-based measures) were not correlated across
participants. Neurally, activation in neighboring regions of the
medial prefrontal cortex (Figure 5) was sensitive to both the level
of ambiguity and ambiguity attitudes. Conversely, activation in
neighboring regions of the striatum (Figure 5) was sensitive to
both the level of conflict and conflict attitudes. Thus, our results
are not compatible with the hypothesis that decision makers
respond in the same manner to ambiguous and conflicting
information, and suggest that attitudes toward conflict and
ambiguity have distinct neurobiological signatures.

Previous Studies
While to the best of our knowledge this is the first fMRI study of
decision making under conflict, it is just one of several studies of
decision making under ambiguity. Our findings with regards to
ambiguity replicate the most robust results from this literature.
Similarly to Rustichini et al. (2005), Huettel et al. (2006),
and Bach et al. (2009) we observe increased activation under
ambiguity compared to risk in the bilateral posterior parietal
cortex, and the right posterior inferior frontal cortex. Similarly
to Huettel et al. (2006) we also find that the ambiguity effect
(compared to risk) in the right posterior inferior frontal sulcus
correlates positively with behavioral measures of ambiguity
aversion. Our results are also compatible with the results of
a recent study (Lopez-Paniagua and Seger, 2013) that finds a
negative association between ambiguity levels and activation in
the OFC region (x = −2, y = 36, z = −10) that is neighboring
to the vmPFC region identified by our study (x = 4, y = 10,
z = −10).

Ambiguity but not Conflict Effect in PFC
Our results implicate two distinct regions (one in more anterior
part of mPFC and one in vmPFC) of the prefrontal cortex
(PFC) in ambiguity processing. Previous studies indicate a special
role of various regions of PFC in ambiguity processing and
suggest several potential explanations. First, a “task complexity
hypothesis,” follows from the observation that PFC is organized
in hierarchical manner in which different regions support various
aspects of cognitive control (Koechlin and Summerfield, 2007;
Badre and D’Esposito, 2009). As task demands increase, regions
of the prefrontal cortex can be recruited in the posterior to

FIGURE 5 | Objective and subjective effects of ambiguity and conflict.

(A) Activation in neighboring regions of the medial prefrontal cortex was

sensitive to both the level of ambiguity (ventromedial prefrontal cortex, vmPFC)

and ambiguity attitudes (medial prefrontal cortex MPFC). (B) Activation in

neighboring regions of the ventral striatum was sensitive to both the level of

conflict (a more ventral region) and conflict attitudes (a more dorsal region).

The functional maps are superimposed on a mean normalized anatomical

image. L, left; R, right; A, anterior; P, posterior.

anterior fashion. This “complexity hypothesis” is consistent with
the positive correlation in mPFC between activation under
ambiguity and individual ambiguity aversion observed in our
study. Arguably, decision making under ambiguity may appear
more complex for ambiguity-averse compared to ambiguity
seeking participants, and therefore may require more effort and
more cognitive control for more averse participants.

Second, a “valuation hypothesis” follows from ample evidence
that suggests that the vmPFC (as well as the striatum) is a
part of a general valuation system (Mohr et al., 2010; Bartra
et al., 2013; Clithero and Rangel, 2013). Activity in these areas
has been linked to various measures of stimulus value across
a wide range of decision tasks, reward modalities and stages
of decision making (Clithero and Rangel, 2013), including the
expectation (Tom et al., 2007) of reward. It is modulated by
various factors that affect value, including objective aspects, such
as the magnitude and probability of the reward (Bartra et al.,
2013), and subjective aspects, such as the individual weighting
of delay to reward (Kable and Glimcher, 2007) or uncertainty
in obtaining the reward (Levy et al., 2010), as well as behavioral
preferences for non-monetary rewards (O’Doherty et al., 2002).
To test the valuation hypothesis, we looked at correlations
between the activity in the vmPFC (and the striatum) and the
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subjective value of the chosen option under ambiguity and under
conflict. Activation in none of these regions correlated with
subjective value under either ambiguity or conflict. Importantly,
however, the monetary rewards in our task were not very high
(the maximal winning was $10), and the lack of correlation
might be simply due to low variability in the subjective value.
Furthermore, in our decision task three options are associated
with changing probabilities, and thus with changing subjective
values. This is in contrast to the majority of prior studies that
vary only one value-related parameter at a time (Levy et al., 2010).
Encoding of values of multiple options may potentially lead to
decreased specificity of the signal, which also can explain the lack
of observed correlations between the activity in the vmPFC (and
the striatum) and the subjective value of the chosen option under
ambiguity and under conflict.

Third, Lopez-Paniagua and Seger (2013) suggested that
ambiguity, and particularly partial ambiguity, may be perceived
by participants as a situation associated with potentially knowable
information. That is, under ambiguity, activation in PFC might
reflect an active search for contextual cues that might reduce
the level of ambiguity (Huettel et al., 2006). Our results do
not necessarily contradict this hypothesis. Under both conflict
and ambiguity, one is required to act based on some belief
regarding the actual reward probability. Under ambiguity,
however, this belief can be consistent with the imprecise
information participants receive, if it belongs to the set of
possible probabilities. Under conflict, on the other hand, any
belief is at odds with at least one of the sources providing
the information. Using the example from the introduction, if
your friends agree that the two horses that you consider have
performed equally inconsistently lately, you might form an
expectation, although imprecise, about the winning odds of each
of these horses, and make a decision about which horse to
pick. In the case of conflict, however, you can either accept
the advice from one of your friends, knowing that maybe the
other one was right, or completely dismiss both. It is possible
that these unavoidable difficulties in forming predictions under
conflict are reflected in the differential activation patterns that we
observed.

Finally, our findings are consistent with the results of a
recent study by Lebreton et al. (2015), which linked activity
in vmPFC to subjectively reported confidence in subjective
valuation. Lower levels of ambiguity are likely to be associated
with higher confidence in the subjective value of ambiguous
options, while varying levels of conflict are not likely to affect
subjective confidence in the value of conflicting options. Thus,
the link between vmPFC activity and ambiguity, but not conflict,
level, may reflect varying degree of confidence associated with
varying level of ambiguity. Future studies need to test more
accurately this intriguing possibility.

Questions for Follow Up Studies
To the best of our knowledge, this is the first study that
compares effects of ambiguous and conflicting information about
outcome probabilities on decision making, both behaviorally and
neurally; additional follow up studies have to replicate our results
before they may be deemed verified. Our results suggest several

questions for such studies. First, there are several similarities
and differences between informational conflict (Smithson, 1999;
Cabantous, 2007; Cabantous et al., 2011) and cognitive conflict
(Pochon et al., 2008; Marco-Pallarés et al., 2010). On the
one hand, both conditions are associated with conflicting
evidence from multiple sources. On the other hand, cognitive
conflict may be potentially resolved with additional cognitive
effort (e.g., attentional control or error monitoring, Petersen
and Posner, 2012). Behaviorally, additional cognitive effort is
reflected in longer response time under higher levels of cognitive
conflict (Fan et al., 2002). Neurally, higher cognitive effort
and error monitoring is reflected in selective involvement of
anterior cingulate cortex (Swick and Turken, 2002). In contrast,
informational conflict cannot be resolved with additional
cognitive effort; only additional information from or about the
conflicting sources may, potentially, be helpful. Thus, additional
cognitive effort under these circumstances is not appropriate.
It is therefore not surprising that our results do not reveal
significant correlations between (1) the level of conflict and
response time, and (2) the level of conflict and activation in the
anterior cingulate cortex. However, our study was designed to
contrast ambiguity and conflict, not to contrast informational
and cognitive conflict. Future studies may carefully compare
and contrast these two decision environments. For instance, it
would be interesting to look at whether individual performance
on the Stroop or Flanker tasks correlates with individual conflict
attitudes. It would also be interesting to investigate a potential
relationship between conflict aversion and effort avoidance, since
both appear to relate to activation in similar regions of ventral
striatum (Prévost et al., 2010).

Second, the magnitudes of potential outcomes in our
experiment did not vary sufficiently, which limited our ability to
test the interaction between value and uncertainty encoding in
the vMPFC and the striatum, a question that is left for a follow
up study.

Third, we did not inform study participants that all conditions
were matched on expected value, and that outcome variance
under ambiguity was higher than under conflict. One potential
explanation of ambiguity and conflict aversion is an irrationally
pessimistic belief that unknown odds are always not in one’s
favor. We chose to allow our participants to form their own
beliefs about the underlying distribution under each type of
uncertainty, so we could evaluate the effect of each type of
uncertainty on these beliefs. It is unclear whether or not explicit
knowledge about expected value and outcome variance across
different conditions would affect individual behavioral patterns.
A follow up study may research this.

Finally, in our task participants acted on average in an
ambiguity seeking manner. We speculate that one potential
explanation for this is a comparative ignorance hypothesis.
Possibly, presenting both ambiguous and conflicting gambles
to participants both suppressed ambiguity aversion and
inflated conflict aversion. A follow up study may present
ambiguous and conflict gambles in separate sessions, which
may reduce the comparative effects and may lead to the
more commonly observed ambiguity and conflict aversion
patterns.
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Implications for Clinical and Basic
Research
The results of this study may offer insights into behavioral
and neurobiological mechanisms underlying anxiety spectrum
disorders. Intolerance of uncertainty has been repeatedly
associated with such disorders (Tolin et al., 2003), but the
present results suggest that it may be also important to
investigate individual sensitivity to conflicting information and
its relationship to anxiety-driven symptomatology. Indeed, an
early study (Bugental et al., 1971) provided some evidence of
a causal role of prolonged exposure to conflict in generating
anxiety-driven aggressiveness. The same idea was extensively
discussed in the context of “double bind” (Bateson et al., 1956)—
an emotionally distressing communication dilemma, in which an
individual receives two or more conflicting messages, in which
one message negates the other. Double bind effectively creates a
situation in which a successful response to one message results in
a failed response to the other message, such that the individual
will inevitably be wrong, regardless of response, similar to the
conflict condition in our design. Bateson and colleagues (Bateson
et al., 1956; Bateson, 1972) further hypothesized that prolonged
exposure to double bind might be linked to schizophrenia and
psychosis, although these hypothetical causal relations have never
been directly tested.

Interestingly, a more recent study (Smithson, 1999) found
that decision-makers tend to distrust the sources of conflicting
messages muchmore than the sources of ambiguous but agreeing
messages. This distinction between ambiguity and conflict may
also be informative for assessing neurocognitive endophenotypes

of clinical populations within the framework of computational
neuropsychiatry (Montague et al., 2012). Finally, the distinction
is also important for neuroeconomics and behavioral economic
analyses. Applying models that focus exclusively on imprecise
information to behavioral and cognitive processes under
conflict is likely to lead to biased predictions and to model
misspecification. Indeed, a case can be made for constructing
normative decision making models that incorporate conflict
along with ambiguity, and an initial attempt toward this goal has
been described (Gajdos and Vergnaud, 2013; Smithson, 2013).

Our ability tomake effective decisions is affected by the quality
of information we receive. Understanding more clearly what
these effects are will help us make better decisions despite the
quality of information.
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