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Alzheimer’s disease (AD) is the major cause of dementia in Western societies. It
progresses asymptomatically during decades before being belatedly diagnosed when
therapeutic strategies have become unviable. Although several genetic alterations
have been associated with AD, the vast majority of AD cases do not show strong
genetic underpinnings and are thus considered a consequence of non-genetic factors.
Epigenetic mechanisms allow for the integration of long-lasting non-genetic inputs on
specific genetic backgrounds, and recently, a growing number of epigenetic alterations
in AD have been described. For instance, an accumulation of dysregulated epigenetic
mechanisms in aging, the predominant risk factor of AD, might facilitate the onset of the
disease. Likewise, mutations in several enzymes of the epigenetic machinery have been
associated with neurodegenerative processes that are altered in AD such as impaired
learning and memory formation. Genome-wide and locus-specific epigenetic alterations
have also been reported, and several epigenetically dysregulated genes validated by
independent groups. From these studies, a picture emerges of AD as being associated
with DNA hypermethylation and histone deacetylation, suggesting a general repressed
chromatin state and epigenetically reduced plasticity in AD. Here we review these
recent findings and discuss several technical and methodological considerations that
are imperative for their correct interpretation. We also pay particular focus on potential
implementations and theoretical frameworks that we expect will help to better direct
future studies aimed to unravel the epigenetic participation in AD.

Keywords: Alzheimer’s disease, epigenetics, neuroepigenetics, DNA methylation, histone acetylation, histone
methylation, histone phosphorylation

INTRODUCTION

The term “epigenetics” was introduced by the developmental biologist Conrad Hal Waddington
(1905–1975) in the early 1940s. He defined epigenetics as the branch of biology that studies
the causal interactions between genes and their products, which bring the phenotype into being
(Waddington, 1942, 2012). This general idea was later narrowed and defined as the science that
studies the heritable traits resulting from changes in a chromosome without altering the DNA
sequence (Berger et al., 2009). Although nowadays widely accepted, this definition is – strictly
speaking – a conception of developmental and cancer researchers, who perceive epigenetics as
a way to transmit phenotypic characteristics to daughter cells. Yet, such conception represents
a major problem for other disciplines like neurosciences, since neurons do not divide and,
accordingly, nothing happening in neurons would be considered epigenetics. As “epigenetic
newcomers,” neuroscientists have only recently started to add their viewpoints toward this
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perception, but due to the emerging importance of epigenetics
in the nervous system, this has already stimulated a profound
revision of the perception of epigenetics. Currently, epigenetics
is rather considered as the study of structural changes of the
chromatin that modify the phenotype without altering the
genotype (Jaenisch and Bird, 2003), independently of whether the
cells divide or not.

Yet, where does this recent interest of neuroscientists in
epigenetics or, in other words, in neuroepigenetics originate
from? Probably one of the main reasons is because epigenetic
mechanisms provide a platform for integrating different inputs
and for generating adaptive long-lasting outputs. This capacity of
epigenetics touches upon the very fundament of neuroscience,
providing a potential substrate for memory allocation, and for
articulating the hypothesis of gene × environment interaction
associated with many multifactorial diseases such as Parkinson’s
and Alzheimer’s disease (AD), amyotrophic lateral and multiple
sclerosis, and even epilepsy (Urdinguio et al., 2009). As a matter
of fact, it is known that epigenetic mechanisms participate in
the processes of learning and memory formation (Levenson and
Sweatt, 2005; Gräff and Tsai, 2013a; Zovkic et al., 2013; Guzman-
Karlsson et al., 2014; Jarome et al., 2014; Woldemichael et al.,
2014), and that – on the other end of the spectrum – life
style (Fraga et al., 2005), aging (Heyn et al., 2012), nutrition
(Cooney et al., 2002), and environmental toxins (Anway et al.,
2005) associated with AD can modify the epigenetic makeup
and might thereby contribute to the pathophysiology of AD
(Cacabelos and Torrellas, 2014; Coppede, 2014; Bennett et al.,
2015).

EPIGENETIC MECHANISMS

At the molecular level, it is generally accepted that epigenetics
encompasses two main mechanisms: the direct methylation of
the DNA, and the modification of the proteins that package
the DNA, the histones. Chromatin remodelers and non-coding
RNAs can also participate in the regulation of the chromatin but,
because they are not considered purely epigenetic mechanisms,
are not included in this review (for a further discussion about
these topics see Magistri et al., 2012; Langst and Manelyte, 2015).
Here, we first provide a description of the functioning of these
two epigenetic modifications in general, before moving to their
implication in neuroscience, and in particular, in AD.

DNA Methylation
DNA methylation has thus far been the most studied epigenetic
modification. It mainly consists of the addition of a methyl group
at cytosines that precede guanines (so-called CpG dinucleotides).
These dinucleotides are underrepresented in the genome and
tend to accumulate in CpG-dense regions (so-called CpG islands,
or CGI) although around 95% of CpGs are scattered through
all the genome without showing any type of aggregation.
As a general view, CpGs in non-CGI and CGIs tend to
be fully methylated and non-methylated, respectively, with a
negligible amount of CpGs being partially methylated (Vinson
and Chatterjee, 2012).

Historically, DNA methylation has been considered an
epigenetic mark of repression, since seminal experiments have
shown that the genomic insertion of exogenous DNA results
in active transcription only with non-methylated DNA (Pollack
et al., 1980; Wigler et al., 1981; Stein et al., 1982), and since
CGI hypermethylation has been recurrently associated with the
silencing of tissue-specific genes and X inactivation (Straussman
et al., 2009). In fact, the existence of CGI together with the
bimodal pattern of DNA methylation has evoked the idea that
genes can be switch ON an OFF by controlling the DNA
methylation of their CGIs. This idea has been predominant
in the last years. However, it is now apparent that the reality
is much more complex since around 70% of annotated genes
contain CGI regions in their promoters (Deaton and Bird,
2011) and most of them are non-methylated. Furthermore,
CGI and non-CGI promoter-containing genes show specific
particularities, with the former being constitutively expressed and
displaying low evolution rates and relaxed use of transcription
start sites (TSS), while the latter is characterized by a more
restricted pattern of expression, higher evolution rate, and
strongly defined TSS usage (Tang and Epstein, 2007). Thus, DNA
methylation cannot be themain driver of gene expression in these
regions.

Importantly, DNA is not randomly distributed in the nucleus
but associated to histones forming the nucleosomes (Schones
et al., 2008). The distribution and the compaction of these
nucleosomes determines the chromatin structure and thereby the
access of the transcriptional machinery to the DNA (Schones
et al., 2008). Accordingly, CGIs favors the access of the
DNA polymerase and gene expression by constituting a rigid
structure that complicates the wrapping of DNA and nucleosome
positioning (Ramirez-Carrozzi et al., 2009). Therefore, CGI
are not mere platforms for controlling gene expression by
DNA methylation, but such effect depends on the nearby
sequence and thus, three-dimensional chromatin context. In
general, DNA methylation in gene promoters is associated
with lower levels of expression (Kelly et al., 2012) whereas
in gene bodies, it favors gene expression (Guenther et al.,
2007).

The enzymes that carry out the active DNA methylation,
the so called DNA methyltransferases (DNMTs), are all
associated with the nucleosomes (Jeong et al., 2009), which
reinforces the idea that DNA methylation and nucleosome
positioning are intimately related. Three different DNMTs have
been identified: DNMT1 – necessary for the maintenance
of DNA methylation patterns during cell division – and
DNMT3A and DNMT3B, both involved in establishing de
novo patterns of DNA methylation during development and
cell fate determination. Interestingly, DNMTs also show high
levels of expression in post-mitotic neurons (Guo et al., 2014a),
suggesting that their importance in the adult brain is beyond
the classical developmental point of view. A deficit of these
enzymes can cause passive DNA demethylation (Rhee et al.,
2002), but DNA can also be actively demethylated by the
action of several enzymatic reactions. These include the 10–11
translocation proteins (TET), which mediate the oxidation of
5-methylcytosines (5mC) to 5-hydroxymethylcytosine (5hmC),
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and later on to 5-formilcytosine (5fC) and 5-carboxycytosine
(5caC); and the thymine-DNA glycosylases (TDG), which causes
the final excision and conversion to cytosines (Kohli and Zhang,
2013).

Newly Identified DNA Methylation Marks
The recently developed techniques of deep-sequencing have
documented an unexpected high prevalence of 5hmC and 5fC in
brain (Lister et al., 2013; Varley et al., 2013; Guo et al., 2014a,b,
Kozlenkov et al., 2014). In spite of that, it is still under discussion
whether 5hmC and 5fC constitute new epigenetic marks per se
or if they are just intermediate states of the DNA demethylation
(Hahn et al., 2014). In the brain, around ∼80% of cytosines in
CpG sites are methylated (5mC), whereas ∼8% are hydroxyl-
methylated (5hmC), ∼0.8% are formyl-methylated (5fC), and
even less are carboxyl-methylated (5caC). These data reflect a
high prevalence of the intermediate states, in special for 5hmC,
which has been used as an argument to emphasize the specific
role of 5hmC in epigenetic signaling (Globisch et al., 2010; Song
et al., 2011; Lister et al., 2013; Wen et al., 2014), which together
with 5fC/5caC is enriched in enhancers and gene bodies of highly
transcribed genes (Song et al., 2011, 2013; Shen et al., 2013; Wen
et al., 2014; Raiber et al., 2015).

Also, a certain degree of DNA methylation outside of CpG
dinucleotides has recently been reported. The so-called non-
CpG DNA methylation mainly occurs in the context of CpA
dinucleotides (Lister et al., 2009; Yan et al., 2011; Ziller et al., 2011)
and is particularly prevalent in the brain where it accounts for
∼25% of all cytosine modifications (Lister et al., 2013; Guo et al.,
2014a). Similarly to 5mC and 5hmC, non-CpG methylation also
tends to occur in gene bodies of highly transcribed genes (Lister
et al., 2013; Guo et al., 2014a).

Histone Modifications
As aforementioned, nucleosomes are important components
of the chromatin structure and their positioning is influenced
by DNA methylation and sequence context. Notwithstanding,
nucleosomes are primarily regulated by posttranslational
modifications that tend to occur in the N-terminal tail of
histone proteins (Bowman and Poirier, 2015). The most
studied of these are histone acetylation and methylation,
which occur as a consequence of the antagonistic activity
of histone acetyltransferases (HATs) and deacetylates
(HDACs), and of histone methyltransferases (HMTs) and
demethylases (HDMTs), respectively, as well as histone
phosphorylation, which is mediated by the opposing action
of protein kinases and phosphatases. Further, more recently
discovered posttranslational modifications include ADP-
ribosylation, ubiquitylation, sumoylation, crotonylation,
propionylation, deiminiation and O-GlcNAcylation, which
are also the consequence of a similar set of enzyme
complexes.

These modifications can take place on different amino
acids. For instance, lysines can be acetylated; mono-, di-,
or trimethylated; and mono- or polyubiquitylated; arginines
can be deaminated; mono-, symmetrically or asymmetrically
dimethylated, and mono- or poly-ADP-ribosylated; serines

and threonines can be phosphorylated and O-GlcNAcylated;
glutamates can be mono- or poly-ADP-ribosylated; prolines can
be isomerized; and tyrosines can be phosphorylated (Hanes, 2014;
Xu et al., 2014; Bowman and Poirier, 2015).

Histone Acetylation
Depending on their identity, posttranslational histone
modifications can have different effects on gene expression.
In general, histone acetylation is associated with increased gene
activity (Kouzarides, 2007), in part because it diminishes the
basic charge of histones and thereby reduces the electrostatic
interaction with the negatively charged DNA chains. As a result,
nucleosome compaction is relaxed facilitating the access of the
transcriptional machinery to the DNA (Li and Reinberg, 2011).
In line, histone acetylation is enriched in promoter and gene
bodies of active genes (Wang et al., 2008b). Some of the most
studied lysine acetylation modifications include the acetylation of
lysine 9 on histone 3 (H3K9ac) and H3K27ac in gene promoters
and H3K4ac and H4K12ac in gene bodies, among others (Wang
et al., 2008b).

Three families of HATs – GNAT, MYST, and CBP/p300 –
are responsible of the acetylation of these amino acids, and the
specificity of these modifications depend on their association
with other regulatory proteins (Bannister and Kouzarides, 2011).
In line, although many acetylation sites has been individually
described, they tend to occur in combinations (Baker, 2011).
Zinc-dependent class I, II and IV HDACs as well as the NAD-
dependent class III HDACs, the sirtuins, antagonize the activity
of HATs. Similarly to the HATs, HDAC proteins show a low
level of specificity that is mainly regulated by the interaction
with other non-catalytic proteins and complexes (Yang and Seto,
2007).

Histone Methylation
As opposed to acetylation, the effect of histone methylation
depends on both the type of modification and the residue
on which it occurs. As an example, the mono-methylation of
lysine 27 of histone 3 (H3K27me1) is enriched in promoters
of active genes, whereas the tri-methylation of the same amino
acid (H3K27me3) is mainly found in repressed genes (Wang
et al., 2008b). Also in contrast to histone acetylation, the
enzymes that regulate histone methylation show a high degree
of specificity. Two classes of lysine HMTs are at play: SET
domain and non-SET domain-containing HMTs, which install
histone methylation at particular lysines to different degrees. For
instance, three different members of the SET HMTs perform
H4K20 methylation in its mono-, di-, or trimethylated form
(Liu et al., 2010; Qi et al., 2010). The activity of the HMTs is
antagonized by two classes of HDMTs – LSD1- and Jumonji-
related HDMTs – that also show a high degree of specificity.
For instance, LSD1 demethylates the monomethylation and
dimethylation of H3K4 and H3K9, but not their trimethylation
(Bannister and Kouzarides, 2011).

The Histone Code
The sum of different histone modifications, their intricate
system of regulation, and the almost infinite number of
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possible combinations draws a complex landscape of histone
modifications that – considering that chromatin is composed
by hundreds of millions of nucleosomes – can epigenetically
encode an immense amount of information. This idea has
inspired the hypothesis of the “histone code,” which suggests
that by using different combinations of histone modifications
cells can regulate specific and distinct functional chromatin
outputs (Strahl and Allis, 2000; Jenuwein and Allis, 2001). This
intriguing view has attracted a lot of attention in last years
that has undoubtedly helped to push the development of the
field. In spite of that, recent chromatin immunoprecipitation
(ChIP) sequencing experiments have suggested that the
complexity behind such histone code seems smaller than
previously estimated. In fact, a high degree of redundancy
between different histone marks has been reported (Wang
et al., 2008b) and algorithms have recognized recurrent
combinations of histone modifications that can be grouped
into discrete chromatin states, which account for most of gene
transcription variance (Baker, 2011). Obviously, this might be
a simplification of the reality, and the numbers of identified
chromatin states strongly depends of the level of technical
resolution applied, but importantly, it underlines that from
all possible combinations only few of them ever really occur
together, suggesting that the histone code is simpler than
anticipated, which would facilitate the task of epigeneticists
considerably.

Epigenetic Crosstalk
Importantly, DNA methylation and histone modifications are
not isolated phenomena, and proteins that recognize and
regulate both epigenetic marks are orchestrated in multiprotein
complexes. For instance, MeCP2 and KAISO proteins, which
recognizes methylated DNA, are also associated with HDAC1
andHDAC3, linking DNAmethylation and histone deacetylation
(Suzuki et al., 2003; Yoon et al., 2003); likewise, other DNA
methylation readers such as UHRF1 are known to interact with
the H3K9 HMT G9A, associating, in this case, DNA methylation
with H3K9 methylation (Meilinger et al., 2009; Rottach et al.,
2010). Thus, the concept of a “histone code” should be expanded
to one of an epigenetic code, which also applies to the nervous
system (Gräff and Mansuy, 2008). Besides, the different histone
marks also interact with each other, as it attested by, for instance,
the fact that the HAT GCN5 is also able to recognize H3K4me3
(Guillemette et al., 2011), which can help to understand the
apparent redundancy of some epigenetic marks (for a more
comprehensive view of different epigenetic marks crosstalk see
Du and Patel, 2014).

Beyond such crosstalk, the different epigenetic marks are
ensembles interpreted by so-called chromatin remodelers –
SWI/SNF, NuRD and ISWI families (for a detailed description
see Langst and Manelyte, 2015) – which modify the presence,
composition, and nucleosome positioning regulating the
chromatin accessibility. Therefore, epigenetic modifications
should be understood as chromatin states instead of isolated
modifications independently associated with particular
functions, which seem to have a special relevance in the
nervous system.

NEUROEPIGENETICS

The nervous system is a highly specialized system in which
millions of cells are organized in different structures with
characteristic epigenetic and expression profiles that are
associated with particular functions (Xin et al., 2010; Ko et al.,
2013; Sanchez-Mut et al., 2013). It is in the nervous system
where three out of four genes are expressed (Johnson et al.,
2009), where most splicing variants are transcribed (Stamm
et al., 2000; Xu et al., 2002; Yeo et al., 2004) and most miRNAs
are synthesized (Cao et al., 2006). Also, it is in the nervous
system, where the expression patterns of cells show the highest
degree of heterogeneity, with more than 70% of genes being
expressed in less than 20% of the cells of the entire brain
(Lein et al., 2007). Owing to this complexity, the transcription
machinery faces a formidable challenge in the nervous system,
and, as a consequence, is also highly sensitive to epigenetic
perturbations.

Accordingly, the importance of epigenetics in the functioning
of the nervous system is underlined by the fact that mutations
in epigenetic genes cause severe mental disorders (Berdasco
and Esteller, 2013). For example, mutations in genes that
establish epigenetic marks, such as DNMT1, NSD1, NSD2,
or CBP cause hereditary sensory autonomic neuropathy with
dementia (HSAN1), Sotos, Wolf–Hirschhorn and Rubinstein–
Taybi syndromes, respectively. Similarly, mutations in genes that
remove epigenetic marks, such as KDM5C, recognize them, such
asMeCP2, or are in charge of their integration, such as SWI/SNF
proteins, are associated with X-linked mental retardation, Rett
syndrome and Coffin-Siris syndromes respectively (Urdinguio
et al., 2009; Gasser and Li, 2011; Sanchez-Mut et al., 2012;
Berdasco and Esteller, 2013).

But one the most important findings that supports the
importance of epigenetics in the functioning of the brain has
been the discovery that neuronal activity per se modifies DNA
methylation and histone modifications patterns, and further,
that learning and memory depend on these epigenetic changes
(Levenson et al., 2004; Miller and Sweatt, 2007; Guan et al.,
2009; Ma et al., 2009; Gupta et al., 2010; Miller et al., 2010; Guo
et al., 2011; Gräff et al., 2012; Zovkic et al., 2013). For instance,
neuronal activity induces the expression of DNMT3A2, TET1,
and TET3 (Guo et al., 2011; Oliveira et al., 2012; Rudenko et al.,
2013; Li et al., 2014b) and the shuttling of HDAC4 to the nucleus
(Sando et al., 2012), whereas the depletion of DNMTs 1 and 3a, of
the HATs KAT2A and KAT2B, of the HDMT neuronal specific
isoform LSD1, and of the HMTs GLP and G9A as well as the
increased expression of MeCP2, of HDACs 2, 3, 4, and 5 impair
learning and memory formation (Guan et al., 2009; Feng et al.,
2010; Kramer et al., 2011; McQuown et al., 2011; Na et al., 2012;
Sando et al., 2012; Agis-Balboa et al., 2013; Kerimoglu et al.,
2013; Morris et al., 2013; Stilling et al., 2014; Wang et al., 2015).
Furthermore, several HDAC inhibitors, such as valproic acid,
sodium butyrate and others, potentiate learning and memory
formation in different paradigms and animal models (Gräff and
Tsai, 2013a), as well as in different neurological diseases such as
Alzheimer, Parkinson’s, and Huntington diseases (Zhang et al.,
2013). Therefore, it is evident that neuronal activity as well as
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learning and memory engage and to some degree depend on
numerous epigenetic players, and that epigenetic perturbations
not only impair brain normal functioning but also are associated
with many neurological diseases, including AD.

EPIGENETIC ALTERATIONS IN AD

Alzheimer’s disease is the main cause of dementia in Western
societies, where it affects 17% of people older than 65 years
and 50% older than 85 years (Alzheimer’s Association,
2010). AD is a neurodegenerative disorder characterized by
a progressive decline in mental abilities, neuronal loss and
accumulation of two types of protein aggregates, amyloid
plaques and neurofibrillary tangles (NFT; Cummings, 2004).
Amyloid plaques are mainly constituted by aggregates of the
amyloid-β (Aβ)-peptide, itself being a consequence of the
cleavage of the amyloid precursor protein (APP) by β- and
γ-secretases, while NFT are aggregates of hyperphosphorylated
TAU protein. These two hallmarks are unequivocally associated
with AD, but whether they are cause or consequence, and the
mechanisms leading to their formation and propagation are
poorly understood.

It is known that genetic and non-genetic factors contribute to
the development of AD. Rare mutations in three genes – APP,
PSEN1, and PSEN2 – are associated with 1% of AD (Chouraki
and Seshadri, 2014) and other frequent genetic variants such
as APOE-E4 can account for up to 20% of total cases of the
disease (Mayeux and Stern, 2012). In total, the heritability for
AD is estimated to explain between one half and two thirds
of total AD cases (Ertekin-Taner, 2007), the other third/half
being attributable to non-genetic risk factors in which epigenetics
mechanisms are supposedly involved, namely diabetes mellitus,
hypertension, obesity, physical inactivity, depression, smoking
and low educational attainment (Figure 1A) (Kivipelto and
Mangialasche, 2014).

By far the predominant risk factor for AD is aging itself, since
AD only appears in late adulthood, and the risk to develop the
disease doubles every 5 years after age 65 (Kawas et al., 2000).
Importantly, epigenetic mechanisms have also been suggested to
be a major force of aging (Chouliaras et al., 2012, 2013b; Heyn
et al., 2012) and similar epigenetic alterations have also been
described in AD (Figure 1B) (Cacabelos and Torrellas, 2014;
Coppede, 2014; Bennett et al., 2015). But prior to outlining the
evidence of an epigenetic implication in AD, it is important to
mention that this question has been addressed from different
(technical) perspectives, and that the obtained results strongly
depend of the experimental approaches, the samples analyzed,
and the techniques used. Some of these studies are based on
cell lines, others on animal models, and yet others on human
post-mortem tissue, sometimes with a limited sample number
at their disposal. Equally diverse are the techniques being used
for determining the levels of DNA methylation, which range
from the use of DNA methylation sensitive restriction enzymes,
to antibodies that specifically recognize DNA methylation
modifications, and to a direct reading of DNA methylation by
bisulfite-sequencing (Figure 1B).

DNA Methylation
Global DNA Methylation Changes
In general, the use of cell lines, independently of the technique
used, suggest that AD is associated with lower levels of
DNA methylation. For instance, the glioblastoma cell line H4
harboring the Swedish mutation of APP (K670M/N671L double
mutation segregating in a Swedish family), which causes an
increase in Aβ production (Citron et al., 1992; Mullan et al.,
1992; Haass et al., 1995), shows a general tendency toward
hypomethylation as measured by DNA microarrays following
bisulfite conversion (Sung et al., 2011). Similarly, treatment of
the neuronal-like cell line SH-SY5Y with conditioned media
obtained from cells harboring the Indiana mutation (V717F
mutation identified by a group of Indiana) – associated with
higher Aβ levels (Murrell et al., 1991; Suzuki et al., 1994) –
induced a general DNA hypomethylation as measured by DNA
methylation-sensitive antibodies (Hodgson et al., 2013). In line,
brain microvascular endothelial cells subjected to high levels
of synthetic Aβ show lower levels of DNA methylation as
measured by high-performance liquid chromatography (HPLC)
(Chen et al., 2009). Nevertheless, conversely to the previously
discussed observations, IMR-32 neuroblastoma cells subjected to
high levels of synthetic Aβ do not show significant alterations in
DNAmethylation as measured by DNAmicroarrays (Taher et al.,
2014).

In mouse models of AD, global levels of DNA methylation
have been less studied and, to our knowledge, only one
work has addressed this question. Cong et al. (2014) used
cortical samples of APPswe/PS1dE9 mice – harboring the
Swedish APP mutation in combination with the deletion of
the exon 9 of the PSEN1 resulting in increases Aβ formation
(Borchelt et al., 1997) – and immunoprecipitation of the DNA
using DNA methylation specific antibodies (Methylated DNA
immunoprecipitation: MeDIP) followed by the hybridization
of the resulting DNA to promoter microarrays. Following
this approach, around 10% of analyzed genes (2346 of 20404
promoter genes contained in the array) showed higher levels
of DNA methylation in the APPswe/PS1dE9 mice than in the
controls, and no hypomethylated genes were reported (Cong
et al., 2014). Therefore, conversely to what occurs in cell line
models of the disease, at least one AD mouse model displays
higher levels of DNA methylation.

The study of human post-mortem samples has not helped to
solve this apparent discrepancy. Using antibodies that recognize
methylated DNA, a loss of DNA methylation has been observed
in the entorhinal cortex (Mastroeni et al., 2010) and the
hippocampus of post-mortem samples of AD (Chouliaras et al.,
2013a). Conversely, other studies using the same technique
have reported no differences in the entorhinal cortex (Lashley
et al., 2015) or even gains of DNA methylation in the frontal
cortex (Coppieters et al., 2014), the temporal cortex (Coppieters
et al., 2014) and the hippocampus of AD samples (Bradley-
Whitman and Lovell, 2013). In much the same manner, ELISA
5mC assays of the entorhinal cortex of AD patients (Lashley
et al., 2015) as well as DNA methylation microarrays in frontal
cortex (Bakulski et al., 2012) have not shown significant DNA
methylation differences.
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FIGURE 1 | Epigenetics in Alzheimer’s disease (AD). (A) Different levels of investigation in AD pathology. At the population level, several genetic and non-genetic
factors contribute to the risk for developing the disease. At the level of the individual, several pathophysiological characteristics such as altered glucose metabolism
are observed in the brain of cognitively impaired AD patients. Associated with these alterations are – at the tissue and cellular level – yet other pathological hallmarks
such as the presence of amyloid plaques and neurofibrillary tangles. Finally, at the intracellular level, higher levels of reactive oxygen species (ROS) and DNA damage,
together with dysregulated gene transcription, splicing alterations and aberrant protein dynamics are also believed to be implicated in the onset and development of
the pathology. (B) Similarly, epigenetic alterations have been reported in AD at different levels. Bulk histone acetylation (ac), phosphorylation (ph), and methylation
(me) changes as well as DNA methylation (5mC) and hydroxymethylation (5hmC) alterations have been reported in AD tissues by IHC and WB. Major tendencies for
these changes (as observed by several studies) are indicated by thick arrows. Locus-specific alterations mainly causing a repression of neuroplasticity genes and an
activation of inflammatory genes have also been observed by ChIP using antibodies against histone modifications. Greater resolution is also possible for DNA
methylation analysis in which nucleotide-specific alterations can be detected by oxi- and BS-sequencing. BS, bisulfite sequencing; ChIP, chromatin
immunoprecipitation; CpG, cytosine-guanine dinucleotide; IHC, immunohistochemistry; IP, immunoprecipitation; WB, western blotting.

A similarly confusing scenario is also emerging from the
study of the DNA hydroxymethylation in AD. Higher levels
of DNA hydroxymethylation have been reported in 3xTg-
AD mice – harboring the APP Swedish, PSEN1 M146L, and
P301L TAU mutations and resulting in Aβ formation and TAU
phosphorylation (Oddo et al., 2003) – using specific 5hmC
antibodies (Cadena-del-Castillo et al., 2014), but lower levels
have been observed using the same technique in the human
frontal, entorhinal, and temporal cortex (Condliffe et al., 2014;
Coppieters et al., 2014) as well as in the hippocampus of

post-mortem AD samples (Chouliaras et al., 2013a), with no
significant differences observed in entorhinal cortex using 5hmC
specific ELISA assays (Lashley et al., 2015).

It is important to mention that, in all these studies,
the magnitude of DNA methylation and hydroxymethylation
changes, and the number of samples analyzed, are relatively small,
and as a consequence the results can easily be influenced by
differences in the analyzed regions (Ladd-Acosta et al., 2007; Xin
et al., 2010; Hernandez et al., 2011; Lee et al., 2011; Davies et al.,
2012; Sanchez-Mut et al., 2013), interindividual variability (Turan
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et al., 2010; Heyn et al., 2013) and experimental fluctuations. As a
result, if DNA methylation and hydroxymethylation differences
are present in AD, these are likely to be either small or to be
associated with only discrete regions of the genome. The study
of disease-discordant twins has been crucial for unraveling the
epigenetic component of common diseases (Bell and Spector,
2011), but unfortunately, only a single couple of monozygotic
twins discordant for AD has been studied so far. There, AD
was associated with a loss of DNA methylation and an increase
of DNA hydroxymethylation (Mastroeni et al., 2009; Chouliaras
et al., 2013a).

Gene-Specific DNA Methylation Changes
Attempts to determine whether specific genetic regions or
particular genes are altered in AD have initially focused on genes
previously associated with the disease – APP, PSEN1, and TAU
genes –, and similarly to the global tendencies, no conclusive
evidences have emerged from these studies.

In spite of some reports suggesting a hypomethylation in the
promoter of APP in the temporal cortex of AD (West et al.,
1995) and aging (Tohgi et al., 1999), studies using higher sample
numbers have not been able to find differences in frontal cortex,
parietal cortex, and hippocampus of AD patients (Yoshikai
et al., 1990; Wang et al., 2008a; Barrachina and Ferrer, 2009).
Similarly, studies aimed to determine whether PSEN1might also
be epigenetically deregulated in AD have not been conclusive.
Methyl groups are directly assimilated from diet, which itself is
frequently deficient in aging and AD (Ford and Almeida, 2012;
Hinterberger and Fischer, 2013). Indeed, in the case of dietary
depletion, the PSEN1 promoter can become hypomethylated in
TgCRND8 – harboring the Swedish and V717F Indiana APP
mutations (Chishti et al., 2001) – and APPswe/PS1dE9 AD
models (Fuso et al., 2011; Li et al., 2015). Similar findings
have been obtained in SK-N-BE neuroblastoma cell line using
vitamin B6 and B12 deficient media (Fuso et al., 2005). However,
although mechanistically possible, PSEN1 hypomethylation has
not been observed in frontal cortex and hippocampus of AD
samples (Wang et al., 2008a; Barrachina and Ferrer, 2009). And
finally, no significant differences in DNA methylation in the
frontal cortex or the hippocampus of post-mortem AD samples
have been observed in the promoter of TAU (Barrachina and
Ferrer, 2009). Therefore, it seems that at least these three classical
AD-associated genes are not epigenetically dysregulated in AD
at the DNA methylation level, which might indicate that DNA
methylation changes do not play a role in AD, or that genetic and
non-genetic forms of AD might be the results of alterations in
a different subset of genes. As a consequence, unbiased genome
wide screening are also starting to be performed.

Genome-Wide DNA Methylation Changes
Unfortunately, genome-wide control-case comparisons have not
been more conclusive, with almost every single study reporting
a different subset of altered genes which might reflect that
current approaches are still immature (Table 1). However, the
combination of genome-wide strategies with longitudinal studies
of AD patients and mouse models yields more consistent data.
Two different genes have been reported to be hypermethylated

by two independent groups, namely Sorbin And SH3 Domain
Containing 3 (SORBS3) (Siegmund et al., 2007; Sanchez-Mut
et al., 2014) and Ankyrin 1 (ANK1) (De Jager et al., 2014; Lunnon
et al., 2014). These results were obtained in an age-dependent
DNA methylation study and a genome-wide DNA methylation
screening in two different AD mouse models – APPswe/dE9 and
3xTg-AD – and later validated in the frontal cortex of human
post-mortem AD samples, as well as from two genome-wide
DNA methylation screenings in several human brain regions in
differentially AD-affected samples respectively. Equally relevant
seems to be the hypermethylation of the gene Insulin-Like
Growth Factor Binding Protein 7 (IGFBP7), which is sustained
by consistent changes in DNA methylation in the APPPS1-21
AD mouse model – harboring the Swedish APP mutation in
combination with the L166P PSEN1 mutation (Radde et al.,
2006) – and in human frontal cortex samples (Agbemenyah
et al., 2014). Lastly, the hypermethylation of Dual Specificity
Phosphatase 22 (DUSP22), similarly to ANK1, correlates with
the severity of the disease and was demonstrated modify TAU
phosphorylation and cell viability in vitro (Sanchez-Mut et al.,
2014).

Nonetheless, it has to be noted that these correlations do
not necessarily reflect a causal relation with the disease, and
might even be the consequence of secondary alterations. This is
particularly important for the ones observed in mouse models,
since these models have already a genetic predisposition to
develop AD pathology. Also, another limitation of these studies
is that they did not distinguish between different cell populations,
the proportions of which are already altered in AD (AD being
a neurodegenerative disease associated with a prominent gliosis
and a specific loss of neurons (Serrano-Pozo et al., 2011), and
which present distinct epigenetic profiles (Iwamoto et al., 2011;
Labonte et al., 2013; Lister et al., 2013). Therefore, although
promising, these results should be considered with caution
since they will require further validations using cell-type specific
studies.

Histone Modifications
Global Histone Acetylation Changes
Contrary to DNA methylation, histone modifications have been
less studied in AD and evidences linking histone modification
alterations with AD are mainly indirect. The few studies that,
have found that several HDAC inhibitors exert a protective
effect in AD, improving dendritic spine density, and facilitating
learning and memory formation in different mouse models
of the disease (Fischer et al., 2007; Francis et al., 2009;
Ricobaraza et al., 2009, 2012; Zhang and Schluesener, 2013;
Rumbaugh et al., 2015), although the precise mechanisms by
which the HDAC inhibitors work remain to be determined.
Furthermore, HDAC2 was found to be elevated with age in
mice and humans (Chouliaras et al., 2013b; Singh and Thakur,
2014), in APP/PS1 (Gonzalez-Zuniga et al., 2014), p25/Cdk5 –
harboring the Cdk5 activator p25 transgene that induces TAU
phosphorylation and neurodegeneration (Cruz et al., 2006) –
and 5xFAD AD mouse models – harboring the Swedish, I716V
Florida, and V717I London APP mutations in combination
with the M146L and L286L PSEN1 mutations with induce Aβ
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TABLE 1 | Differentially DNA methylated genes reported in Alzheimer’s disease (AD).

Gene Change Genomic
region

Technique RNA Organism Brain region References

ANK1 Increase Gene body BS-array and
pyrosequencing

NA Human Entorhinal, temporal, and
prefrontal cortex

Lunnon et al., 2014

Increase Gene body BS-array Decrease Human Entorhinal, temporal, and
prefrontal cortex

De Jager et al., 2014

BIN1 Increase Downstream
(Intergenic)

BS-array NA Human Entorhinal, temporal, and
prefrontal cortex

De Jager et al., 2014

BDNF Decrease Promoter MSRE-PCR Decrease Human Frontal cortex Rao et al., 2012

CDH3 Increase Gene body BS-array Increase Human Entorhinal, temporal, and
prefrontal cortex

De Jager et al., 2014

COX2 Decrease Promoter MSRE-PCR NA Human Frontal cortex Rao et al., 2012

CREB Increase Promoter MSRE-PCR NA Human Frontal cortex Rao et al., 2012

DUSP22 Increase Promoter BS-array and
pyrosequencing

Decrease Human Hippocampus Sanchez-Mut et al., 2014

FOXK1 Increase Gene body BS-array NA Human Entorhinal, temporal, and
prefrontal cortex

De Jager et al., 2014

F2RL2 Increase Promoter BS-array and
pyrosequencing

Decrease APP/PS1 and
3Xtg-AD

Frontal cortex Sanchez-Mut et al., 2013

HMHA1 (ABCA7) Increase Gene
body/Promoter
(Downstream)

BS-array NA Human Entorhinal, temporal, and
prefrontal cortex

De Jager et al., 2014

HOXA3 Increase Gene body BS-array NA Human Entorhinal, temporal, and
prefrontal cortex

De Jager et al., 2014

IGFBP7 Increase Promoter MeDIP Increase in
APPPS1-21

APPPS1-21
and human

Frontal cortex Agbemenyah et al., 2014

ITPRIPL2 Increase Gene body BS-array NA Human Entorhinal, temporal, and
prefrontal cortex

De Jager et al., 2014

KDM2B Increase Gene body BS-array NA Human Entorhinal, temporal, and
prefrontal cortex

De Jager et al., 2014

NFKB Decrease Promoter MSRE-PCR Increase Human Frontal cortex Rao et al., 2012

PCNT (DIP2) Increase Gene body
(Upstream)

BS-array NA (increase) Human Entorhinal, temporal, and
prefrontal cortex

De Jager et al., 2014

RHBDF2 Increase Gene body BS-array Increase Human Entorhinal, temporal, and
prefrontal cortex

De Jager et al., 2014

SLC2A1 Increase Upstream
(Intergenic)

BS-array NA Human Entorhinal, temporal, and
prefrontal cortex

De Jager et al., 2014

SORBS3 Increase Promoter MethyLight
PCR

NA Human Entorhinal, temporal, and
prefrontal cortex

Siegmund et al., 2007

Increase Promoter BS-array and
pyrosequencing

Decrease APP/PS1,
3Xtg-AD and
Human

Frontal cortex Sanchez-Mut et al., 2013

SPG7 (RPL13) Increase Gene
body/Promoter
(Upstream)

BS-array NA (decrease) Human Entorhinal, temporal, and
prefrontal cortex

De Jager et al., 2014

SPTBN4 Increase Promoter BS-array and
pyrosequencing

Decrease APP/PS1,
3Xtg-AD and
Human

Frontal cortex Sanchez-Mut et al., 2013

SYP Increase Promoter MSRE-PCR NA Human Frontal cortex Rao et al., 2012

S100A2 Decrease Promoter MethyLight
PCR

NA Human Frontal cortex Siegmund et al., 2007

TBXA2R Increase Promoter BS-array and
pyrosequencing

Decrease APP/PS1,
3Xtg-AD and
Human

Frontal cortex Sanchez-Mut et al., 2013

TMEM59 Decrease Promoter BS-array Increase APPPS1-21
and Human

Frontal cortex Bakulski et al., 2012

WDR81 (SERPINF1
and SERPINF2)

Increase Gene body
(Upstream)

BS-array NA (decrease
and increase)

Human Entorhinal, temporal, and
prefrontal cortex

De Jager et al., 2014

BS-array, bisulfite-modified DNA based arrays, MSRE-PCR, methylation-sensitive restriction enzyme-PCR, MeDIP, Methylated DNA immunoprecipitation. NA, not available.
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formation and neurodegeneration (Oakley et al., 2006) – as
well as in the hippocampus and entorhinal cortex of post-
mortem human AD samples (Gräff et al., 2012). In line, it
has been shown that HDAC2 is able to differentially bind and
regulate the expression of several learning and neuroplasticity-
related genes, but that its viral-mediated depletion or its specific
pharmacological inhibition is sufficient for restoring the synaptic
and cognitive deficits observed in p25/Cdk5 mice (Gräff et al.,
2012; Wagner et al., 2015). Therefore, there is compelling
evidence that HDAC2 is increased in aging and AD, and
probably implicated in the associated cognitive decline, although
it should be mentioned that a decrease of HDAC2 in AD
patients has been also reported by another study (Mastroeni et al.,
2011).

Surprisingly, in spite of these evidences, it is still not clear
whether basal histone acetylation is altered in AD. Lower (Zhang
et al., 2012), equal (Rao et al., 2012; Lu et al., 2014), and
higher (Narayan et al., 2015) levels of histone acetylation have
been reported for post-mortem AD human samples, whereas
no differences have been observed in two different AD mouse
models – namely Tg2576 and 3xTg-AD – (Francis et al.,
2009; Cadena-del-Castillo et al., 2014), although an increase
of H3 and H4 acetylation in primary cultures of the 3xTg-
AD mouse has been described by others (Walker et al., 2013).
One possible explanation might be that instead of an alteration
of the basal levels of histone acetylation, AD might be more
related with the incapacity of modifying the epigenetic patterns
in certain conditions, such as learning and memory formation, in
which HDAC inhibitors that increase histone acetylation would
“prime” the levels of histone acetylation and consequently, of
gene activity (Gräff and Tsai, 2013a,b; Gräff et al., 2014). In
support of this view, the basal levels of H4K12ac in aging
remain constant, but when mice are subjected to learning and
memory paradigms only young animals are able to increase these
levels and not the aged mice (Peleg et al., 2010). Similarly, in
Tg2576 AD mice – harboring the Swedish APP mutation in
combination with the M146V PSEN1 mutation which results
in higher levels of Aβ formation (Chishti et al., 2001) – the
global levels of H4 acetylation are not altered, but when mice
are subjected to learning and memory paradigms only wild-type
animals are able to increase the levels of histone acetylation
and not the Tg2576 mice (Francis et al., 2009). Alternatively,
although without excluding the previous hypothesis, it could
also be possible that histone acetylation alterations occur just
in certain loci, which could be more sensitive to HDAC
inhibitors, without reflecting general tendencies in the bulk
chromatin. To better understand these scenarios, genome
wide screenings of histone modifications are starting to be
undertaken.

Global Tendencies in Other Histone Marks
Less attention has been put on posttranslational modifications of
other histone marks, despite some results suggesting that histone
phosphorylation might be altered in AD. Namely, the linker
histone H1 becomes hyperphosphorylated and accumulates in
the cytoplasm of astrocytes and neurons of APPswe/PS1dE9
mice (Duce et al., 2006). Interestingly, H1 is a substrate of

p25/Cdk5 that accumulates in AD patients (Patrick et al., 1999;
Chang et al., 2012) and is associated with neurodegeneration
and cellular damage such as false entrance of cell cycle
division (Cruz et al., 2006), and H2A.X phosphorylation (Kim
et al., 2008), both pathophysiological characteristics of AD
(Ogawa et al., 2003; Myung et al., 2008). In addition to H1
phosphorylation, evidence for H3 phosphorylation has been
mixed thus far (Rao et al., 2012; Anderson et al., 2015),
suggesting that more studies are necessary for elucidating its role
in AD.

The first attempts for studying potential alterations on H3K9
methylation in AD has been equally inconclusive since only three
studies have address this question with contradictory results:
decreased heterochromatin compaction associated with lower
H3K9me2 levels in a TAU Drosophila AD model and human
samples (Frost et al., 2014), no significant differences in the
heterochromatin of p25/cdk5 Ad mouse model measured by
H3K9me3 (Gjoneska et al., 2015), and increased compaction in
primary cultures of 3xTg-AD mouse measured by H3K9me2
(Walker et al., 2013).

Gene-Specific Histone Alterations
The possibility that in AD specific genes might be
posttranslationally modified on their histones has just started
to be addressed, and to the extent of our knowledge, only two
studies in the p25/Cdk5 AD mouse model addressed this point.
In 2012, several neuroplasticity related genes were reported as
hypoacetylated and repressed in p25/Cdk5 mice (Table 2; Gräff
et al., 2012) and, recently, the catalog of deregulated genes and
posttranslational modifications has been enormously enlarged
(Gjoneska et al., 2015). There, in general, complementary gains
and losses of specific marks at discrete loci were observed,
explaining the minor global alterations reported in previous
studies (Gjoneska et al., 2015). An interesting finding of this
study was further a consistent enrichment of active marks
(H3K27ac and H3K4me3) in enhancers and promoters of
immune and stimulus-response functions coupled with a specific
decrease in synapse and learning-associated functions can be
observed (Gjoneska et al., 2015).

Similarly to reported DNA methylation alterations in AD,
these results probably reflect both changes in cell composition
and cell-type-specific changes associated with AD pathology,
thereby necessitating cell-specific validations for a better
evaluation of their significance in AD.

CONSIDERATIONS

There is an increasing interest of neuroscientists in epigenetics
that is likely to result in a fruitful synergy, which will
undoubtedly push the frontiers of both fields: epigenetic
researchers have approached neuroscience, and vice versa,
neuroscientists have also approached epigenetics. Nonetheless,
the following conceptual, methodological, and biological caveats
need to be properly addressed from both the epigenetic and the
neuroscience point of view in order drawmeaningful conclusions
from these studies.
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TABLE 2 | Differentially histone acetylated genes in AD.

Gene Change Genomic
region

Technique RNA Organism Brain region References

ARC H3K14, H4K5, H4K12 Decrease Promoter ChIP Decrease p25/cdk5 Hippocampus Gräff et al., 2012

BDNF I H4K5, H4K12 Decrease Promoter ChIP No change p25/cdk5 Hippocampus Gräff et al., 2012

BDNF IV H2BK5, H4K5, H4K12 Decrease Promoter ChIP Decrease p25/cdk5 Hippocampus Gräff et al., 2012

H4 (pan) Decrease Promoter ChIP Decrease C57Bl/6J vs
APP KO

Prefrontal cortex Hendrickx et al., 2014

CDK5 H2BK5, H4K5, H4K12 Decrease Promoter ChIP Decrease p25/cdk5 Hippocampus Gräff et al., 2012

EGR1 H2BK5, H4K5, H4K12 Decrease Promoter ChIP Decrease p25/cdk5 Hippocampus Gräff et al., 2012

H4K5, H4K12ac Decrease Promoter ChIP Decrease C57Bl/6J vs
APP KO

Prefrontal cortex Hendrickx et al., 2014

FOS H4K5, H4K12ac Decrease Promoter ChIP Decrease C57Bl/6J vs
APP KO

Prefrontal cortex Hendrickx et al., 2014

HOMER1 H2BK5, H3K14, H4K5, H4K12 Decrease Promoter ChIP Decrease p25/cdk5 Hippocampus Gräff et al., 2012

GLUR1 H3K14, H4K5, H4K12 Decrease Promoter ChIP Decrease p25/cdk5 Hippocampus Gräff et al., 2012

GLUR2 H2BK5, H3K14 Decrease Promoter ChIP Decrease p25/cdk5 Hippocampus Gräff et al., 2012

NFL H4K12 Decrease Promoter ChIP Decrease p25/cdk5 Hippocampus Gräff et al., 2012

NR2A H2BK5, H3K14, H4K5, H4K12 Decrease Promoter ChIP Decrease p25/cdk5 Hippocampus Gräff et al., 2012

NR2B H2BK5, H3K14, H4K5, H4K12 Decrease Promoter ChIP Decrease p25/cdk5 Hippocampus Gräff et al., 2012

SYP H2BK5, H3K14, H4K5, H4K12 Decrease Promoter ChIP Decrease p25/cdk5 Hippocampus Gräff et al., 2012

SYT1 H4K12 Decrease Promoter ChIP Decrease p25/cdk5 Hippocampus Gräff et al., 2012

ChIP, chromatin immunoprecipitation.

DNA Methylation Marks: Independent or
Redundant?
In spite of the abundant literature arguing in favor of the specific
roles for the different types of DNA methylation mark, it is still
unclear whether they are independent or redundant. 5mC, 5hmC,
and 5fC/5caC show similar distribution and association with
gene transcription, being mainly enriched in gene bodies and
correlated with gene expression (Guenther et al., 2007; Song et al.,
2011; Shen et al., 2013; Wu et al., 2014), and when occurring in
TSS, associated with gene repression (Guenther et al., 2007; Shen
et al., 2013). In line, 5mC and 5hmC are significantly correlated
(Lashley et al., 2015). Furthermore, non-CpG methylation tends
to occur on gene bodies of highly transcribed genes (Lister
et al., 2013; Guo et al., 2014a) and to accumulate in aging (data
presented in AD/PD 2015) in the same manner than 5mC and
5hmC (Hernandez et al., 2011; Szulwach et al., 2011). A possible
explanation for this might be that CpGs are continuously being
methylated and demethylated in promoters of highly transcribed
genes questioning their specific effect and explaining the high
prevalence and concordance of these DNA methylation marks
(Neri et al., 2015). 5mC, 5hmC, and 5fC/5caC are indeed
produced in a stepwise manner (Kohli and Zhang, 2013), and
it has been suggested that non-CpG methylation could be a
consequence of the DNMT3B binding to previously methylated
CpG sites (Ramsahoye et al., 2000; Arand et al., 2012, Baubec
et al., 2015). Therefore, it is possible that, similarly to the initial
high expectations about the histone code, that the complexity
behind DNA methylation might be currently overestimated.

Then, it is also worth to mention that different techniques
seem to show different scenarios. There is an apparent
discrepancy between DNA methylation levels reported
by antibody-based immunoprecipitation and by classical

bisulfite-dependent modification of DNA, the former usually
reporting higher values than the latter (Clark et al., 2012).
Furthermore, antibody-based techniques tend to enrich densely
modified regions (Pastor et al., 2011) and classical bisulfite
DNA modification cannot distinguish between 5mC and
5hmC (Nestor et al., 2010). Therefore, it might be possible
that instead of reporting just DNA methylation differences,
antibody-based techniques could be reporting a combination
of DNA methylation differences and other alterations to the
chromatin structure – not necessarily related with the DNA
methylation differences – and that the classical bisulfite-
dependent modification of DNA might be underestimating the
5mC changes. In line, most of the reported DNA methylation
changes based on bisulfite-dependent DNA modifications are
gains of methylation, since losses of DNA methylation should
be coupled with gains of 5hmC and are consequently masked
in this technique. The application of the recently developed
oxidative bisulfite-dependent DNA modification could help
to resolve these discrepancies since it combines the precision
of the classical bisulfite DNA modification with the ability of
differentiate between 5mC and 5hmC (Booth et al., 2013).

HDAC Inhibitors in Learning and AD:
Only an Epigenetic Effect?
Similarly, it is also important to consider several constraints
when analyzing histone modifications. The beneficial effect of
HDAC inhibitors in learning and AD can be interpreted as a
proof of the involvement of histone acetylation in these processes
(Vogel-Ciernia and Wood, 2012; Gräff and Tsai, 2013a) but,
instead, it is just proving the involvement of the inhibited
enzyme per se, and not necessarily of the acetylation of histones
since other non-histones substrates can be also acetylated and
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deacetylated (Martinez-Redondo and Vaquero, 2013; Li et al.,
2014a). For instance, it is known that HDAC6 is elevated in
AD patients (Ding et al., 2008), and that its deletion restores
the cognitive deficits observed in APPPS1−21 mouse model
of AD (Govindarajan et al., 2013), but it is also known that
the main effect of this protection is a consequence of the
modification of tubulin acetylation (Govindarajan et al., 2013).
Similarly, it has been seen that SIRT1 decreases in aging and
in AD (Julien et al., 2009; Quintas et al., 2012), and that its
restoration protects against neurodegeneration (Kim et al., 2007;
Gräff et al., 2013), but again its main effects are associated
with non-histone substrates, including PGC-1alpha, p53, and
TAU (Kim et al., 2007; Min et al., 2010). Therefore, these
studies should be interpreted cautiously not only in light of
the particular specificity of the HDAC inhibitor, but also in
light of the potential non-histone substrates of the targeted
HDAC.

Epigenetics and Gene Expression,
Always Coupled?
Also, it is worth to mention that, in most cases, the interpretation
of the effect of epigenetic marks on gene transcription is based
on genome-wide comparisons in which significant correlations
can be seen, but when single genes are being analyzed a
strikingly high level of discrepancy is observed (Lopez-Atalaya
and Barco, 2014). In fact, changes in gene transcription can
occur independently of epigenetic modifications (Zhang et al.,
2014), and changes in epigenetic modifications are not necessarily
reflected by changes in gene expression (Lopez-Atalaya and
Barco, 2014).

Along these lines, it is important to note that epigenetic
mechanisms mainly regulate the chromatin structure, which
secondarily modifies the accessibility of the genome to impact
on gene regulation. Several epigenetic players also interact
with the gene transcription machinery, but it is simplistic
to assume that epigenetic changes will completely determine
the levels of gene transcription since many other factors are
also implied. More likely, epigenetics would be one of the
variables of the probabilistic model that finally determines the
levels and the magnitude of the potential changes in gene
expression. Furthermore, most epigenetic changes occur in
enhancer and regulatory regions that are not easily assignable
to specific genes (Gjoneska et al., 2015; Sun and Yi, 2015).
These assignments are frequently based on distance criteria,
which do not necessarily reflect real interactions. In fact,
chromatin conformation capture experiments have shown that
the majority of regulatory elements do not interact with the
nearest genes (Sanyal et al., 2012). Therefore, an important
part of long-range epigenetic information is still far from being
understood.

Cause or Consequence?
Finally, it is important to consider that the majority of studies
investigating potential epigenetic alterations in AD are based

on correlations, which do not necessarily reflect a causal
relationship. Therefore, whether epigenetic modifications are
driving the chromatin behavior or whether they are just
a consequence of other processes happening nearby is still
unknown. These studies also require considerable amounts of
chromatin, which is achieved, in the best of the cases, by
collecting pools of similar cell types. However, unlike in cell
lines, this is a particularly difficult feature to achieve in the
heterogeneous central nervous system. In fact, every single
cell might have its specific epigenetic and expression profile.
As a consequence, the pooling of cells could mix different
epigenetic patterns, thereby masking potentially important
changes and complicating any analysis. Epigenetic AD studies
ought thus to be conducted in particular cell types. Recently,
the first report of single-cell DNA methylation profiling has just
appeared (Guo et al., 2015), raising hope that cell-type specific
epigenetic profiling might in the future also become an option
for AD.

In spite of these limitations, it is becoming more and
more evident that by modifying the chromatin structure,
epigenetic mechanisms can shape genome accessibility and
thereby have an impact on gene transcription. And that,
by doing so, epigenetic changes might provide a molecular
substrate for “chromatin memories” with important implications
for learning and memory formation and for diseases such
as AD. Indeed, both memory and AD are influenced by
non-genetic factors that accumulate over time (Miller and
O’Callaghan, 2008). In this sense, epigenetics might store long-
lasting information and provide a platform for accumulating
hits over time. This idea has inspired the hypothesis of
the Latent Early life Associated Regulation (LEARn) model
(Lahiri et al., 2008). This model suggests that a series of
harmful events throughout lifetime, from gestation to old age,
could accumulate epigenetic marks that modify the expression
probability of certain genes, which in turn might induce or
accelerate the onset and development of AD. Whether this
hypothesis will withstand further experimentations remains to be
determined but, for the moment, it provides an attractive food for
thoughts.
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