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Introduction: Conflicting data exist on sensitivity changes of the melanocortin system
during diet-induced obesity. We hypothesized that melanocortin sensitivity depends on
diet composition, in particular on the fat content rather than the level of obesity. The aim
of this study was to determine the influence of diet composition on feeding responses to
a melanocortin receptor agonist, using free-choice diets that differ in food components.

Methods: Male Wistar rats were subjected to a chow (CHOW) diet or a free-choice
(fc) diet of either chow, saturated fat and liquid sugar (fcHFHS), chow and saturated fat
(fcHF), or chow and liquid sugar (fcHS) for 4 weeks. Melanocortin sensitivity was tested
by measuring food intake following administration of the melanocortin 3/4 receptor
agonist melanotan II (MTII) or vehicle in the lateral ventricle. In a separate experiment,
proopiomelanocortin (POMC) and agouti-related protein (AgRP) mRNA levels were
determined in the arcuate nucleus with in situ hybridization in rats subjected to the
free-choice diets for 4 weeks.

Results: Rats on the fcHFHS diet for 4 weeks show increased caloric intake and body
weight gain compared to rats on the CHOW, fcHS and fcHF diet. Caloric intake and
body weight gain was comparable between rats on the fcHF, fcHS, and CHOW diet.
After 4 weeks diet, POMC and AgRP mRNA levels were not different between diet
groups. MTII inhibited caloric intake to a larger extent in rats on the fcHF diet compared
to rats on the CHOW, fcHFHS or fcHS diet. Moreover, the fat component was the most
inhibited by MTII, and the sugar component the least.

Conclusion: Rats on the fcHF diet show stronger food intake inhibition to the
melanocortin receptor agonist MTII than rats on the CHOW, fcHS, and fcHFHS diet,
which is independent of caloric intake and body weight gain. Our data point toward an
important role for diet composition, particularly the dietary fat content, and not obesity
in the sensitivity of the melanocortin system.
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INTRODUCTION

Energy homeostasis is regulated by the brain through a complex
neural network with an important role for the arcuate nucleus of
the hypothalamus. Within this neural network the melanocortin
system plays a critical role in maintaining stable energy
balance. Separate neuron populations within the arcuate nucleus
express the precursor of the melanocortin receptor agonist
proopiomelanocortin (POMC) and the melanocortin receptor
inverse agonist agouti-related protein (AgRP). Twomelanocortin
receptors (MC3R andMC4R) are expressed in the brain, although
both have been implicated in the regulation of energy balance,
MC4R has a predominant role in the regulation of food intake
(Adan et al., 2006).

A large number of studies has shown that central
administration of alpha-MSH and Melanotan II (MTII), a non-
selective melanocortin 3/4 receptor agonist, strongly reduces
food intake and increases energy expenditure. Additionally,
a large number of studies have investigated the effects of MC
ligands on macronutrient intake and most studies [but not all
(Bauer et al., 2009; Panaro and Cone, 2013)] link melanocortin
signaling with preference for fat intake in mice (Koegler et al.,
1999; Butler et al., 2001; Samama et al., 2003), rats (Hagan et al.,
2001; Tracy et al., 2008; Mul et al., 2012), and humans (van der
Klaauw et al., 2015).

Additionally, in studies investigating the sensitivity of the
melanocortin system during diet-induced obesity conflicting data
have been described, as obese animals show both decreased
(Clegg et al., 2003) and increased (Hansen et al., 2001) food
intake responses to melanocortin receptor ligands, compared to
lean animals. The reason for this discrepancy remains unknown,
but may be due to the diet composition (Kinzig et al., 2005;
Morens et al., 2005), and particularly on the consumption of
fat (Clegg et al., 2003). Moreover, the combination of studying
melanocortin system sensitivity (using melanocortin receptor

ligands) during obesity and macronutrient intake has not been
performed before.

To distinguish between the effect of obesity and diet
composition, we use a diet with separate food components, rather
than pellet diets that differ in fat and sugar content. In this free-
choice diet model rats receive different free-choice diets that
consist of separate food components, i.e., saturated fat, liquid
sugar or both, in addition to the standard diet with chow and
tap water (CHOW). Using this unique free-choice diet model,
we aimed to investigate whether the reduction of food intake by
melanocortins depends on diet composition, obesity or both. To
determine the influence of diet composition on the melanocortin
system in rats on the free-choice diets, we measured POMC
and AgRP mRNA levels in the arcuate nucleus and determined
feeding responses to MTII on total caloric intake and separate
diet components after 4 weeks diet.

MATERIALS AND METHODS

Animals and Dietary Intervention
Male Wistar rats (250–280 g) were individually housed in a
temperature (21–23◦C) and light-controlled room (lights on
0700–1900). The diets used in this study comprised three free-
choice diets in which rats could unrestrictedly eat any of the diet
components: (1) Free-choice high-fat high-sugar diet (fcHFHS):
a dish of saturated fat [Beef tallow (Ossewit/Blanc de Boeuf),
Vandemoortele, Belgium], a bottle of 30% sugar water (1.0 M
sugarmixed from commercial grade sugar and tap water), normal
standard chow [special diet service (SDS), England] and normal
tap water. (2) Free-choice high-fat diet (fcHF): a dish of saturated
fat in addition to normal standard CHOW. (3) Free-choice high-
sugar diet (fcHS): a bottle of 30% sugar water in addition to
normal standard CHOW. The rats on the control diet remained
on normal standard CHOW. Body weight and 24 h caloric intake

TABLE 1 | Characteristics of rats on different free-choice diets.

CHOW fcHS fcHF fcHFHS

n 5 5 5 6

Body weight (g) 387 ± 14a 395 ± 8a 401 ± 13a 423 ± 11b

Body weight gain (g) 54.0 ± 5.2a 61.6 ± 5.4a 59.0 ± 3.8a 86.2 ± 5.7b

Epididymal white adipose
tissue (g)

2.03 ± 0.1a 3.17 ± 0.2b 3.29 ± 0.3b 4.40 ± 0.3c

Caloric intake, kcal/day 80.4 ± 3.7a 83.2 ± 5.5a 89.8 ± 3.7a 111.1 ± 3.6b

Chow (kcal/day) 80.4 ± 3.7 36.6 ± 2.9 40.7 ± 4.6 44.6 ± 4.8

Sugar (kcal/day) − 46.6 ± 3.2 − 36.8 ± 3.3

Fat (kcal/day) − − 49.1 ± 5.5 29.7 ± 3.4

% chow 100 43.9 ± 3.6 50.4 ± 7.7 40.2 ± 3.6

% sugar − 56.1 ± 2.2 − 33.1 ± 2.3

% fat − − 49.6 ± 3.3 26.7 ± 1.9

Caloric content (kcal/g) 3.1 2.1 6.1 4.9

% fat in diet 4 1.8 56.5 28.3

% carbohydrate in diet 75 89 34 63.2

% protein in diet 21 9.3 9.5 8.4

Values are mean ± SEM. Different letters represent significant differences between groups (P < 0.05).
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(kcal) were monitored at least once a week. Total caloric intake
was the sum of each individual food component of which the
caloric intake was determined as follows: chow: 3.31 kcal/g; fat:
9 kcal/g and sugar solution: 1.2 kcal/g. Animal experiments were
approved by the Committee for Animal Experimentation of the
Academic Medical Center of the University of Amsterdam.

Surgery and Procedure for
Intracerebroventricular (ICV) Injections
Rats were implanted with a permanent 22-gage guide cannula
(Plastics One, Bilaney, Germany) placed into the lateral ventricle
(coordinates 0.8 mm posterior from bregma, 1.4 mm lateral
from midline, 5.0 mm below the surface of the brain). Guide
cannulas were secured to the skull using three anchor screws and
dental cement and occluded by a 28-gage stainless steel dummy
cannula (Plastics One, Bilaney Consultants GmbH, Düsseldorf,
Germany) extending 0.5mmbeyond the guide. Immediately after
surgery, rats received an analgesic subcutaneously (Carprofen,
0.5 mg/100 g BW) and were housed individually. After recovery
from surgery, rats received a vehicle injection and 2 days later
were randomly assigned to either of the diet groups (CHOW,
fcHS, fcHF, or fcHFHS) and were maintained on their respective
diets throughout the remainder of the experiment. All ICV
injections were delivered in a volume of 3 µl manually with a
Hamilton syringe over 45 s. Cannula placement was checked by
inspecting post-mortem thionin-stained brain sections under a
low-power microscope.

Feeding Responses to MTII
After 4 weeks on either diet [CHOW (n = 5), fcHS (n = 5),
fcHF (n = 5), or fcHFHS (n = 6)] rats received an ICV injection
of 0.3 nmol Melanotan II acetate salt (MTII; Sigma–Aldrich,
Netherlands, M8693) or vehicle (PBS). On the experimental day,
all food components except water were removed and weighed
at the beginning of the light phase (10AM). Between 2 and
1 h before the dark phase, rats were injected with either MTII
or vehicle in randomized order using the same procedure as
described previously (van den Heuvel et al., 2014b). MTII was
administered prior to the dark phase in order to measure
an inhibition of physiological food intake. Food was returned
at lights off and food intake was measured 15 h later, in
order to determine the food consumption during their natural
eating period. Each rat received MTII in counterbalanced order,
separated by a week, due to the long-lasting anorectic effects of
MTII.

POMC and AgRP in Situ Hybridization
In a separate study, using the same dietary protocol, rats were
subjected again to CHOW (n = 7), fcHS (n = 7), fcHF
(n = 7), or fcHFHS (n = 7) for 4 weeks. Food intake and
body weight were monitored at least once a week. After 4 weeks
rats were decapitated between 0900 and 1000 and brains were
quickly frozen on dry ice and used for in situ hybridization.
Coronal sections of 20 µm were labeled with 33P antisense RNA
probes for POMC and AgRP mRNA according to the protocol
previously described (van den Heuvel et al., 2014a). The films

were developed and POMCandAgRP expression levels in arcuate
nucleus were quantitatively analyzed using an Epson-Perfection
4990 Photo-flatbed-scanner. All images (800 dpi) were analyzed
using ImageJ (Rasband, WS, NIH, Bethesda, MD, USA, http://
rsbweb.nih.gov/ij/ 1997–2005). Gray values were determined in
regions of interest and measured bilaterally. Specific signal was
calculated by the subtraction of the background value.

Statistical Analysis
All results are presented as means ± SEM. One-way analysis of
variance (ANOVA) was performed to determine the difference in
body weight, adiposity, caloric intake and gene expression levels.
If the ANOVA was significant, post hoc analysis was performed
to detect individual group differences (Tukey). Feeding responses
to MTII were first analyzed using two-way ANOVA to determine
effects of drug and diet.When significant, percentage suppression
from baseline was calculated and data were analyzed by one-
way ANOVA when groups were compared. If the AVOVA was
significant, post hoc analysis was performed to detect individual
group differences (Tukey). Significance was set at P < 0.05.

RESULTS

Energy Balance
After 4 weeks diet caloric intake in fcHFHS rats was significantly
higher compared to rats on CHOW, fcHS, and fcHF diet
[F(3,20) = 21,17; P < 0.01] (Table 1). Four weeks body weight
gain was increased in rats on fcHFHS diet compared with rats on
CHOW, fcHS, and fcHF diet [F(3,20)= 5.08; P < 0.05] (Table 1).
Epididymal fat mass accumulation was significantly increased in
rats on the fcHS, fcHF, and fcHFHS diets compared to rats on the
CHOW diet. Moreover, fat mass in rats on the fcHFHS diet was
significantly higher compared to rats on the fcHS and fcHF diets
[F(3,20) = 13,65; P < 0.001] (Table 1).

Arcuate Nucleus POMC and AgRP
Expression Levels
After 4 weeks diet, POMC and AgRP mRNA levels in the arcuate
nucleus of the hypothalamus were determined in rats on CHOW,
fcHS, fcHF, and fcHFHS diet. No significant differences were
found between the diet groups for POMC mRNA levels ANOVA
[F(3,27) = 0.27; P = 0.85]; CHOW 100 ± 8, fcHS 107 ± 10, fcHF
98 ± 4, fcHFHS 102 ± 8 in arbitrary units and as percentage
of CHOW. No significant differences were found between the
diet groups for AgRP mRNA levels ANOVA [F(3,27) = 0.57;
P = 0.64]; CHOW 100 ± 11, fcHS 101 ± 12, fcHF 102 ± 13,
fcHFHS 84 ± 7 in arbitrary units and as percentage of CHOW.

Feeding Response to Central MTII
After 4 weeks diet exposure, caloric intake was determined
15 h after administration of MTII in the lateral ventricle. MTII
decreased caloric intake in all diet groups (Figure 1A), but
the inhibitory effect was significantly different between groups
(Figure 1B). Two-way ANOVA on the raw data showed an effect
of Diet [F(3,58) = 15.22; P < 0.01], MTII [F(1,58) = 11.88;
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FIGURE 1 | Melanotan II (MTII) reduces caloric intake to a larger extent
in rats on the fcHF diet. Feeding response to MTII in rats on the CHOW,
fcHS, fcHF, or fcHFHS diet. Absolute caloric intake (A) and as percentage of
vehicle (B) 15 h after MTII ICV (0.3 nmol) upon 4 weeks diet exposure. Food
intake was significantly inhibited in all diet groups. The extent of inhibition was
significantly greater in fcHF rats. ∗Significantly different from vehicle injection in
the same diet (P < 0.05). $Significantly different from other diet groups
(P < 0.05).

P = 0.001], and Interaction [F(3,58) = 3.37; P = 0.025]. The
percentage change from baseline vehicle was calculated and
MTII was shown to significantly decrease food intake in all
diet groups (Figure 1B). Additionally, significant differences in
feeding responses to MTII between the groups were observed
[F(3,30) = 3.1; P = 0.041], with food intake in rats on the
fcHF diet being significantly lower than in the other diet groups
(Figure 1B).

MTII significantly decreased intake of the chow component
in all diet groups (Figure 2A). The intake of chow after MTII
(as percentage of vehicle) was 26 ± 6% (P < 0.01) in CHOW,
25 ± 6% (P < 0.01) in fcHS, 18 ± 8% (P < 0.05) in fcHF
and 27 ± 15% (P < 0.01) in fcHFHS diet (Figure 2B) and was
not significantly different between diet groups [F(3,20) = 0.22;
P = 0.88]. MTII strongly inhibited fat intake in rats on the
fcHF and fcHFHS diet (Figure 2C). The intake of fat after MTII
(as percentage of vehicle) was 10 ± 2% (P < 0.001) in fcHF
and 27 ± 14% (P < 0.001) in fcHFHS diet (Figure 2D) and

was not significantly different between diet groups (P = 0.26).
MTII also inhibited sugar intake in rats on the fcHFHS and fcHS
diet (Figure 2E). The intake of sugar after MTII (as percentage
of vehicle) was 65 ± 10% (P < 0.05) in fcHS and 59 ± 9%
(P < 0.01) in fcHFHS diet (Figure 2F) and was not significantly
different between diet groups (P = 0.68). One day after MTII
administration, all groups significantly lost body weight. The
body weight loss was not significantly different between diet
groups (data not shown).

DISCUSSION

We here show that MTII inhibited caloric intake to a larger
extent in rats on the fcHF diet compared to rats on the CHOW,
fcHFHS, or fcHS diet. As rats on the fcHF diet lacked the sugar
component and consumed more calories from fat compared
to rats on the fcHFHS diet, and fat intake was the most
inhibited after MTII administration, these data point toward
an important role for diet composition and particularly the fat
content in the diet in sensitivity to melanocortins. fcHF-fed rats
had similar caloric intake, body weight, adiposity, and plasma
leptin concentrations as rats on the fcHS diet (la Fleur et al., 2010;
van den Heuvel et al., 2014b), indicating that the response to
MTII is not explained by obesity. Moreover, rats on the fcHFHS
diet showed increased obesity, fat mass, and leptin levels (la Fleur
et al., 2010; van den Heuvel et al., 2014b), but did not show
altered response to MTII compared to rats on the CHOW diet.
Additionally, fcHS-fed rats did not show a reduced response
to MTII, further indicating that the increased fat content is
important for the enhanced response of MTII in rats on the
fcHF diet. Collectively, these data show that the response of
the melanocortin system is not explained by obesity but rather
by diet composition and particularly by the fat content of the
diet.

MTII inhibited all dietary components in rats on CHOW,
fcHS, fcHF, and fcHFHS diet, although sugar intake was less
inhibited compared to chow and saturated fat. This difference in
inhibition by MTII of the three different components could also
underlie the finding that total caloric intake was most reduced by
MTII in rats on the fcHF diet, as they did not consume sugar.
As the melanocortin system has been linked to preference for fat
intake (Hagan et al., 2001; Samama et al., 2003), the enhanced
total feeding inhibition to MTII in fcHF rats may be due to the
increased fat content of the fcHF diet compared to the fcHFHS
diet. Both the average percentual (49.6% fcHF vs. 26.7% fcHFHS)
and the absolute (49.1 kcal/day fcHF vs. 29.7 kcal/day fcHFHS)
basal intake of fat in rats on the fcHF diet is twice as high as
the average in rats on fcHFHS diet, which supports the idea that
the feeding response of the melanocortin system depends on diet
composition and particularly on the basal fat intake (Kinzig et al.,
2005; Morens et al., 2005).

The enhanced response in rats on the fcHF diet might
also have been due to alterations in endogenous melanocortin
signaling as a result of diet exposure (Harrold et al., 1999,
2000). Although in the current study we found that hypothalamic
POMC and AgRP mRNA levels were not different after 4 weeks
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FIGURE 2 | Melanotan II (MTII) strongly reduces chow and fat content. Effect of MTII on diet components chow (A,B), fat (C,D), and sugar (E,F) 15 h after
MTII ICV (0.3 nmol) upon 4 weeks diet exposure depicted as absolute intake (kcal) (A,C,E) and as % of vehicle intake (B,D,F). ∗Significantly different from vehicle
injection in the same diet (P < 0.05).

diet, we previously showed higher melanocortin receptor binding
levels in fcHF compared to fcHFHS rats after 1 week diet (van den
Heuvel et al., 2011). Therefore, changes in melanocortin receptor
density may underlie the differential response to MTII between

rats on the fcHF and on the fcHFHS diet, but we cannot link
these to changes in production of their ligands. On the other
hand, the differential feeding inhibition by MTII may be due to
alterations in neuropeptides downstream of the receptor as for
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example, both galanin (Akabayashi et al., 1994; Odorizzi et al.,
1999) and opioids (Hagan et al., 2001) have been proposed to
be involved in the melanocortin-induced changes in fat intake.
We here administered MTII in the lateral ventricle, which would
reach all areas of the brain including those involved in reward
(Samama et al., 2003). The specific effects of melanocortins
on fat intake have also been observed after third ventricle
as well as after local administration in several brain regions,
including PVN and amygdala (Boghossian et al., 2010). Future
research should investigate which brain areas and neuropeptides
are involved in the enhanced response to MTII in fcHF-fed
rats.

The fcHFHS diet represents several features of the human
obesity situation including increased fat mass, insulin resistance
and peripheral leptin resistance compared to rats on the CHOW,
fcHF, and fcHF diet (la Fleur et al., 2011; van den Heuvel et al.,
2014b). Moreover, as opposed to other animal models, rats on the
fcHFHS diet also show specific human like characteristics such
as persistent hyperphagia, snacking behavior (i.e., increased meal
frequency without reducing meal size) and increased motivation
behavior (even in sated animals; la Fleur et al., 2007, 2014; la Fleur
and Serlie, 2014). Interestingly, sensitivity to MTII is not reduced
in rats on the fcHFHS diet, as the feeding response to MTII was
similar to CHOW, suggesting that the downstream targets are

still active. This is in correspondence with other DIO models
(Pierroz et al., 2002) and models of leptin resistance such as
aging related and leptin-induced leptin resistance that also show
normal functioning of the melanocortin pathway upon MTII
treatment, despite the existence of leptin resistance (Scarpace
et al., 2003; Zhang et al., 2004).

CONCLUSION

Rather than the level of obesity, is the composition of the diet, in
particular the fat content, important in the feeding responses of
the melanocortin system.
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