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The Editorial on the Research Topic
Extinction Learning from a Mechanistic and Systems Perspective

Throughout life, we learn to associate stimuli with their consequences. But some of the new
information that we encounter forces us to abandon what we had previously acquired. This old
information is then subject to a new learning process that is called extinction learning. This involves
a large number of brain structures (Kattoor et al., 2013; Lissek et al., 2013, Lissek et al;; Merz
et al,, 2014). Extinction is an unusually complex learning process that can involve both Pavlovian
(classical; Pavlov, 1927; Lattal and Lattal, 2012) and operant (instrument) conditioning (Skinner,
1938; Bouton et al,, 2012). A further hallmark is its context-dependency (Bouton, 2004) that is
likely to rely on a tight interaction between the hippocampus and other brain areas (e.g., André
etal.; Icenhour et al,, 2015). Thus, one of the aims of the present Research Topic was to incorporate
studies that analyze the concert of neural structures that enable extinction learning.

The old memory trace may be partly, or not at all forgotten during extinction (Ungor and
Lachnit, 2006). It tends to re-emerge after a passage of time (spontaneous recovery), when
re-exposure to the context of original learning occurs (renewal), or unexpected exposure to the
unconditioned stimulus takes place (reinstatement). Such invasive memories are key symptoms
of anxiety or pain disorders. They especially occur in individuals with enhanced susceptibility
(Mosig et al.; Glombiewski et al., 2015). Although pathological fear in anxiety disorders can be
treated through extinction-based approaches, treatment is not always successful in the long-term,
underscoring the need to understand the mechanisms underlying impaired extinction. Therefore,
the second aim of the Research Topic was to include publications that are situated at the transition
between basic and clinical neuroscience.

Given the relevance of extinction, it is astonishing how little we know about extinction learning,
in terms of its neural fundaments and its development, especially when moving outside the realm of
fear extinction in rodents. The third aim of the Research Topic was therefore to include papers on
the uncharted territories of extinction learning that involve less-studied entities such as the immune
system (Hadamitzky et al., 2016) or hormonal factors (Wolf et al., 2015; Maren and Holmes, 2016),
less-studied species (Lengersdorf et al.) or novel paradigms (Wiescholleck et al., 2014).

One specific goal of this Research Topic was to offer a basis for trans-species comparisons,
as reflected by the spectrum of animals described that range from snails, through mice, rats,
and pigeons. Several of the studies also describe extinction learning in humans, including
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pharmacological approaches. A number of studies (André
et al; Lengersdorf et al; André and Manahan-Vaughan;
Andrianov et al; de Oliveira et al; Lissek et al.) addressed
neurotransmitter systems that are known to be involved in
other forms of learning (Morris, 2013; Seyedabadi et al., 2014;
Bauer, 2015) and in synaptic plasticity that is believed to
underlie learning (Harley, 2004; Lesch and Waider, 2012; Park
et al., 2013; Hansen and Manahan-Vaughan, 2014; Hagena
et al,, 2015). Here, for example, antagonism of N-methyl-D-
aspartate receptors (NMDAR) prevented appetitive extinction in
pigeons (Lengersdorf et al.), and GluN2B-containing NMDAR
were found to play a key role in extinction of conditioned
suppression of licking in rats (de Oliveira et al). In an
interesting corollary to the latter finding, Shumake and Monfils
describe how conditioned suppression of licking is far more
sensitive to extinction than freezing behavior, and along with
Lee et al. investigated the impact of reactivating the original
memory trace on extinction success. Examination of the role of
dopamine receptors in appetitive learning in rats (André and
Manahan-Vaughan) and predictive learning in humans (Lissek
et al.), highlight differences that may relate to the species, or the
extinction learning paradigm studied.

Studies with regard to the neural basis of extinction
learning, and its associated brain structures, revealed a specific
and experience-dependent role of microcircuitry within the
basolateral amygdala (Sangha). In their review article, Giustino
and Maren challenge the common assumption that the medial
prefrontal cortex (mPFC) mediates the expression, whereas
the infralimbic cortex (IL) mediates the suppression of fear
responses, whereas Lee at al. offer experimental evidence that
extinction learning and retrieval trigger differentiated responses
in the mPFC and amygdala. Goodman and Packard differentiated
between extinction learning of response and place learning,
and provide evidence that the effectivity of the extinction
learning strategy depends on the memory system (dorsolateral
striatum vs. hippocampus) that encoded the original experience.
In line with studies in rats (Gershman et al.), Shiban et al.
observed that gradually reducing the frequency of aversive
stimuli, in a Pavlovian fear conditioning paradigm in humans,
is more effective in averting the return of fear than abrupt
stimulus withdrawal, and Zlomuzica et al. demonstrate that
improved self-efficacy also improves fear extinction. By contrast,
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