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Obesity-associated comorbidities such as cognitive impairment and anxiety are
increasing public health burdens that have gained prevalence in children. To better
understand the impact of childhood obesity on brain function, mice were fed with
a high-fat diet (HFD) from weaning for 1, 3 or 6 weeks. When compared to
low-fat diet (LFD)-fed mice (LFD-mice), HFD-fed mice (HFD-mice) had impaired novel
object recognition (NOR) after 1 week. After 3 weeks, HFD-mice had impaired NOR
and object location recognition (OLR). Additionally, these mice displayed anxiety-like
behavior by measure of both the open-field and elevated zero maze (EZM) testing.
At 6 weeks, HFD-mice were comparable to LFD-mice in NOR, open-field and
EZM performance but they remained impaired during OLR testing. Glyburide, a
second-generation sulfonylurea for the treatment of type 2 diabetes, was chosen as
a countermeasure based on previous data exhibiting its potential as an anxiolytic.
Interestingly, a single dose of glyburide corrected deficiencies in NOR and mitigated
anxiety-like behaviors in mice fed with HFD-diet for 3-weeks. Taken together these
results indicate that a HFD negatively impacts a subset of hippocampal-independent
behaviors relatively rapidly, but such behaviors normalize with age. In contrast,
impairment of hippocampal-sensitive memory takes longer to develop but persists.
Since single-dose glyburide restores brain function in 3-week-old HFD-mice, drugs that
block ATP-sensitive K+ (KATP) channels may be of clinical relevance in the treatment of
obesity-associated childhood cognitive issues and psychopathologies.

Keywords: glyburide, anxiety, cognition, high-fat diet, oxidative stress

Abbreviations: DA, dopamine; DHEA, dehydroepiandrosterone; DIO, diet induced obesity; DOPAC, 3, 4-
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INTRODUCTION

With over one billion overweight and obese individuals
afflicted, world-wide overnutrition is a significant threat to
human health (Kelly et al., 2008). Obesity is associated
with increased susceptibility to various comorbidities like
depression (Leckie and Withers, 1967; Luppino et al., 2010),
type 2 diabetes (Wannamethee and Shaper, 1999), cardiovascular
disease (Wannamethee et al., 1998), and cancer (Vainio
and Bianchini, 2002). One of the root causes of obesity is
attributed to ingestion of dietary fat (Lissner and Heitmann,
1995) which parallels the global permeation of a ‘‘western
diet’’ (Cordain et al., 2005), where nearly 33% of total
energy derives from fat. Predictably, extension of the obese
phenotype into childhood is associated with added risks
including diminished cognition and executive function (Liang
et al., 2014). Additionally, obese children are susceptible
to certain psychological complications like attention deficit
hyperactivity disorder (ADHD), impulsivity, inattention and
anxiety (Daniels et al., 2005; Kalarchian and Marcus, 2012).
Current work demonstrates that childhood and adolescent
obesity is disadvantageous, especially as psychological illness
and/or cognitive impairment persists even when consumption
of a high-fat diet (HFD) is well in the past (Wang et al.,
2015). Given the projected prevalence of childhood obesity in
the next 30 years (Ogden et al., 2014) and the magnitude of
associated co-morbidities, identifying therapeutics to address
this accelerating health concern is crucial.

Cognitive impairment and psychological abnormalities
described in mouse models of diet-induced obesity (DIO;
Buettner et al., 2012) are often connected to a reduction in
molecules associated with neurogenesis and/or learning/memory
such as brain derived neurotrophic factor (BDNF; Molteni
et al., 2002), dopamine (DA; Kaczmarczyk et al., 2013) and
inflammatory bioactives (Pistell et al., 2010). Recent studies
demonstrate that DIO-associated brain dysfunction is not solely
attributable to these mechanisms because hippocampal-
based memory impaired by dietary fat occurs without
significant change in BDNF (Heyward et al., 2013). Along
similar lines, prolonged HFD-feeding does not upregulate
brain-based IL-1β, TNF-α or IL-6 mRNA, even though
sickness-like behaviors suggestive of brain inflammation
are observed (Lavin et al., 2011). In juvenile animals,
however, a HFD can impact working through pathways
tied to glucocorticoids, neurogenesis and leptin (Boitard
et al., 2012, 2014, 2015; Valladolid-Acebes et al., 2013),
and it was found that this exposure impacted cognition in
adulthood (Boitard et al., 2012). Although the brain-based
complications of obesity are phenotypically well-described
in animals, pharmacologic interventions that overcome
such morbidities that are easily translated into humans are
lacking.

The second-generation sulfonylurea, glyburide, has long
been used in the treatment of type 2 diabetes (Kolterman
et al., 1984; Groop, 1992). Glyburide inhibits sulfonylurea
receptor 1 (Sur1) preventing KATP channel function (Ashcroft,
2005). It is this action on pancreatic β-cells that results

in insulin release and improved blood glucose homeostasis
(Niki et al., 1989; Zini et al., 1991). In turn, glyburide
shows promise as is a promising brain therapeutic due to
its ability to cross the blood-brain barrier (Simard et al.,
2012). Since it has been explored as a countermeasure for
traumatic brain injury (TBI), stroke, and spinal cord injury,
it may be a suitable agent for other injuries and diseases as
well (Kunte et al., 2007; Simard et al., 2009a,b; Patel et al.,
2010). While glyburide has been explored as a mitigating
agent in Alzheimer’s disease (Lavretsky and Jarvik, 1992),
neuroinflammation (Lamkanfi et al., 2009; Koh et al., 2011)
and oxidative stress-associated brain injury (Nazaroglu et al.,
2009), little is known about the impact of sulfonylureas on
the mental function of the disease it was originally designed
to treat. To determine whether the sulfonylurea, glyburide,
positively impacts HFD-induced cognitive impairment and
anxiety-like behaviors in young mice, such behaviors were
examined in animals 1, 3 and 6 weeks post-weaning fed
with a low-fat or HFD. Thus, this pre-clinical study examines
the role of glyburide as a deployable countermeasure to
combat brain dysfunction associated with the early-life ingestion
of a HFD.

MATERIALS AND METHODS

Animals
The use of animals was in accordance with the Institutional
Animal Care and Use Committee (IACUC) approved protocols
at the University of Illinois Urbana, IL, USA. C57BL/6J
male mice (3–4 weeks old) were purchased from Jackson
Laboratories (Bar Harbor, ME, USA). Mice were placed
on experimental diet 1 week after (between 4–5 weeks
of age prior to puberty) arrival to allow for acclimation.
Mice were group-housed (8 per cage), unless otherwise
noted, in shoebox cages (length 46.9 cm; width 25.4 cm;
height 12.5 cm) and allowed free access to food and
water. Housing temperature (72◦F) and humidity (45–55%)
were controlled as was a 12/12 h reversed dark-light cycle
(light = 1000–2200 h). All behavioral and biochemical
experiments were performed in the dark cycle and separate
cohorts to eliminate repeated measures as a factor. Individual
mice were used in a single behavioral test. Total number of mice
used was 396.

Diets, Weights, Blood Glucose
Mice were initially fed a standard chow of NIH-31 modified
open formula (Teklad 7013, Madison, WI, USA) containing
18% calories from protein, 6.2% from fat and 45% from
carbohydrates. Mice were then transferred to a feed of open
source uniform-base diets, for respective studies, containing
either 10% calories from fat (low-fat diet [LFD]; D12450B,
Research Diets, New Brunswick, NJ, USA) or 60% calories from
fat (HFD; D12492, Research Diets, New Brunswick, NJ, USA).
Both diets provided 20% calories from protein. Mouse weight
was recorded for the respective weeks using an Adventurer
Pro digital scale (Ohaus, Parsippany, NJ, USA). Blood glucose

Frontiers in Behavioral Neuroscience | www.frontiersin.org 2 August 2016 | Volume 10 | Article 156

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Gainey et al. Glyburide Ameliorates HFD-Induced Impairments

testing results were recorded for the respective weeks by fasting
mice for 12 h during their light cycle and sampling tail blood.
For glyburide studies, blood glucose testing was conducted
immediately post-behavior testing with ad libitum access to food.
Glucose was quantified by using an AlphaTRAK blood glucose
monitoring system (Abbott Laboratories, North Chicago, IL,
USA).

Food Intake
As previously described (York et al., 2012), mouse cohorts used
to determine food intake were individually housed for up to
6 weeks. Food intake was calculated daily as the difference in
weight of food in the feed bowl before and after removal from
the food intake arena.

Plasma Non-Esterified Fatty Acids (NEFAs)
As described previously (Moon et al., 2014), mice were
euthanized and blood collected via cardiac puncture using
BD Microtainer Tubes with Lithium Heparin (BD Diagnostics,
Franklin Lakes, NJ, USA). Blood was centrifuged at 8000× g
for 10 min at 4◦C. Supernatant was collected and analyzed.
The resultant plasma non-esterified fatty acids (NEFA) were
measured on an AU 680 Chemistry System (Beckman Coulter,
Brea, CA, USA) using an enzymatic colorimetric NEFA
test kit (Wako, Richmond, VA, USA). This kit is designed
to measure total NEFA levels excluding short-chain fatty
acids.

Injectables
Glyburide (6.6 mg/kg/mouse; Sigma-Aldrich, St. Louis, MO,
USA) was administered IP as described (Chiu et al., 2014)
immediately prior to novel object training for mice at 1, 3 and 6
weeks on diet. Mice were injected 4 h prior to elevated zero maze
(EZM) measured in mice on diet for 3 weeks only.

Novel Object Recognition (NOR)
Testing was performed as described in the studies by Chiu
et al. (2012) and York et al. (2012). In brief, group housed
mice were transferred to a shoebox-style training arena
(26 cm × 48 cm × 21 cm) containing two identical objects
(LEGO toys in distinct configurations) on one side of the arena.
Mice were allowed to investigate the objects for 24 h with
food provided ad libitum. After training, mice were returned
to their home cage for 1 h. After the 1 h refractory period,
subject mice were transferred to individual testing arenas,
without food but with bedding, where they were presented with
one familiar object and one novel object in a spatial location
comparable to training. Mouse exploration was video recorded
for 5 min and evaluated by using EthoVision XT 7 video tracking
software (Noldus Information Technology, Leesburg, VA, USA).
A discrimination index was used to determine cognition and
calculated as the amount of time spent examining the novel
object divided by the total time spent investigating both
objects.

Object Location Recognition (OLR)
Testing was performed as described (York et al., 2012) and
was similar to novel object recognition (NOR) except that
upon testing the subject mouse was re-exposed to two familiar
objects (LEGO toys) where one was placed at the opposite
end from training. Spatial clues were placed on the outside
of the cage to assist spatial determination. As above, mouse
exploration was video recorded for 5 min and evaluated by
using EthoVision XT 7 video tracking software. A discrimination
index was used to determine cognition and calculated as
the amount of time spent examining the object in a novel
location divided by the total time spent investigating both
objects.

Elevated Zero-Maze
Testing was performed as described in the study by York et al.
(2012). In brief, group-housed mice were individually housed
for 24 h. For testing, subject mice were individually placed
within the high walls of an EZM (57.15 cm outer diameter,
6 cm track, 72 cm from the floor). The maze was composed
of four quadrants with two areas having high walls (14 cm
tall) and two areas without walls. Mouse exploration was video
recorded for 5 min and evaluated by using EthoVision XT 7
video tracking software. Time spent in the open quadrants was
defined as at least 50% of the body being outside of the high-
walled areas.

Open Field Test
As above, group-housed mice were individual housed for 24 h.
Mice were individually tested by placing subject mice in a lit
novel open field arena (66 cm× 45.7 cm× 22.9 cm) generating a
9 cm shadow from respective side walls (York et al., 2012). Mouse
exploration was video recorded for 5 min and evaluated by using
EthoVision XT 7 video tracking software. Time spent in the open
area was equated to time spent in the non-shadowed areas.

Glutathione Assay
As previously described, PBS perfused brain regions were
frozen in liquid nitrogen then freeze fractured (Kaczmarczyk
et al., 2013) in reaction buffer containing 50 mM NaCl
(Fisher Scientific, Fair Lawn, NJ, USA), 1 mM EDTA, 50 mM
HEPES, pH 7.0 (USB Corporation, Cleveland, OH, USA)
using the TissueLyser II (Qiagen, Valencia, CA, USA) at
a rotational frequency of 30 s−1 for 2 min. Lysates were
centrifuged at 10,000× g for 15 min at 4◦C and the supernatant
recovered. The supernatant was deproteinated with an equal
volume of metaphosphoric acid (Sigma-Aldrich, St. Louis,
MO, USA) and vortexing. Samples were re-centrifuged at
8000× g for 5 min. Supernatant and pellets were saved.
Glutathione, both reduced and oxidized, was determined
using the Glutathione Assay Kit (Cayman Chemical, Ann
Arbor, Michigan) following the manufacturer’s instructions.
Glutathione (GSH) and glutathione disulfide (GSSG) were
quantified using an ELx800 Absorbance Microplate Reader
(BioTek Instrument, Winooski, VT, USA) at 405 nm in 5 min
intervals for 30 min. Protein precipitates were eluted with
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reaction buffer and quantified using the DC Protein Assay
(Bio-Rad, Hercules, CA, USA).

Quantitative PCR (qPCR)
Brain regions were dissected from PBS perfused whole
brains and RNA isolated (York et al., 2012). RNA was
reverse transcribed using the High-Capacity cDNA Reverse
Transcription Kit (PN 4368813; Applied Biosystems, Foster
City, CA, USA). The TaqMan Gene Expression primers used
were: IL1R2 (Mm00439622_m1), BDNF (MM01334042_m1),
Arc (Mm01204954_g1), iNOS (Mm00440502_m1), eNOS
(Mm00435217_m1), casp1 (Mm00438023_m1), TXNIP
(Mm01265659_g1), and superoxide dismutase (SOD1;
Mm01344233_g1). Quantitative PCR (qPCR) was performed on
a 7900 HT Fast Real-Time PCR System (Applied Biosystems,
Foster City, CA, USA) using TaqMan Universal PCR Master
Mix (Applied Biosystems, Foster City, CA, USA). To compare
gene expression, a parallel amplification of endogenous RPS3
(Mm00656272_m1) was performed. Reactions with no reverse
transcription and no template were included as negative
controls. Relative quantitative evaluation of target gene to RPS3
was performed by comparing the values of ∆Cts, where Ct is the
threshold concentration.

Statistical Analysis
Data analysis was conducted using Sigma Plot11.2 (Systat
Software, Chicago, IL, USA). Body weight, fasting blood glucose
(FBG), plasma NEFA, food intake, NOR and object location
recognition (OLR) total investigation, EZM performance, open
field testing (OFT), and PCR analysis used one-way analysis of
variance (ANOVA) to define the main effects followed by Tukey
adjustment. All experiments with NOR and OLR discrimination
index analyzed using a one-sample t-test comparing novel object
preference to chance level of 0.5. The Kruskal-Wallis one-way
ANOVA on ranks was used for GSH:GSSG ratio for analyzing
the main effect of diet and treatment in glyburide experiment,
due to variance within groups. Glyburide experiments for blood
glucose were analyzed by two-way ANOVA and time spent in
open of EZM and closed arm entries by one-way ANOVA test
to determine the main effects of diet and treatment followed
by a Tukey adjustment. Statistical significance was assumed at
p < 0.05 and all data are presented as means± SEM.

RESULTS

HFD Feeding for 3 Weeks Increases Body
Weight and Blood Glucose Without
Impacting Plasma NEFA Concentrations,
Food Ingestion, and Inflammatory Gene
Expression
To delineate the physiologic impact of the diets administered, the
aforementioned biometrics were examined after 1, 3 and 6 weeks
of feeding. When HFD-mice were compared to LFD-mice at 3
and 6 weeks post feeding, there was a 30% and 42% increase,
respectively, in FBG levels. These findings correlated with a
13.4% and 28.4% rise in body weight, respectively (see Table 1).
Interestingly, food intake was comparable in HFD-mice and
LFD-mice, but this resulted in a 37%, 28%, and 14% increase in
calories ingested in HFD-mice after 1, 3 and 6 weeks of feeding,
respectively (see Table 1). Since HFD-associated brain-based
inflammation is implicated in cognitive impairment, biomarkers
of pro-inflammation were examined (Table 2). Interestingly,
only hippocampal iNOS gene transcripts in HFD-mice showed
an upregulation (99% vs. LFD-mice).

HFD-Mice Develop Object Memory
Impairment and Transient Anxiety-Like
Behaviors
HFD-mice and LFD-mice were examined after 1, 3 and 6 weeks
of diet using a NOR task (Figure 1A). NOR is an effective
measure of hippocampal-independentmemory (Wan et al., 1999;
Brown and Aggleton, 2001; McGaugh, 2004). At 1 and 3 weeks of
diet, HFD-mice showed no preference for a novel object while
LFD-mice showed preference for novel objects over that of the
familiar ones (one-sample t-test: 1 week diet (LFD)- P < 0.001,
3 week diet (LFD)- P < 0.022; Figure 1A). After 6 weeks
of diet, however, HFD-mice developed novel object preference
which was similar to that of LFD-mice (one-sample t-test:
6 week diet (LFD)- P < 0.001, 6 week diet (HFD)- P = 0.005;
Figure 1A). As an additional control, LFD-mice and chow-fed
mice were compared. After 1 week of feeding, NOR performance
in chow-fed and LFD-mice were comparable (one-sample t-test:
SC- P = 0.002, LFD- P = 0.001; Figure 1B). HFD-mice and
LFD-mice demonstrated similar total object exploration times

TABLE 1 | Body weight (g), blood glucose (mg/dL), plasma NEFA (mEq/L), food intake (g/d), and energy intake (kcal/g/d) of mice fed with LFD or HFD.

Time on diet

1 week 3 week 6 week

Diet LFD HFD LFD HFD LFD HFD

Body weight 17.9 ± 0.4a 19.3 ± 0.9b 20.9 ± 0.4a 23.7 ± 0.5b 22.5 ± 0.5a 28.9 ± 0.5b

FBG 129.9 ± 8.2 164.1 ± 17.8 144.0 ± 10.1a 187.1 ± 6.9b 146.3 ± 16.2a 208.0 ± 16.0b

Plasma NEFA 0.784 ± 0.03 0.662 ± 0.23 0.633 ± 0.06 0.742 ± 0.04 0.638 ± 0.87 0.839 ± 0.10
Food intake 3.20 ± 0.6 3.23 ± 0.08 3.17 ± 0.17 2.98 ± 0.15 3.42 ± 0.7 2.88 ± 0.12
Energy intake 12.31 ± 0.18a 16.92 ± 0.41b 12.21 ± 0.18a 15.59 ± 0.41b 13.2 ± 0.18a 15.1 ± 0.41b

Results are expressed as mean ± SEM, n = 4–30 per group. One-way ANOVA revealed main effect of diet (P < 0.05). Letters within rows indicate significant differences.
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(one-way ANOVA: 1 week diet- F(1,22) = 0.08; P= 0.785, 3 week
diet- F(1,22) = 1.22; P = 0.281, 6 week diet- F(1,22) = 0.317;
P = 0.579; Figure 1D).

When hippocampal-memory was examined using OLR
(Kesner et al., 1993; Broadbent et al., 2004; Jablonski et al., 2013)
a persistent memory impairment was identified in HFD-mice
compared to that of LFD-mice (Figure 1B). After 1 week
of diet OLR was not impacted in HFD-mice (one-sample
t-test: 1 week diet (LFD)- P < 0.001, 1 week diet (HFD)-
P = 0.018; Figure 1C). However, after a period of 3 and
6 weeks of diet, HFD-mice lacked preference for the novel object
whereas LFD-mice were able to distinguish between novel and
familiar in the OLR task (one-sample t-test: 3 week diet (LFD)-
P = 0.048, 6 week diet (LFD)- P < 0.001; Figure 1C). As
above, diet did not impact combined object exploration (one-way
ANOVA: 1 week diet- F(1,12) = 1.870; P = 0.197, 3 week diet-
F(1,14) = 1.281; P= 0.277, 6 week diet- F(1,22) = 0.565; P= 0.460;
Figure 1E).

To explore the impact of a HFD on anxiety-like behavior mice
were tested in an EZM. After 3 weeks of diet, time spent in the
center of the EZM was reduced in HFD-mice compared to the
time spent by LFD-mice (one-way ANOVA: F(1,30) = 10.333;
P = 0.003; Figure 1F). After 1 or 6 weeks of diet, no difference

between LFD-mice and HFD-mice was observed. To further
explore if a HFD engendered trait as opposed to state anxiety
(Moon et al., 2015), the OFT was utilized (Prut and Belzung,
2003). HFD-mice spent a decreased amount of time in the
open area of the OFT after 3 weeks of diet when compared
to LFD-mice (one-way ANOVA: F(1,23) = 4.446; P = 0.047;
Figure 1G) and a similar amount of time in open after 1 or 6
weeks of diet.

The GSH:GSSG Ratio in the Amygdala and
Hippocampus is Reduced by an HFD
Since antioxidant capacity can impact memory (Alzoubi et al.,
2013; Xu et al., 2014) brain GSH and GSSG was examined.
After 3 weeks of diet, there was a 54% and 43% increase
in the GSH:GSSG ratios in the amygdala and hippocampus,
respectively, when LFD-mice were compared to HFD-mice
(Kruskal-Wallis one-way ANOVA: amygdala- Q = 2.935;
P = 0.038; Figure 2A, hippocampus- Q = 2.449; P = 0.014;
Figure 2B). GSH:GSSG ratios were not different in LFD-mice
and HFD-mice after 1 and 6 weeks of diet. Glyburide, which
is known to increase antioxidant capacity (Patel et al., 1987;
Chugh et al., 2001), raised the GSH:GSSG ratio 32.3% in the

FIGURE 1 | High-fat diet (HFD) mice develop object memory impairment and transient anxiety-like behaviors. HFD-mice (HFD), low-fat diet (LFD)-mice,
and/or standard chow-mice (SC) underwent novel object recognition (NOR) at the times indicated (NOR) (A), and at 1 week after diet (B). HFD-mice (HFD) and
LFD-mice (LFD) underwent object location recognition (OLR) testing at the times indicated (C). Total time spent investigating both novel and familiar objects were
determined for NOR (D) and OLR (E). HFD-mice and LFD-mice were examined using elevated zero maze (EZM) (F) and the open field test (OFT) (G). Discrimination
index for NOR and OLR was defined as time spent exploring novelty divided by time spent investigating both objects. All results are expressed as means ± SEM;
n = 4–16, values with an asterisk are significant at p < 0.05, using one-sample t-test with novel object preference compared with chance level of 0.5 and one-way
analysis of variance (ANOVA).
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TABLE 2 | Impact of LFD or HFD feeding on gene expression in the hippocampus and amygdala after 3 weeks of feeding.

Amygdala Hippocampus

Gene LFD HFD LFD HFD

Arc3.1 1.000 ± 0.140 0.759 ± 0.436 1.000 ± 0.250 0.751 ± 0.216
iNOS 1.000 ± 0.157 0.783 ± 0.147 1.000 ± 0.177a 1.993 ± 0.314b

eNOS 1.000 ± 0.087 0.965 ± 0.144 1.000 ± 0.119 1.277 ± 0.088
IL1-R2 1.000 ± 0.124 0.879 ± 0.316 1.000 ± 0.103 0.981 ± 0.201
Casp1 1.000 ± 0.035 0.856 ± 0.152 1.000 ± 0.152 0.936 ± 0.068
TXNIP 1.000 ± 0.108 1.075 ± 0.034 1.000 ± 0.196 0.996 ± 0.158
SOD1 1.000 ± 0.121 0.811 ± 0.044 1.000 ± 0.126 1.114 ± 0.080
BDNF 1.000 ± 0.112 1.333 ± 0.130 1.000 ± 0.168 1.092 ± 0.246

Results are expressed as relative fold change in mRNA expression (mRNA), means ± SEM; n = 4. Results within individual rows without a common superscript letter are

significantly different. Letters within rows indicate significant main effect of diet.

amygdala, in HFD-mice after 3 weeks of diet (Kruskal-Wallis
one-way ANOVA: Amygdala- Q= 2.748; P= 0.050; Figure 2C).

Glyburide Reduces Anxiety-Like Behaviors
Associated with a HFD After 3 Weeks
of Diet
After glyburide treatment, HFD-mice and LFD-mice spent
equivalent times exploring the open and closed arms of the EZM
(one-way ANOVA: Gly- F(1,35) = 0.277; P = 0.602; Figure 3A;

F(1,35) = 0.166; P = 0.686; Figure 3B). Importantly, injection
of saline did not prevent anxiety-like behaviors associated with
a HFD (one-way ANOVA: Sal- F(1,33) = 4.460; P = 0.043;
Figure 3A; F(1,33) = 6.264; P = 0.018; Figure 3B). HFD-mice
and LFD-mice did not differ in distance moved in the EZM (see
Figure 3C). As expected, post hoc analysis showed that glyburide
resulted in a 16.5% reduction in non-FBG levels (two-way
ANOVA: HFD (Sal vs. Gly)- Q = 4.506; P = 0.003; Figure 3D)
and was associated with an overall drug effect (two-way ANOVA:
Sal vs. Gly- F(1,41) = 9.418; P = 0.004; Figure 3D).

FIGURE 2 | The GSH:GSSG ratio in the amygdala and hippocampus is reduced by a HFD. Glutathione (GSH) and glutathione disulfide (GSSG) were
measured in HFD and LFD-mice and presented as GSH:GSSG in both the amygdala (A) and hippocampus (B). GSH:GSSG ratios in amygdala and hippocampus of
HFD-mice injected with glyburide (C). Results are expressed as means ± SEM, n = 5–10, values with an asterisk are significant, p < 0.05 using Kruskal-Wallis
one-way ANOVA on ranks.
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FIGURE 3 | Glyburide reduces anxiety-like behaviors associated with a HFD after 3 weeks of diet. HFD and LFD-mice were administered either saline or
glyburide and examined after 4 h in an EZM. Time in the open (A) and closed arms (B) are presented. Similarly treated HFD- and LFD-mice were examined for
locomotion (C), and post-behavior blood glucose (D). All results are expressed as mean ± SEM; n = 10–18, values without a common subscript or asterisk are
different (a vs. b, p < 0.05) with (A,B) analyzed using one-way ANOVA and (C,D) using two-way ANOVA.

Memory is Improved by Glyburide in
HFD-Mice After 3 Weeks of Diet
At 1, 3 and 6 weeks of diet, HFD-mice were unable to
discriminate novelty in the NOR and OLR tasks (one-sample
t-test: 1 week NOR (LFD-Sal)- P = 0.013, 1 week (HFD-sal)-
P = 0.249; Figure 4A; 3 week NOR (LFD-Sal)- P = 0.008,
3 week (HFD-Sal)- P= 0.089; Figure 4B; 3 week OLR (LFD-Sal)-
P < 0.001, 3 week (HFD-Sal)- P= 0.145; Figure 4C; 6 week OLR
(LFD-Sal)- P= 0.005, 6 week (HFD-Sal)- P= 0.644; Figure 4D).
Interestingly, glyburide restored novelty preference in HFD-mice
in the NOR task after 3 weeks of diet (one-sample t-test: 3 week
NOR (LFD-Gly)- P = 0.025, (HFD-Gly)- P < 0.001; Figure 4B),
but not at 1 or 6 weeks of diet (one-sample t-test: 1 week
NOR (LFD-Gly)- P = 0.018, 1 week (HFD-Gly)- P = 0.165;
Figure 4A; 6 week OLR (LFD-Gly)- P = 0.002, 6 week (HFD-
Gly)- P = 0.915; Figure 4D) and not for OLR (one-sample t-test:
3 week OLR (LFD-Gly)- P 0.014, 3 week (HFD-Gly)- P = 0.351;
Figure 4C).

DISCUSSION

Overweight children are predisposed to social and emotional
complications tied to overnutrition including depression, low

self-esteem and learning problems (Mellbin and Vuille, 1989;
Daniels et al., 2005). Origination of these learning problems is
associated with inferior social skills (Dietz, 1998) and anxiety
(Williams, 2001). In addition, controversy exists as to whether
the overweight/obese phenotype is a root cause of childhood
social and emotional problems or a sequela of resultant bullying
(Eisenberg et al., 2003). In juvenile mice, a short-term (1-week)
HFD feeding impairs behavior as we have previously shown
(Kaczmarczyk et al., 2013) and as shown here (Figure 1A).
Consistently, impaired NOR appears associated with short-
term overnutrition, as opposed to impaired OLR which takes
longer to manifest (3 weeks; Figure 1B). Interestingly, this early
impairment in NOR is not associated with FBG or plasma
NEFAs but does positively correlate with energy intake (Table 1).
These findings support the contention that learning problems
associated with overnutrition are not entirely linked to the
overweight/obese body type and its negative perception by
industrialized peoples (Murray et al., 2009; Holloway et al.,
2011).

Another important finding is that impairment of OLR
is longer lasting than impairment of NOR (Figure 1). The
advantage of using NOR and OLR for memory testing is that
they are easy to perform, involve a similar paradigm but test
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FIGURE 4 | Memory is improved by glyburide in HFD-mice after 3 weeks of diet. HFD and LFD-mice were administered either saline or glyburide after a
1 week of diet and examined using NOR testing (A). HFD- and LFD-mice were administered either saline or glyburide after a 3 weeks of diet and examined using
NOR (B) and OLR (C) testing. HFD and LFD mice were administered either saline or glyburide after a 6 weeks of diet and examined using OLR (D) testing.
Discrimination index was defined as time spent exploring novelty divided by time spent investigating both objects. Results are expressed as means ± SEM; n = 4–6,
values with an asterisk are significant at p < 0.05, using one-sample t-test with novel object preference compared with chance level of 0.5.

different types of memory. NOR is much more hippocampal-
independent than is OLR (Wan et al., 1999; Brown and Aggleton,
2001; McGaugh, 2004). In contrast, OLR is more dependent on
spatial memory and is, thus, more hippocampal-sensitive (Moses
et al., 2005). Our findings are supported by recent work which
shows that 23 weeks of HFD feeding in mice impairs OLR but
not NOR (Heyward et al., 2013). In addition, we previously found
that NORwas intact in HFD-mice on diet for 10–12 weeks (Lavin
et al., 2011). Taken together, the clinical significance of these
works is their relationship to dementia and type 3 diabetes (T3D;
de la Monte and Wands, 2008).

In T3D, lack of brain-based insulin production or the
presence of brain-based insulin resistance (Biessels et al., 1998;
Lannert and Hoyer, 1998; Kodl and Seaquist, 2008) precipitates
memory dysfunction with symptomatology that overlaps that
of Alzheimer’s disease (Gasparini et al., 2001; Steen et al.,
2005; Deng et al., 2009). Insulin is required for new memory
creation by facilitating synaptic plasticity (van der Heide et al.,
2006) and HFD-induced insulin/IGF-1 resistance (Spielman
et al., 2014) which appears important to T3D (Watson and
Craft, 2004; Vardy et al., 2007), especially in the hippocampus
(McNay et al., 2010; Grillo et al., 2015). Given that HFD-
mice have an elevation in FBG (Table 1), it is not surprising
that impairment in hippocampal-dependent memory would be
coincident (Figure 1). Furthermore, HFD-induced elevations in

FBG are caused by insulin resistance (Hirosumi et al., 2002).
What was not anticipated is the rapidity by which a HFD impairs
hippocampal memory. Although Beilharz et al. (2014) found a
similar phenomenon in their study, they concluded that dietary
sugar was the critical factor. Sugar availability (∼6.7% sucrose)
was low in the diets used here. Thus, the hippocampal memory
impairment observed appears dependent on fat content not on
the sugar content.

Previous work by André et al. (2014) showed cognitive
impairment and anxiety-like behaviors in mice fed with HFD.
In their study, the postulated mechanism was tied to pro-
inflammatory cytokines and indoleamine 2, 3-dioxygenase
(IDO) activity. In contrast, Kaczmarczyk et al. (2013)
demonstrated no brain-based pro-inflammation in HFD-
exposed mice and that IDO knockout mice were as susceptible
to HFD-induced memory impairment as were the controls. A
key difference between the studies of Kaczmarczyk et al. (2013)
and André et al. (2014) was the length of diet which was marked
shorter in the latter’s study. Finally, Del Rio et al. (2016) fed
juvenile mice a short-term HFD resulting in cognitive deficits
and an anti-depressive phenotype. Anxiety-like behaviors
were not observed, but the diet that Del Rio et al. (2016) used
contained 45% fat as opposed to the 60% used in this study.

Why a HFD impacts hippocampal-independent functions
like NOR and anxiety-like behaviors (Figures 1A,D,E) rapidly
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and transiently is not clear. Previous work shows that oxidative
stress is deleterious to brain function (Shukitt-Hale, 1999;
Dröge and Schipper, 2007). Specifically, anxiety-like behaviors
manifest in mice when the GSH:GSSG ratio is reduced
and cytosolic reactive oxygen species are increased (Llorente-
Folch et al., 2013). While Figure 2 shows a drop in the
GSH:GSSG ratio in HFD-mice compared to LFD-mice, this
result appears as a consequence of a HFD-induced suppression
of a rise in the GSH:GSSG ratio. Interestingly, 7 weeks
marks the approximate sexual maturation of male C57BL/6J
mice (range 6–8 weeks; Fox and Witham, 1997). Thus, male
sexual maturation appears to be accompanied by a spike in
the brain GSH:GSSG ratio (Figure 2). Mechanistically, this
observation may be tied to an increase in testosterone since
brain GSH in mice (Atroshi et al., 1990) is augmented by
its administration. Additionally, sexual maturation increases
the brain-active antioxidant dehydroepiandrosterone (DHEA;
Hopper and Yen, 1975; McIntosh and Berdanier, 1991; Aly
et al., 2011), and DHEA favorably impacts the hippocampus
in neurodegenerative diseases (Charalampopoulos et al., 2008).
Glyburide, especially during uncontrolled diabetes, increased
reduced glutathione (Chugh et al., 2001). Such findings lend
credence to our results demonstrating that glyburide increased
the GSH:GSSG ratio in the brain. However, this effect appears
brain-region specific, when the amygdala and hippocampus are
compared.

As Figures 3, 4 illustrate, an acute single dose of glyburide
prevents HFD-induced memory impairment and anxiety-like
behaviors indicating a role for this sulfonylurea in overnutrition-
associated brain dysfunction in juvenile mice. Previously, we
demonstrated that glyburide can block the activation of brain
caspase-1 triggered by adenosine (Chiu et al., 2014) which is
a key biologic in hypoxia-induced anterograde amnesia (Chiu
et al., 2012). Since overnutrition is associated with endoplasmic
reticulum (ER) stress (Mollica et al., 2011), it is theorized that
the overnutrition-associated oxidative stress causes dysregulated
purine metabolism (Al-Rubaye and Morad, 2013). Subsequent
cellular release of ATP and its precursors rapidly increases
the interstitial concentration of adenosine (Chiu and Freund,
2014) which through the A2A adenosine receptor triggers
neuronal hyperpolarization in a KATP channel dependent
manner (Popoli et al., 2002). Hence the relevance of adenosine
to neurodegeneration and sleep (Portas et al., 1997; Stone, 2005)
and the interest in caffeine and its derivatives as neuroprotectants
and CNS stimulants (Schwarzschild et al., 2002; Barranco
Quintana et al., 2007). Interestingly, a recent study identified the
P2X7 receptor as a potential link between anxiety in rats and a
HFD (Dutheil et al., 2016). This study, however, demonstrated

HFD-induced brain inflammation as the potential mechanism.
As noted, brain-based inflammation was not observed here likely
due to our use of a short-term HFD feeding. Dutheil et al. (2016)
fed rats an HFD for 16 weeks. Thus, different pathways are
likely at play during the early (3 week) and late (12–16 week)
manifestations of anxiety associated with a HFD.

Glyburide can also boost SOD and catalase activity
(Nazaroglu et al., 2009) mitigating oxidative stress in a canonical
fashion. However, due to its limited impact on blood glucose
(Figure 3), this mechanism seems unlikely In HFD-mice fed
with fat for at least 6 weeks, memory-impairment may be due
to hyperglycemia and the role blood glucose has in elevating
extracellular amyloid-β protein in the hippocampus (Macauley
et al., 2015).

In summary, short-term HFD-feeding induces both cognitive
impairment and anxiety-like behaviors which parallel symptoms
seen in childhood obesity. These results coincide with a reduction
in antioxidant capacity as exhibited by a suppressed GSH:GSSG
ratio. Importantly, we demonstrated that administration of
glyburide ameliorated hippocampal-independent brain function
in HFD-mice. Unfortunately glyburide did not influence
the hippocampal-sensitive memory task tested. Concordantly,
glyburide increased the GSH:GSSG ratio in the amygdala but not
in the hippocampus. Therefore, glyburide appears to selectively
increase antioxidant capacity in the brain resulting in mitigation
of hippocampal-independent impairments linked to a short
term exposure to a HFD. These results suggest a unique use
for glyburide in the prevention of anxiety and hippocampal-
independent cognitive impairment. While the exact mechanism
of action requires further study, antioxidant capacity appears to
be an important glyburide target.
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