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Cardiac signals reflect the function of the autonomic nervous system (ANS) and
have previously been associated with a range of self-regulatory behaviors such
as emotion regulation and memory recall. It is unknown whether cardiac signals
may also be associated with self-regulation in the temporal domain, in particular
impulsivity. We assessed both decision impulsivity (temporal discounting, TD) and
time perception impulsivity (duration reproduction, DR) in 120 participants while they
underwent electrocardiography in order to test whether cardiac signals were related
to these two aspects of impulsivity. We found that over the entire period of task
performance, individuals with higher heart rates had a tendency toward lower discount
rates, supporting previous research that has associated sympathetic responses with
decreased impulsivity. We also found that low-frequency components of heart rate
variability (HRV) were associated with a less accurate perception of time, suggesting that
time perception may be modulated by ANS function. Overall, these findings constitute
preliminary evidence that autonomic function plays an important role in both decision
impulsivity and time perception.

Keywords: temporal discounting, time perception and timing, heart rate, interval timing, heart rate variability
(HRV)

INTRODUCTION

Cardiac signals have previously been associated with a wide range of psychopathologies, including
substance abuse (Levin et al., 1992; Ingjaldsson et al., 2003), panic disorder and generalized anxiety
disorders (Yeragani et al., 1993; Friedman and Thayer, 1998), obsessive compulsive disorder (Pittig
et al., 2013), depression (Kemp et al., 2010), schizophrenia (Clamor et al., 2016) and post-traumatic
stress disorder (Cohen et al., 1997). The link between cardiac signals and psychopathology is
usually explained by the fact that these psychopathologies affect the function of the autonomic
nervous system (ANS), which, in turn, directly impacts cardiac activity.

More recently, cardiac signals such as heart rate variability (HRV) have also been related to
cognitive function in healthy individuals. For example, higher resting HRV has been associated
with more adaptive attention to emotional stimuli (Park and Thayer, 2014), smaller startle
responses (Ruiz Padial et al., 2003), better deliberate suppression of unwanted memories (Gillie
et al., 2014) and thoughts (Gillie et al., 2015), more accurate and faster working memory
retrieval (Hansen et al., 2003), and better self-control over dietary choices (Segerstrom
and Nes, 2007). Furthermore, HRV has been shown to increase transiently during emotion
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regulation (Butler et al., 2006), and during difficult memory
retrieval (Gianaros et al., 2004). Further to this, a direct causal
relationship between ANS function and cognition has also been
demonstrated via vagus nerve stimulation (for working memory
processes; Clark et al., 1999).

Cardiac measurements have also been associated with
performance in higher-level decision-making tasks. For example,
individuals with low resting heart rates have been found to
be more likely to make risky decisions (Schmidt et al., 2013).
Transient heart rate, however, has been shown to slow directly
after a loss in a gambling task, and this decrease in heart rate
begins earlier (often prior to the outcome) in individuals who
have better general performance in the task (Crone et al., 2004).
It has also been shown that individuals with a higher power in
the low frequency component of resting HRV generally perform
better on gambling tasks (Drucaroff et al., 2011), and there is
some evidence that direct vagus stimulation (which increases
HRV) can enhance performance in these tasks (Martin et al.,
2004). Furthermore, HRV (and its high frequency component)
decreases during ‘‘stressful’’ unfair economic offers (such as
those in the ultimatum game; Armin et al., 2011; Dulleck
et al., 2014). These pressure-induced decreases in HRV have
been shown to be more pronounced in individuals who cope
less efficiently under high pressure situations (Laborde et al.,
2014). While the reasons for these associations are not yet fully
understood, these relationships demonstrate that in addition
to their association with clinical disorders, cardiac signals are
also associated with aspects of decision behaviors in healthy
individuals.

One popular account, referred to as the neurovisceral
integration model, posits that cardiac signals, and in particular
HRV, index the state of a self-regulation network that
spans across both the ANS and the central nervous system
(Thayer and Lane, 2000, 2009). According to this model, the
self-regulation network facilitates physiological, cognitive,
and behavioral adaptability to environmental change. It
predicts that a lack of such adaptability is associated with
low HRV, whereas high HRV reflects a healthy, adaptive
system.

The neurovisceral integration model places specific emphasis
on the inhibitory role of the parasympathetic nervous system
(PNS), the dysfunction of which results in prolonged and
inappropriate physiological, emotional and behavioral responses
(Thayer and Lane, 2000). As it has a relatively rapid influence
on cardiac activity, one common method of estimating PNS
function is via the high-frequency spectral component of HRV
(HF-HRV; Berntson et al., 1997). Other studies have interpreted
the low-frequency component of HRV (LF-HRV) as a reflection
of sympathetic cardiac influence (Drucaroff et al., 2011; Dulleck
et al., 2014), although this interpretation has been critisized
(Reyes del Paso et al., 2013; see Discussion). The neurovisceral
integration model also delineates neuroanatomical evidence for
the relationship between cardiac signals and cognitive function.
Specifically, this relies on the central autonomic network, which
is responsible for central cardiac control, and comprises of the
ventromedial prefrontal cortex (vmPFC), the central nucleus
of the amygdala, anterior cingulate cortex, the insula, as well

as several hypothalamic nuclei (Benarroch, 1993). Many of
these areas have significant structural overlap with those that
support the types of cognitive functions typically associated
with cardiac signals (Thayer and Lane, 2000). In particular,
cerebral blood flow in vmPFC has been correlated with changes
in HRV induced by both emotional images (Lane et al., 2009)
and working memory tasks (Gianaros et al., 2004). It has
been suggested that vmPFC is the main locus of interaction
between cognitive function and cardiac control (Thayer and
Lane, 2000).

One fundamental aspect of self-regulation that has not
previously been investigated from the perspective of cardiac
physiology is regulatory behavior in the temporal domain,
principally, impulsivity. While impulsivity is a multifaceted
construct, two key aspects are of interest here: decision
impulsivity, related to trading off immediate and delayed
rewards, and impulsivity as it relates to time perception,
which is required for appropriately timing actions (Evenden,
1999).

The main behavioral model of decision impulsivity is
temporal discounting (TD; Bickel, 2015). It is typically
characterized using a TD task, which assesses individuals’
choices between different magnitudes of reward available
at different delays (Frederick et al., 2002). The rate of
discounting (i.e., the rate of devaluation of reward per unit
of time) has been shown to be relatively stable and heritable
(Anokhin et al., 2015; Bickel, 2015), and has recently been
proposed as an endophenotype (Bickel, 2015). Higher discount
rates are apparent in multiple psychopathologies such as
substance abuse, problem gambling, attention deficit hyperactive
disorder, schizophrenia, depression and obesity (Bickel et al.,
2012).

In the time perception domain, impulsivity is based on
the notion that impulsive individuals overestimate, and hence
under-reproduce time intervals (Wittmann and Paulus, 2008;
Rubia et al., 2009; Moreira et al., 2016). For example, by
using a duration reproduction (DR) task (in which participants
reproduce a sample interval with a manual response), it has
been shown that individuals with a impulsive personality
traits tend to terminate their reproductions earlier than those
without impulsive personality traits, as if they perceive the
passage of time to be faster than it objectively is (van
den Broek et al., 1992). Performance deficits in these types
of time estimation tasks have been related to a range of
psychiatric conditions: Parkinson’s disease, depression, bipolar
disorder, schizophrenia, attention deficit hyperactivity disorder,
autism, as well as anxiety disorders (Allman and Meck, 2012;
Teixeira et al., 2013). Notably, there is considerable overlap in
psychiatric disorders associated with abnormal cardiac signals,
time perception and TD (Kemp et al., 2010; Allman and Meck,
2012; Bickel et al., 2012; Teixeira et al., 2013; Clamor et al.,
2016).

Unlike TD, time perception has previously been investigated
with respect to cardiac signals. For instance, one such study
found that individuals with higher resting HRV were more
accurate in a DR task (Pollatos et al., 2014). Another study found
that individuals were more accurate in this task when they had a
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higher rate of heart rate slowing during the encoding of intervals
(Meissner and Wittmann, 2011). Thus, there is some existing
evidence that time perception accuracy and autonomic function
are associated.

As the vmPFC is one of the primary regions involved
in both central cardiac control and impulsivity (Kim and
Lee, 2011), our first hypothesis was that specific aspects of
cardiac signals are associated with behavioral performance
during impulsivity-related tasks. Specifically, we hypothesized
that HF-HRV (as an index of PNS function) would be
associated with lower discount rates, and longer reproductions
of time. Given that a common mechanism may underlie
both decision impulsivity and time perception (Wittmann
and Paulus, 2008; Moreira et al., 2016), and that damage to
the vmPFC often results in both abnormal time perception
and steeper TD (Berlin et al., 2004; Moreira et al., 2016),
another hypothesis was that these two behavioral measures
are related. To test these hypotheses, we measured cardiac
activity while participants were completing a TD task and a DR
task.

MATERIALS AND METHODS

Participants
One hundred twenty healthy, right-handed participants (mean
age 25, range 21–38, 63 female) from the general population
were recruited via advertisement at TheUniversity ofMelbourne.
These individuals were primarily undergraduate students.
Participants received AUD 15 for their participation. This study
was approved by the University of Melbourne’s Human Research
Ethics Committee (no. 1238359) and carried out in accordance
with the Declaration of Helsinki. All participants gave informed
written consent.

Decision Impulsivity Task
Discount rates were measured using a TD task in which
participants made binary choices between smaller amounts of
money available at earlier times, and larger amounts of money
available at later times. There is substantial evidence that the
devaluation of reward over time follows a hyperbolic function of
the form

V = R ·
1

1+ kD
(1)

where V is the subjective value of the reward, R is the objective
reward amount received at delay D, and k is the discount rate
(Mazur, 1987). Participants made a series of choices between
immediately available amounts ranging from $20 to $30, and
delayed (1, 2, 4, 6, 9 and 12 months) amounts that were chosen
based on an algorithm constrained to estimate a threshold
function that followed Equation 1 (Vul et al., 2010), as well as a
softmax psychometric link function to map subjective values into
choice probabilities (Miedl et al., 2012).

Time Perception Task
Time perception was measured using a DR task in which,
after being presented with a black square for a given duration,

participants were asked to press and hold a response key
to reproduce the duration (Zakay and Block, 1997). There
were six durations ranging from 2 s to 15 s, spaced evenly
on a logarithmic scale. We calculated the mean accuracy
(reproduction minus sample interval), and mean coefficient of
variation (CV; standard deviation divided by the sample interval;
Gibbon, 1977) for each participant and each sample interval.
Additionally, using least squares regression, we fitted a power
function to each participant’s reproduced durations (Stevens and
Galanter, 1957), of the form

µ(t) = α(t)β (2)

where µ(t) is perceived duration and t is the sample duration.
These parameters indicate differences in time perception
between the encoding and the reproduction of an interval.
The scale parameter α shifts the slope of the psychophysical
function. Relative to unity, a smaller α parameter implies
either a constantly accelerated perception of time during
reproduction or a constantly decelerated perception of time
during encoding. The exponent β models the shape of the
psychophysical function: relative to unity, a smaller exponent
implies concavity in the function (a decreasing slope), whereas
a larger exponent implies convexity (an increasing slope). A
smaller exponent could be interpreted as either an acceleration
of perceived time during the reproduction of longer intervals, or
a compression of time during the encoding of longer intervals.
Ultimately, deviations from unity for both of these parameters
indicates deviation from veridical time and thus inaccuracy
in time perception. Both of these parameters were used for
statistical analyses. Compared to a logarithmic Weber-Fechner
law (α log(t + c); Grondin, 2001), the fit of the data to Equation
2 had a larger R2 (mean 0.83) for 75 participants (80% of
cases).

Equipment and Physiological Recording
The Psychophysics Toolbox (Brainard, 1997) running on
MATLAB 8.4 was used for stimulus presentation, and a RB-540
Cedrus button box was used to capture responses.

Electrocardiogram (ECG) was measured using two amplified
adhesive Ag/AgCl EEG electrodes in a modified Lead II
Einthoven configuration: one positioned under the right clavicle
and one above the left side of the third rib, as well as two
implicit reference electrodes positioned underneath the left
clavicle. These electrodes interfaced with a BioSemi ActiveTwo
system running ActiView acquisition software, and recorded at a
sampling rate of 512 Hz. Data were recorded for the entirety of
the experimental session (approximately 1 h).

Experimental Procedure
After preparing the ECG, participants were asked to complete
a block of the TD task (Figure 1A). In each trial, a fixation
cross appeared for a duration drawn from a uniform distribution
on the interval from 1 s to 3 s. Subsequently, two choice
options were presented on the screen, one above the other,
for 4 s (e.g., ‘‘$19.02 in 2 months’’ and ‘‘$10 today’’). On
the following screen, the two options were then presented
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FIGURE 1 | (A) Temporal discounting (TD) paradigm schematic. In each trial, a fixation cross first appeared for 1 s–3 s. Subsequently, two choice options were
displayed, one above the other, for 4 s. During the response window, the choice options were displayed side by side, for 2 s. A fixation cross then appeared for an
inter-trial interval of 1 s. (B) Duration reproduction (DR) paradigm schematic. In each trial, a fixation cross first appeared for 1 s–3 s. Subsequently, a black square
was displayed for a pseudo-randomly chosen duration (the sample interval). A white fixation cross then signaled the response window. Once participants initiated a
response, another black square was presented until participants terminated their response (the reproduced interval).

side by side for 2 s. Screen positions of the choice options
(top/bottom, left/right) were counterbalanced throughout the
experimental session. Participants chose one of the two options
by pressing one of two buttons on a response pad. After an
option was selected, a fixation cross was displayed for a 1 s
inter-trial interval. The task terminated when the threshold
estimation algorithm converged, or the task reached 80 trials.
Participants were explicitly instructed to treat each trial as
independent. To establish incentive compatibility, participants
were told that a dice would be rolled at the end of the
experiment for a chance to win the choice made in one of the
trials.

Participants then completed the DR task (Figure 1B).
In each trial, participants were first presented with a black
fixation cross for between 1 s and 3 s, randomly drawn
from a uniform distribution. This was followed by a black
square, which was presented for one of six pseudo-randomly
chosen intervals (see Time Perception Task). A white fixation
cross then appeared until participants initiated a response to
reproduce the interval. Once a response was initiated, an identical
black square was presented until termination of the response.
The next trial began immediately after response termination.
There were five repetitions of each interval for a total of
30 trials. Participants were instructed to avoid chronometric
counting, to mitigate the effect of sub-vocal rhythm strategies,
which can improve accuracy artificially (Rattat and Droit-Volet,
2011).

Participants then completed a second block of the TD task,
identical to the first. The purpose of splitting the TD task over
two blocks was to test the effect of a feedback manipulation
(reporting overestimation vs. underestimation) after the DR task
on the second TD task. These results are not reported in this
article as we found no effects on performance between conditions
(see below for control analyses).

Finally, participants completed a series of questionnaires,
administered via web-browser, that were used to assess
adherence to task instructions (not reported here in detail). After
completion of all experimental tasks, participants were debriefed.
A dice was rolled to determine whether they won extra money
from the TD task. If a participant won, one trial from the TD
was selected, and the participant was paid the chosen amount of
money at the chosen delay.

ECG Protocol
In order to estimate general cardiac parameters for a sufficiently
long period of time, ECG was recorded over the entirety
of the experimental session. Data were detrended and
underwent automatic artifact correction using Kubios HRV
software (Tarvainen et al., 2014). Any remaining artifacts
were manually removed after visual inspection. The software
automatically detected R-wave peaks, and any incorrectly
identified peaks were manually removed. Heart rate was
calculated as the total number of R-wave peaks divided
by the total recording time in minutes. We used rMSDD
(square root of the mean squared differences of successive
R-R intervals) as a measure of HRV. An exemplar ECG
indicating automatically identified R-wave peaks is shown in
Figure 2.

We further decomposed HRV into component frequency
domains using a Fast-Fourier transform. Power in the high
frequency (HF-HRV; 0.15–0.4 Hz) band is widely believed to
reflect HRV responses to parasympathetic inputs (Berntson et al.,
1997), but is also affected by respiratory patterns (Grossman
and Kollai, 1993). Power in the low frequency (LF-HRV;
0.04–0.15 Hz) band has been assumed to reflect changes
of sympathetic origin (Berntson et al., 1997), although this
assumption has been contested (Reyes del Paso et al., 2013;
see Discussion). Note that our approach did not allow us to
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FIGURE 2 | Example of the electrocardiogram (ECG) signal as recorded
by the BioSemi ActiveTwo EEG system, with R peaks as detected by
Kubios heart rate variability (HRV) marked with red crosses.

measure fluctuations in cardiac activity between task phases, but
we aimed to obtain a reliable estimate of general and sustained
activity across time while participants were engaged in the tasks.
Therefore, these measures constituted a combination of general
cardiac activity during task performance and the short rest
periods for each individual, while neglecting task-phase specific
fluctuations.

Data Analysis
We excluded participants who chose an option with a negative
monetary amount in the TD task more than once (3 participants
excluded), missed more than 10 responses in the TD task
(10 participants excluded) or whose mean responses in the
DR task were more than 3 s away from the sample average
(3 participants excluded). Note that the above constituted
attentional criteria only, and we did not exclude participants
based on impulsivity measures. This makes it unlikely that
the retained participants differed in impulsivity from the
excluded ones, who showed strong a lack of attention to
the task. One additional participant failed to complete the
experiment. In addition, we excluded another 17 participants
due to inability to calculate cardiac measures due to poor
ECG quality. All analyses were performed on data from the
remaining participants for which we had complete data sets
(94 participants).

Discount rate, time perception parameters and cardiac
variables were non-normally distributed. Specifically, discount
rates were right-skewed, the scale parameters from the
DR psychophysical function were right-skewed, while the
exponents were left skewed, and HRV and both frequency
components of HRV were heavily right-skewed. We therefore
used non-parametric analyses where appropriate. We used a
paired Wilcoxon signed-rank test to identify whether there were
any differences in discount rate between each block of the TD
task. Kruskal-Wallis tests were used to assess the main effects
of sample interval on DR task measures. Spearman correlations
were used to explore relationships between: (a) DR measures; (b)
discount parameters; and (c) ECG measures.

For all statistical tests, the significance level was set to
p < 0.05. Multiple comparisons corrections were carried out for
each set of correlational analyses (a, b and c, above) using the
Holm-Bonferroni method (Holm, 1979). All statistical analyses
were performed using R, version 3.2.1.

RESULTS

Temporal Discounting
First, we established whether data from both TD blocks could
be pooled for the following analyses. The median discount rate
k for the first and second blocks of the TD task were 0.07
(range = 0.01–0.12) and 0.07 (range = 0.01–0.22), respectively. A
Wilcoxon signed-rank test did not reveal significant differences
between k, measured in the two blocks (T = 0.50, p = 0.619). Thus,
for subsequent analyses we used the participant mean of k in the
two blocks.

Duration Reproduction
Reproduced durations exhibited several characteristics
commonly seen in temporal reproduction data. Reproduced
durations increased monotonically with the sample interval
(H(5) = 746.74, p < 0.001), implying that participants
followed instructions. Moreover, longer sample intervals
were systematically under-reproduced (sample interval on
accuracy; H(5) = 380.21, p < 0.001). We quantified this effect
with quantile regression (median): for every second increase in
the sample interval, there was a 0.25 (SD = 0.01) second decrease
in the reproduced duration, relative to a perfect reproduction
(p< 0.001).

We also found an increase in response variability with longer
sample intervals (H(5) = 407.62, p < 0.001). According to
scalar property, timing variability scales proportionally with the
interval to be timed (Gibbon, 1977). To test whether the scalar
property held for our data, we computed the CV (the standard
deviation of the estimation divided by the mean estimation). The
CVwas significantly affected by the sample interval (H(5) = 53.05,
p < 0.001), in line with other recent research that has reported
violations of the scalar property (Wearden and Lejeune, 2008;
Lewis and Miall, 2009). This change in CV was well described by
a simple logarithmic regression with a slope of−0.042 (p = 0.024,
R2 = 0.76, SEM = 0.01), coinciding with data from previous
studies (Lewis and Miall, 2009).

We then fitted a psychophysical function (Equation 2) to
the reproduction data. The mean estimated value of the scale
parameter α was 1.035 (SD = 0.42). It was not significantly
different from unity (t(93) = 0.80, p = 0.426), suggesting that,
on average, there was no constant deviation from verdical time.
The mean exponent β was estimated at 0.899 (SD = 0.17). It
was significantly different from unity (t(93) = −5.37, p < 0.001),
suggesting that participants psychophysical functions were
concave, corroborating the increasing underestimation with
larger sample intervals noted in previous literature (Lewis
and Miall, 2009). Within participants, the scale and exponent
parameters were strongly negatively correlated (r = −0.87,
p < 0.001), while the exponent and CV were strongly positively
correlated (r = 0.93, p< 0.001; Table 1).

Cardiac Function
First, we confirmed that there were no significant differences in
physiological measurements between feedback conditions using
one-way Kruskal-Wallis rank sum tests (see above). There were
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TABLE 1 | Correlations between behavioral and cardiac measures (N = 94).

k Accuracy CV Scale Exponent HR RMSSD HF-HRV

Accuracy 0.17
CV −0.12 0.06
Scale (α) 0.10 0.23∗∗

−0.87∗∗∗

Exponent (β) −0.03 0.21∗ 0.93∗∗∗
−0.87∗∗∗

HR −0.23∗
−0.05 −0.13 0.05 −0.10

RMSSD 0.11 0.05 −0.05 0.16 −0.15 −0.37∗∗∗

HF-HRV −0.06 0.01 −0.09 0.20 −0.22∗
−0.25∗∗ 0.89∗∗∗

LF-HRV 0.15 −0.08 −0.20 0.28∗∗ −0.31∗∗
−0.36∗∗∗ 0.71∗∗∗ 0.64∗∗∗

Note: reported p-values are uncorrected ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001. k, discount rate; CV, coefficient of variation; HR, heart rate; RMSSD, Square root of the

mean squared differences between successive RR intervals; HF-HRV, high frequency HRV power; LF-HRV, low frequency HRV power.

no significant differences for mean heart rate (H(3) = 4.46,
p = 0.22), rMSSD (H(3) = 0.868, p = 0.833, HF-HRV (H(3) = 1.76,
p = 0.624, or LF-HRV (H(3) = 4.61, p = 0.203). Additional post
hoc pairwise Nemenyi tests also showed no significant differences
between any conditions. Hence, we concluded that the additional
feedback manipulation had neither an effect of behavior nor
on cardiac function, allowing us to use the cardiac measures
here as stable estimates for sustained cardiac activity across the
experiment.

The mean heart rate across participants was 84.91 bpm
(SD = 15.55). The mean rMSSD across participants was
36.06 ms (SD = 16.57). The mean HF-HRV across participants
was 621.71 ms2 (SD = 623.38). The mean LF-HRV across
participants was 1145.39 ms2 (SD = 846.96). All measures
of HRV were negatively correlated with mean heart rate
(all p < 0.001, except for HR and HF-HRV, p = 0.02, see
Table 1 for correlation coefficients), and positively correlated
with each other (all p < 0.001, see Table 1 for correlation
coefficients).

The Relationship between Temporal
Discounting and Cardiac Function
We first tested the relationship between TD and cardiac
function. To do so, we calculated Spearman rank correlations
between the discount rate k and mean heart rate, rMSSD,
as well as LF-HRV and HF-HRV components. All test
statistics are reported in Table 1. We found a significant
negative correlation between discount rate and mean heart
rate (r = −0.23, p = 0.032). However, this relationship did
not survive correction for multiple comparisons (p = 0.108).
To illustrate the relationship between mean heart rate and
discount rate, we divided our sample around the median
heart rate value, and plotted hyperbolic discount functions for
each group over a 12-month period (Figure 3). Note that
individuals with higher heart rates had a shallower discount
function.

The Relationship between Duration
Reproduction and Cardiac Function
We then tested the relationship between DR and cardiac
function. We calculated Spearman rank correlations between
reproduction measures (mean accuracy, CV, and psychophysical

FIGURE 3 | Illustration of average discount function of value over time,
split by heart rate. Note that those participants with higher heart rates had
shallower discount functions.

scale (α) and exponent (β) parameters), and between
mean heart rate, rMSSD, as well as LF-HRV and HF-HRV
components. All uncorrected test statistics are reported in
Table 1. We found significant negative correlations between
HF-HRV and the exponent β of the reproduction function
(r = −0.22, p = 0.039), as well as LF-HRV and the exponent
(r = −0.31, p = 0.004), suggesting that individuals with
higher power in both HRV frequency components had a
relatively more concave psychophysical function. Because
HF-HRV more closely indexes cardiac parasympathetic tone
when heart period is taken into account (Grossman and
Kollai, 1993), we used a Spearman semi-partial correlation
to reanalyze the relationship between HF-HRV and the
exponent, while controlling for heart period. The relationship
between these two variables remained significant (r = −0.26,
p = 0.014). After correction for multiple comparisons, the
relationship between LF-HRV and the exponent remained
significant (p = 0.02), but the relationship between HF-HRV
and the exponent closely missed the critical threshold
(p = 0.056).
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We also found a significant positive correlation between
LF-HRV and the scale parameter α (r = 0.28, p = 0.009),
suggesting that individuals with higher LF-HRV power either
perceived time as either relatively fast during the encoding
of the interval, or relatively slow during reproduction. This
relationship remained significant after correction for multiple
comparisons (p = 0.043). To illustrate the relationship between
LF-HRV and DR, we divided our sample around the median
LF-HRV value, and plotted mean reproduced duration as a
function of sample interval (Figure 4). Note that in those
with high LF-HRV, short intervals were slightly overproduced,
and longer intervals are substantially underproduced, while
in those with low LF-HRV, reproduced durations were more
accurate. Overall, these findings supported our hypothesis
of a relationship between time perception and cardiac
function.

The Relationship between Temporal
Discounting and Duration Reproduction
Finally, we tested the relationship between TD and DR. We
calculated Spearman rank correlations between DR measures
(mean accuracy, standard deviation, CV and psychophysical
scale and exponent parameters), and the discount rate k. No
significant correlations were found. All test statistics are reported
in Table 1.

DISCUSSION

In order to investigate the relationship between time perception,
decision impulsivity and cardiac signals, we assessed cardiac
activity of individuals while they performed DR and TD
tasks. We found a negative correlation between the mean

FIGURE 4 | Reproduced durations as a function of sample interval,
split by low-frequency component of HRV (LF-HRV) power. The black
line represents veridical time perception. Note that in those participants with
high LF-HRV, short intervals were relatively overproduced, and longer intervals
were relatively under-produced, while in those participants with low LF-HRV,
longer reproduced durations were more accurate.

heart rate and discount rate, suggesting that individuals
with higher heart rates were more patient. We also found
positive correlations between LF-HRV and the parameters of
the psychophysical function for DR, suggesting that those
with higher LF-HRV power perceived time differently during
the encoding and reproduction of the interval, and had
poorer sensitivity to longer intervals. Additionally, we found
a positive correlation between HF-HRV and the exponent
parameter of the psychophysical function, suggesting that those
with high HF-HRV power increasingly underestimated longer
intervals.

TD has previously been related to other physiological
measures, such as pupil dilation (Lempert et al., 2016), but to
our knowledge, our study is the first to relate it to cardiac
signals. The neurovisceral integration model (Thayer and Lane,
2000, 2009) is built on the notion that greater regulatory
control is associated with greater inhibitory parasympathetic
functionality. Thus, it would predict that discount rate was
negatively associated with HRV. Here, we observed that healthy
individuals with higher heart rates had lower discount rates,
indicating lower impulsivity, which does not support this
prediction.

However, recent work has shown that during TD tasks,
choices toward delayed rewards are more likely when
sympathetic responses (measured via pupil dilation) to these
options are greater (Lempert et al., 2016). As heart rate is
primarily mediated by sympathetic activity, it is possible that
the observed association between heart rate and discount rate
constitutes a similar phenomenon: individuals with lower
discount rates were also the ones with higher sympathetic
responses, which reflected their tendency to choose delayed
rewards. In support of this interpretation, previous studies
have shown that higher levels of impulsivity (measured using
personality questionnaires) were associated with lower resting
heart rates (Mathias and Stanford, 2003) and with lower heart
rates during the preparation of an independent task (Allen
et al., 2009). Thus our findings provide further evidence that
sympathetic nervous system responses may be associated with
decision impulsivity.

We also observed a correlation between the parameters of the
psychophysical function for DR and both LF- and HF-HRV. It is
generally accepted that HF-HRV reflects PNS cardiac influence
(Berntson et al., 1997), although it has also been reported that
this can be confounded by respiratory patterns (Grossman and
Kollai, 1993). While we did not directly measure respiratory
activity in this study, an analysis controlling for this possible
influence (Grossman and Kollai, 1993) did not alter our results.
It has also been noted that interindividual associations between
HF-HRV and parasympathetic cardiac influence are modest
(Grossman and Taylor, 2007). Thus, while these findings appear
to indicate that individuals with higher parasympathetic cardiac
influence had poorer sensitivity to longer intervals, some caution
should be taken in interpreting our results solely along these
lines.

The interpretation of LF-HRV is more contentious than that
of HF-HRV. In the psychological literature, increased LF-HRV
has previously been related to fatigue and attentional deficits
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(Egelund, 1982; Mascord and Heath, 1992; Fairclough and
Graham, 1999). This may provide an explanation of our findings,
as lowered attentional capacity may lead to shorter encoded
durations (Zakay and Block, 1995), or stronger temporal context
effects and a regression to the mean of the sample durations
(Jazayeri and Shadlen, 2010).

The physiological source of LF-HRV is highly contentious.
It has been argued that differences in LF-HRV are due to
either gross sympathetic activation (Malliani et al., 1991), a
combination of parasympathetic and sympathetic influences
(Reyes del Paso et al., 2013), baroreflex function (changes
in HR due to changes in blood pressure; Goldstein et al.,
2011), or the output of a central, LF oscillator (Cooley
et al., 1998). On one hand, there is existing support for
the possibility that the relationship between LF-HRV and
time perception is sympathetically mediated. Time perception
has been reported to ‘‘accelerate’’ relative to objective time
during life-threatening situations (Stetson et al., 2007), under
conditions of high body temperature (Wearden and Penton-
Voak, 1995), as well as during general emotional arousal (Gil
and Droit-Volet, 2012), which corresponds to sympathetic
physiological changes (Thompson, 2013). Likewise, previous
studies have shown that another measure of high sympathetic
activity (cardiac pre-ejection period) is associated with lower
temporal sensitivity (Cellini et al., 2015). On the other
hand, the positive correlations among LF-HRV, HF-HRV and
rMSSD (as well as the negative correlation between HF-HRV
and the exponent parameter of temporal reproduction),
suggest that our measurement of LF-HRV may represent
predominantly parasympathetic influence. However, if this
is the case, then our results directly contradict previous
findings showing that parasympathetic function and vagal
control are associated with increased time perception accuracy,
rather than the decrease in accuracy we observed in those
with high LF-HRV (Cellini et al., 2015). One possible
resolution of this discrepancy is that this previous study
used different time scales (around 1 s) and different timing
mechanisms may be recruited for different durations (Ivry
and Spencer, 2004). This interpretation is also inconsistent
with the relationships between HRV, working memory and
time perception, as higher vagal control has been associated
with better working memory (Hansen et al., 2003), which is,
in turn, associated with increased time perception accuracy
(Broadway and Engle, 2011). Further to this, we did not
observe any relationships between time perception and HRV
in the time domain (rMSSD). Thus, it is difficult to comment
on the physiological source of the observed result. Future
studies could clarify this by employing more interpretable
measures of SNS activity, such as skin conductance level
(Mella et al., 2011), or levels of neurotransmitters such as
noradrenaline (Zygmunt and Stanczyk, 2010). However, our
results are consistent with the psychological attention-based
interpretation of LF-HRV, and more broadly the associations
between HRV frequency components and time perception
measures support previous suggestions that periodic internal
signals may constitute a time-keeping mechanism (Craig, 2009;
Wittmann, 2015).

It is important to note that some of the observed correlations
(e.g., between discount rates and mean heart rate) were
only significant before correction for multiple comparisons.
The uncorrected results are nevertheless interesting, given the
absence of existing literature on this topic, and the exploratory
nature of our study. We emphasize that these findings require
further investigation.

Some limitations of the current study could be addressed
in future work. For example, in addition to using directly
interpretable measures of SNS activity, future studies could
also employ other non-invasive physiological measures, such
as eyeblink rate or pupillometry. On the other hand, an
assessment of action, as opposed to choice impulsivity (such as
a Go-Nogo task), or personality traits, may also be desirable
(Glicksohn et al., 2006). It would also be of interest to investigate
whether the observed correlations between cardiac measures
and time perception would extend to other time estimation
paradigms, such as a temporal bisection task, or shorter or
longer intervals. Finally, this line of inquiry may be of potential
utility in the diagnosis and treatment of psychopathologies that
involve impulsivity, such as substance abuse, problem gambling,
attention deficit hyperactive disorder, schizophrenia, depression
and obesity (Bickel et al., 2012).

We note that as our physiological measures were not isolated
to the presentation of stimuli, we were not able to determine
whether the observed correlations were driven by task-related
responses or trait-like autonomic function. Further studies with
baseline measures, longer recordings, and more isolated task
phasesmay be able to address this question, as well as whether the
observed relationships were mediated by other personality traits.

While we found that cardiac signals were independently
correlated with both TD and DR, we did not find any direct
relationship between these two components of impulsivity
(Wittmann and Paulus, 2008; Moreira et al., 2016). One possible
reason for this is the difference in temporal scale (months in
TD vs. seconds in DR), which may recruit different cognitive
mechanisms. Future research could address this by using a
discounting task with time delays more similar to those used in
time perception tasks.

In conclusion, our study shows that differences in ANS
function may help to explain inter-individual heterogeneity
in both TD and time perception. The association between
TD and heart rate supports the notion that low arousal
might be related to higher impulsivity, similar to previous
perspectives on trait impulsivity (Eysenck, 1993) and previous
research using alternate measures (Mathias and Stanford,
2003; Allen et al., 2009; Lempert et al., 2016). Given the
conflicting interpretations of cardiac indices, our results
concerning DR are difficult to interpret from a physiological
perspective. Psychologically, however, our results appear to
reflect an association mediated by differences in attention.
We found no evidence for a relationship between TD
and time perception, which reinforces the idea that these
measure different aspects of impulsivity, which appears
to be a rather complex construct (Evenden, 1999). Our
findings further show that ANS function could provide
distinct indices for such aspects of impulsivity, opening up
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new avenues for future research to decompose impulsivity
beyond TD and time perception (e.g., response inhibition;
Krypotos et al., 2011).
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