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Acetaldehyde (ACD) contributes to alcohol’s psychoactive effects through its own
rewarding properties. Recent studies shed light on the behavioral correlates of ACD
administration and the possible interactions with key neurotransmitters for motivation,
reward and stress-related response, such as dopamine and endocannabinoids.
This mini review article critically examines ACD psychoactive properties, focusing
on behavioral investigations able to unveil ACD motivational effects and their
pharmacological modulation in vivo. Similarly to alcohol, rats spontaneously drink
ACD, whose presence is detected in the brain following chronic self-administration
paradigm. ACD motivational properties are demonstrated by operant paradigms tailored
to model several drug-related behaviors, such as induction and maintenance of
operant self-administration, extinction, relapse and punishment resistance. ACD-related
addictive-like behaviors are sensitive to pharmacological manipulations of dopamine
and endocannabinoid signaling. Interestingly, the ACD-dopamine-endocannabinoids
relationship also contributes to neuroplastic alterations of the NPYergic system, a stress-
related peptide critically involved in alcohol abuse. The understanding of the ménage-a-
trois among ACD, reward- and stress-related circuits holds promising potential for the
development of novel pharmacological approaches aimed at reducing alcohol abuse.
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INTRODUCTION

It is a matter of fact that the efficacy of current medications for alcohol-related pathological
traits remains modest, since the incomplete understanding of the neurobiological background
beyond alcohol central effects hampers the development of successful pharmacological therapies
(Franck and Jayaram-Lindström, 2013). Alcohol acts at multiple biological targets (Mascia
et al., 2001; Martire et al., 2002; Martí-Prats et al., 2013; Zorumski et al., 2014) and its extended
use profoundly dysregulates key neurochemical circuits that drive incentive-salience/reward
(dopamine, endocannabinoids) and stress-related response (corticotropin-releasing hormone
[CRH], Neuropeptide Y [NPY]) within the brain (Koob, 2013). Moreover, the products of alcohol
biotransformation, primarily acetaldehyde (ACD), also contribute to its mechanism of action with
their own behavioral and neuropharmacological effects (Arizzi et al., 2003; Correa et al., 2003;
Pardo et al., 2013; Segovia et al., 2013).

ACD is produced in the human body after the consumption of alcohol in a tissue-specific fashion
(Cohen et al., 1980; Ramchandani et al., 2001; Edenberg, 2007), and occurs naturally in alcoholic
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FIGURE 1 | Acetaldehyde (ACD) motivational properties in operant responding, operant-conflict paradigm and conditioned place preference (CPP).
ACD induces operant responding, operant-conflict behavior and CPP (top to bottom, straight lines); the pharmacological modulation of dopamine and
endocannabinoid receptors controls ACD-induced behaviors (dashed lines).

beverages. Indeed, high ACD concentrations were detected in
a number of products, including apple wines and ciders from
Germany, France and Scotland, fortified wines and spirits such
as sugarcane spirits from Guatemal and Brazil (cuxa; cachaça)
(Miranda et al., 2007; Oliveira et al., 2008; Kanteres et al., 2009),
agave spirits from Mexico (Lachenmeier et al., 2006), certain
spirits from China and calvados from Europe (Lachenmeier
and Sohnius, 2008; Linderborg et al., 2008; Lachenmeier
et al., 2015). Despite preclinical research has traditionally
disregarded the role of taste and post-ingestive influences
as independent regulators of motivation to drink alcohol,
clinical studies on alcoholism have frequently recognized the
significance of alcohol chemosensory stimuli in eliciting craving
and associated drug-seeking responses in alcohol-experienced
individuals (Stormark et al., 1995; Grüsser et al., 2000). Both
alcohol and ACD possess complex chemosensory attributes
detected via sensory receptors, which gain immediate access to
the central nervous system. Importantly, these sensory pathways
are linked to limbic forebrain and cortical areas involved in
controlling ingestive motivation and feeding (Kareken et al.,
2004; Yamamoto, 2006; Filbey et al., 2008).

Depending on alcohol doses andmodalities of administration,
peripheral ACD can cross the blood-brain barrier and potentially
add to locally formed ACD, produced from alcohol via the
brain specific catalase system. On the other hand, increasing

evidence shows that ACD is detected in the brain after its oral
introduction, when single high systemic concentrations are used,
or when chronic exposure occurs (Tabakoff et al., 1976; Heap
et al., 1995; Ward et al., 1997; Quertemont et al., 2004; Plescia
et al., 2014, 2015a; Jamal et al., 2016).

Whatever its source, either as original substance or as alcohol
metabolite, ACD has been largely involved in the mediation of
alcohol effect, although its contribution to the development of
alcohol abuse still needs to be elucidated.

The neuropharmacology of ACD is of particular interest, as
ACD interacts both with reward- and stress-related circuits in
the brain. For this reason, this mini-review article focuses on
ACD motivational properties and examines its interplay with
relevant neurotransmitters for motivation-and stress-related
response, such as dopamine and endocannabinoids (Figure 1).
Indeed, a deeper understanding of ACD neuropharmacology
could provide further venue for the development of innovative
medication for alcohol use disorders.

ACD MIRRORING ALCOHOL EFFECT IN
THE BRAIN

Looking at the literature, ACD has been investigated primarily
as a metabolite raising the idea that it could not only produce
aversive reactions in the whole body, but rather may contribute
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to alcohol mechanism of action in the brain (Plescia et al.,
2015b; Cavallaro et al., 2016). Progressively the observation that
direct administration of ACD in experimental animals resulted
in behavioral effects that are comparable to those induced by
alcohol strengthened this concept (Quertemont et al., 2005;
Correa et al., 2012). For instance, systemic ACD administrations
induced depression in locomotor activity (Myers et al., 1987),
impairment of spatial memory (Abe et al., 1999), alcohol-like
discrimination (Redila et al., 2002), sedative and hypnotic effects
(Quertemont et al., 2004).

Notably, ACD has been implicated in alcohol stimulating
effects on the reward pathway in the brain, i.e., ventral
tegmental area (VTA) and nucleus accumbens (NAc), that lead
to positive reinforcement and mediate alcohol consumption
(Brown et al., 1979; Amit and Smith, 1985; Aragon and Amit,
1992; Tampier et al., 1995; Smith et al., 1997). Recently,
specific gene-blocking techniques that allow inhibiting catalase
in the VTA and thus, the production of ACD from alcohol,
demonstrated that ACD mediates alcohol-reinforcing effect in
self-administration paradigms. In these studies, microinjection
of lentiviral vector encoding anticatalase shRNA into the VTA
strongly decreased voluntary alcohol consumption in rats and
abolished the increased dopamine release in NAc induced
by acute administration of alcohol (Karahanian et al., 2011;
Quintanilla et al., 2012). Moreover, VTA anticatalase shRNA
injection reduced the marked increase in alcohol intake that
follows a period of deprivation, an effect that was proposed to
reflect increased reinforcing value of alcohol (Tampier et al.,
2013).

If ACD formed from alcohol is responsible for the
development of alcohol-related behaviors, then chronic
administration of ACD alone should produce behavioral
and neurochemical responses of an ‘‘addictive’’ -type.

ACD AS A REINFORCER

ACD’s own reinforcing properties were first shown by
conditioned place preference (CPP), behavioral paradigm
widely used to explore rewarding effects of drugs. Laboratory
rats receiving intracerebroventricular (icv) ACD infusions
showed increased preference for environmental cues previously
paired with the drug administration (Smith et al., 1984).

A strong preference for ACD-paired environment and
stimuli was also observed when ACD administration was either
intraperitoneal or oral (Quertemont and De Witte, 2001; Peana
et al., 2008).

Place conditioning is suggestive of drug-associated
reinforcement, although it may not be clear what exactly
the procedure measures. Indeed, it focuses on automatic or
implicit expressions of reward, rather than active demonstration
of motivated behavior.

Thus the positive reinforcing properties of ACD were
more specifically explored by the evaluation of acquisition and
maintenance of ACD drinking behavior in self-administration
paradigms in rats. Drug self-administration is directly under
rat control, and the amount of drug consumed is widely used
to infer drug hedonic properties: positively reinforcing drugs

will be readily and avidly self-administrated. As alcohol, ACD
is voluntary self-administered in two-bottle choice-drinking
paradigm and its consummatory behavior was dose-dependent,
in that ACD intake increased when higher solution strength was
provided (Plescia et al., 2015a; Brancato et al., 2016b). The flavor
and taste of ACD solution have been proposed to take part to
the reinforcing properties and may actually serve as conditioned
stimuli of post-ingestional effects (Cannizzaro et al., 2011).

Little is known on the molecular targets that account for
ACD complex flavor. However, ACD directly activates the
sensory neuronal TRP channels TRPA1 that are relevant for
taste and chemesthesis (Bang et al., 2007; Roper, 2014). With
chronic exposure, sensory and post-ingestive inputs become
intimately integrated, such that these stimuli gain meaning
for the addicted organism (Brasser et al., 2015). Natural ACD
self-administration provides a framework for moving beyond the
dissociation between the sensory and post-absorptive effects of
ACD to the understanding of their neurobiological integration
and significance for sensory processing of alcoholic beverages
and alcohol addiction.

The suggestion that ACD may be endowed with positive
reinforcing properties was further investigated by using a variety
of operant self-administration paradigms.

The operant self-administration is a commonly used model in
which animals are trained to emit a specific response (lever press
or nose poke) for gaining the reinforcement (Samson et al., 1988).
Operant behavior for ACD was readily acquired by rats, both
through icv and intravenous routes of administration (Brown
et al., 1980; Myers et al., 1984). In details, Rodd et al. (2003,
2005) demonstrated that rats selectively bred as alcohol drinkers
self-administered both alcohol and ACD directly into the
VTA, where ACD showed reinforcing effects at concentrations
1000 lower than those required for alcohol. Unselected animals
also perform lever pressing for obtaining ACD through the
natural oral route. Indeed ACD was reported to induce and
maintain operant drinking behavior according to fixed and
progressive ratios of reinforcement (Peana et al., 2011; Cacace
et al., 2012). Apart from drug taking, the operant conditioning
paradigm serves as an invaluable tool in addiction research, since
it enables researchers to explore discrete features of addictive
behavior, as reported for humans in the DSM-V (American
Psychiatric Association, 2013). Indeed, different schedules of
drug reinforcement critically model distinct aspects of incentive
motivation for the drug, such as drug seeking and relapse
following periods of abstinence, and maintained alcohol use
despite adverse consequences that constitute central issues of
the translational research on addiction. The employment of
such tailored paradigms showed that ACD acts as positive
reinforcement that elicits challenging behavior, such as craving
and relapse, as shown for alcohol. Indeed, ACD-drinking
rats displayed resistance to extinction i.e., the emission of
high number of operant responses when reinforce delivery
was withheld- and a powerful deprivation-effect when ACD
availability was resumed after repeated cycles of deprivation
(Peana et al., 2010; Cacace et al., 2012; Plescia et al., 2013;
Brancato et al., 2014). The motivational properties of ACD have
been further measured by the operant-conflict paradigm, where
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an aversive stimulus is associated with rat operant response for
ACD. Indeed, when a mild foot-shock was delivered following
each lever press rewarded with ACD (punished response),
ACD-drinking rats were not discouraged from lever pressing
and emitted higher number of punished responses than control
rats (Cacace et al., 2012). In the Geiller-Seifter procedure,
anxiolytic drugs do not affect the unpunished component
of operant responses, whereas drugs with non-specific motor
effects decrease it. Actually, ACD was able to increase the
unpunished responses, although to a lesser extent than the
punished ones, suggesting a prevailing motivational effect, rather
than anti-conflict properties (Cannizzaro et al., 2011; Cacace
et al., 2012).

ACD AND STRESS RESPONSE

A large and consistent body of literature, on the other
hand, shows that both acute and chronic ACD peripheral
administrations were associated with anxiety-like behavior in the
elevated plus maze (Correa et al., 2005; Plescia et al., 2015a) and
with the recruitment of peripheral and central stress response.
In particular, ACD was shown to mediate alcohol-induced
activation of the hypothalamic-pituitary-adrenal (HPA) axis,
since ACD increased plasma corticosterone levels (Kinoshita
et al., 2001; Escrig et al., 2012) and induced the release of
CRH in a dose-dependent manner (Cannizzaro et al., 2010).
Notably, when the oxidation of alcohol into ACD by catalase was
inhibited by 3-amino-1,2,4-triazole, CRH release in the presence
of alcohol was prevented. Furthermore, the administration
of D-penicillamine, an ACD-trapping agent, inhibited ACD-
induced CRH release, demonstrating that ACD is the primary
mediator of alcohol activity on the HPA axis (Cannizzaro et al.,
2010).

The stress system contributes to various extents to the
development of alcohol-related behaviors.

Indeed, alcohol- and ACD induce an activation of the
stress system that can facilitate behavioral reactivity in aversive
conditions (Cacace et al., 2011, 2012; Plescia et al., 2015a). On
the other hand repeated cycles of alcohol and ACD intoxication
deeply affect the homeostasis of brain stress- and anti-stress
system. Indeed, both chronic alcohol and ACD excessive
consumption decreased the expression of the anxiolytic peptide
NPY in limbic brain regions, such as hippocampus and ventral
striatum (Kinoshita et al., 2000; Olling et al., 2007; Plescia et al.,
2014).Most importantly, the discontinuation of chronic and high
doses of ACD induced a constellation of behavioral signs, such
as general hyperactivity, irritability, tail tremors, tail stiffness,
general tremor and spasticity, which recall alcohol withdrawal
syndrome. ACD withdrawal signs exhibited minor severity, were
observed at 12 h from the last ACD administration, started to
decline at 16 h and disappeared at 36 h abstinence (Plescia et al.,
2014). It is worth noting that during this time CRH expression
increased and NPY expression levels decreased in limbic brain
areas and in the hypothalamus, causing the occurrence of the
aversive psychological state characteristic of withdrawal. These
modifications are consistent with the so-called involvement of
the ‘‘dark side’’, or stress systems, in the development of alcohol

use problems and abuse vulnerability (Thiele et al., 1998; Koob,
2013; Barkley-Levenson et al., 2016). Individuals would consume
alcohol in an attempt to return to homeostasis via a negative
reinforcement process that maintains and promotes drug taking.
Similarly to alcohol, ACD would contribute to engender an
aversive (anxious, depressive) state by bidirectional effects on the
twomajor and functionally opposite stress-related peptides, CRH
and NPY, thus perpetuating excessive alcohol consumption.

PHARMACOLOGICAL
CHARACTERIZATION OF ACD-RELATED
BEHAVIOR

ACD and Dopamine
Although the mechanisms by which ACD elicits its effects are
poorly explored, this compound activates the neuronal firing of
dopaminergic neurons in the VTA, an effect that is mediated
by salsolinol, the condensation product of ACD and dopamine
(Melis et al., 2007, 2015). Importantly, ACD elicits dopamine
release in the NAc shell (Foddai et al., 2004; Melis et al., 2007;
Enrico et al., 2009) at the same doses used in CPP studies (Peana
et al., 2008, 2009; Spina et al., 2010).

This is not surprising, since the acquisition of drug-induced
CPP is critically controlled by dopamine transmission and
D1 receptors in the NAc shell (Di Chiara et al., 2004; Tzschentke,
2007). Spina et al. (2010) demonstrated that this also applies to
ACD. The blockade of D1 receptors during ACD conditioning,
through the pre-treatment with SCH 39166, a D1 dopamine
receptor antagonist, also prevented the acquisition of CPP for
ACD. In this regard, interference not only on incentive learning
processes but also on dopamine-mediated reward has been
proposed (Di Chiara et al., 2004).

Besides, dopamine plays a fundamental role in the expression
of operant behavior elicited by rewards and reward-related
stimuli. Release of dopamine in the NAc shell by Pavlovian
stimuli induces an appetitive state of incentive arousal
(state—hedonia, euphoria) that facilitates the rate of current
instrumental behavior, the acquisition and expression of
secondary reinforcement, as well as the consolidation of
mnemonic traces of salient stimuli associated with affective
states.

It is proven that ACD stimulates dopamine release, and that
dopamine increase in the limbic regions accounts for addictive
behavioral traits in the rat. Thus, modulating dopamine release
or deactivating dopamine signaling could represent a tool able
to interrupt the addictive cycle. Indeed, the involvement of
dopamine transmission in ACD-related operant behavior was
explored by the administration of a D2 dopamine receptor
agonist, quinpirole, which at low doses preferentially activates
presynaptic D2 dopamine autoreceptors. Thus, by functionally
reducing ACD-induced dopamine release, quinpirole decreased
the number of lever presses for ACD, also during extinction
and, after ACD deprivation, during relapse (Rodd et al., 2005;
Brancato et al., 2014). Quinpirole was then able to restrain
dopamine signal as supporter of the incentive and rewarding
properties of ACD, which indeed was less demanded by
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the rats. Interestingly, in accordance with chronic alcohol-
induced down regulation of dopamine signaling in the limbic
regions, chronic ACD could exert a profound disarrangement in
dopamine output to the NAc during withdrawal (Rossetti et al.,
1992). Indeed, when ropinirole was sub-chronically administered
during ACD deprivation, a decrease in operant responses and
ACD intake was observed during relapse (Brancato et al., 2014).
This post-synaptic D2 dopamine receptor agonist, useful to
restore dopaminergic tone in Parkinson’s disease (Tel et al.,
2002), likely produced a stimulation of dopamine D2 signaling
able to turn off rats craving when ACD was available. This
evidence contributes to the suggestion that ACD interaction with
the dopamine system plays a role in the development of discrete
features of addictive behavior that can be especially relevant to
alcohol use disorders.

ACD and Cannabinoids
Alongwith the dopaminergic transmission, the endocannabinoid
system plays an important role in value attribution processing
and in modulation of drug-seeking behavior (Serrano and
Parsons, 2011; Brancato et al., 2016a; Henderson-Redmond et al.,
2016), in view of its role as fine modulator of incoming inputs
within the limbic brain regions (D’Amico et al., 2004; Cannizzaro
et al., 2006; Melis et al., 2012). Indeed, in rodents, treatment
with the CB1 receptor inverse agonist SR141716A (Rimonabant),
or CB1 genetic deletion, lead to a reduction in alcohol operant
drinking and a decrease in stress-induced alcohol relapse,
whereas cannabinoid antagonists mitigate alcohol withdrawal
symptoms (Kleczkowska et al., 2016).

Consistently with this significant background, the systemic
administration of the selective CB1 receptor antagonist
AM281 was evaluated on the operant behavior for ACD.
In details, CB1 receptor blockage decreased ACD-seeking
behavior during extinction and decreased ACD lever pressing
and intake following forced abstinence. Most importantly, the
CB1 antagonist decreased the punishment resistance observed
in ACD-drinking rats in the operant-conflict paradigm, when
the foot-shock was associated with ACD delivery (Plescia et al.,
2013). These data suggest that the reinforcing properties of ACD
involve endocannabinoids production, which in turn, modulate
dopamine mesocorticolimbic pathway and stress response
through CB1 receptors. Indeed a recent research employing a
binge-like drinking paradigm, pointed to the endocannabinoids
as mediators of the detrimental effects exerted by ACD chronic
consumption and withdrawal on neuropeptidergic homeostasis,

and in particular on the expression of the anti-stress NPY
(Plescia et al., 2014). In this study, the administration of the
CB1 receptor antagonist was able to ameliorate the behavioral
signs that followed withdrawal from chronic ACD; this effect
was accompanied by a time- and region-dependent increase in
the number of NPY-positive neurons both in the hippocampus
and in the NAc. These data prompted us to speculate that
ACD binge-like treatment might increase the production of
endocannabinoids, thus resulting in downregulation of NPY
expression in the hippocampus and in the NAc. Accordingly,
during early and prolonged ACD withdrawal, endocannabinoids
production may decrease while NPY expression progressively
rises. This return to homeostasis can likely contribute to
controlling neuronal hyperexcitability and the related behavioral
signs (Plescia et al., 2014). Hence, the pharmacological
inhibition of CB1 signaling represents a promising strategy
for counteracting the neurochemical imbalance associated with
ACD- and alcohol-withdrawal syndrome.

CONCLUSIONS

A deeper understanding of the ‘‘ménage à trois’’ between ACD,
reward- and stress systems is crucial to untangle the etiology
of alcohol-related behaviors. Increasing attention must be paid
to alcohol, and indirectly to ACD, ingestion during gestation
and lactation since the neuronal systems suffer from a severe
vulnerability (Cannizzaro et al., 2002, 2005), and ACD has not
been studied in the perinatal period yet.

The pharmacological targeting of the endocannabinoid
system can exert profound influence on the positive and
negative reinforcing effects of ACD, and might accelerate the
development of more effective therapeutic interventions to
reduce the incidence of alcohol abuse and alcoholism.
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