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We designed a novel experiment to investigate the modulation of human recognition
memory by environmental context. Human participants were asked to navigate through
a four-arm Virtual Reality (VR) maze in order to find and memorize discrete items
presented at specific locations in the environment. They were later on tested on their
ability to recognize items as previously presented or new. By manipulating the spatial
position of half of the studied items during the testing phase of our experiment, we
could assess differences in performance related to the congruency of environmental
information at encoding and retrieval. Our results revealed that spatial context had
a significant effect on the quality of memory. In particular, we found that recognition
performance was significantly better in trials in which contextual information was
congruent as opposed to those in which it was different. Our results are in line with
previous studies that have reported spatial-context effects in recognition memory,
further characterizing their magnitude under ecologically valid experimental conditions.
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INTRODUCTION

Traditionally, the study of the dependence of human memory on environmental context has
been conducted under highly constrained laboratory conditions. In general, investigations have
assessed the role of context by manipulating the congruency of discrete information associated to
items during learning and testing. This has typically been achieved through the use of synthetic
cues of specific sensory modalities in isolation, such as colors and position of items on the screen
(Murnane and Phelps, 1994; Hockley, 2008), or auditory stimuli (Geiselman and Glenny, 1977;
Geiselman and Bjork, 1980). Studies with a broader definition of context have explored the role of
space in recognition memory, by assessing how the congruency of the environments of encoding
and retrieval affects performance in recognition tests. In such paradigms, subjects are typically
presented with items to be learned in one environment, and later on tested on their ability to
recognize items in the same or a different environment. Under those circumstances, consistent
spatial-context effects in recognition memory have been reported in the last decades (for a review
and meta analysis, see Smith and Vela, 2001).

However, key aspects of space that are known to affect memory in the animal literature
have not been considered sufficiently in the environmental-context dependent memory
field. In particular, theoretical work on the phenomenon of rate remapping has argued for
a facilitation of memory retrieval when items are spatialized (Leutgeb et al., 2007; Rennó-
Costa et al., 2010). Indeed, the retrieval of items associated with specific locations in space
could benefit from pre-existing connections between hippocampal place cells depicting spatial
trajectories (Lisman, 2015; Silva et al., 2015). Yet in traditional environmental-context dependent
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memory experiments, items have not been deployed spatially, but
rather presented in a compressed form. Even in setups where
environments of learning and testing are changed, stimuli are
typically presented in a unique spatial location (i.e., a list of words
to be read in or visual stimuli presented on a computer screen).

On the other hand, it has been shown that spatial memory
in the mammalian brain is highly dependent on movement and
action, being driven by a path integration signal (Rennó-Costa
et al., 2010; Giocomo et al., 2011; Lu et al., 2013). Indeed, spatial
information encoded by hippocampal place cells is significantly
reduced when movement is restricted (Song et al., 2005; Chen
et al., 2013). Yet, in previous investigations on context-dependent
memory, participant’s movements during encoding and retrieval
has been constrained or uncontrolled (Smith and Vela, 2001).
This contrast with the long tradition of experiments in the human
navigation literature where the modulation of spatial learning by
spatial behavior has been explored (Chrastil and Warren, 2013).
While several of these studies have been conducted in outdoor
setups, others have employed Desktop Virtual Reality (VR;
Wilson et al., 1997; Christou and Bülthoff, 1999; Gaunet et al.,
2001; Carassa et al., 2002; for a review, see Chrastil and Warren,
2012). Although stationary VR does not assess the contribution
of proprioceptive or vestibular information, it has a number of
advantages that make it a valid tool for the study of human
navigation. First, it captures information related to volition and
cognitive decision making on the routes to take during way
finding (Chrastil and Warren, 2012). Second, it has been shown
to activate navigational systems of the brain including Place Cells
in the hippocampus (Ekstrom et al., 2003), and Grid Cells in
the Medial Entorhinal Cortex (MEC, Jacobs et al., 2013). Third,
stationary VR allows the flexible manipulation of independent
variables related to the configuration of space that would be
otherwise impossible to handle (Tarr and Warren, 2002).

Grounded in the animal literature and previous theoretical
work (Rennó-Costa et al., 2010), we aimed to test spatial-
context effects in recognition memory under ecologically
valid experimental conditions. We created a novel setup in
which we associated discrete items to unique locations in
a virtual maze. Following a within-groups methodology, we
required the participants of our experiment to navigate the
maze in order to find and memorize discrete images. We
later on tested their ability to identify, from a new set of
items, those previously presented from those that were new.
Critically, we changed the contextual information associated
with part of the old items during the retrieval phase of
our experiment, in order to evaluate recognition memory
for stimuli in congruent and incongruent spatial-context
conditions.

Given the spatial context effects in recognition memory
previously discussed, and the fact that we generated the
conditions that are known to modulate memory in the
hippocampus and the MEC, we predicted to observe a
spatial context effect in our VR-based, spatial recognition
test. In particular, we hypothesized to find better recognition
performance and shorter decision times for items encoded in
the congruent spatial context condition as compared to the
incongruent one.

MATERIALS AND METHODS

Participants
Participants were 33 young adults (20 male, mean age
23.78 ± 3.91 years) recruited from Universitat Pompeu Fabra’s
(Barcelona, Spain) student community. All participants were
explained about the procedures by the experimenter and
provided informed consent to participate in the study. The
protocol was approved by the local Ethical Committee ‘‘Clinical
Research Ethical Committee (CEIC) Parc de Salut Mar’’
(Barcelona, Spain).

Procedure
The experiment was organized in three main blocks: learning,
encoding and retrieval. In all blocks, participants were asked
to navigate a virtual maze comprising a central and four
satellite rooms (Figure 1A). Each room had a unique visual
texture on its walls (i.e., concrete, stone, brick and wood) and
was connected to a second room and to the center room.
During all blocks participants had to perform a navigation
task, which consisted of finding a target room (indicated in
the user interface, UI, Figure 1B) and memorize (encoding
block) or recognize (testing block) a discrete stimulus. A
trial was defined as the action of reaching the room and
memorize/recognize the correspondent stimulus. The starting
position for the first trial in each block was set to the
central room for all participants. The sequence of rooms
to visit was randomized. In all blocks participants were
instructed to perform the task until they visited all images.
Participants experienced the 3D world sitting in front of a
32′′ computer screen and interacted with the application using
the keyboard and the mouse. The VR application was created
using the Unity3D game engine (Unity Technologies, San
Francisco, CA, USA).

The experiment evolved over three blocks (Figure 1C).
Learning block. The objective of the learning block was for

the user to gain spatial knowledge of the maze before the start
of memory encoding and to help participants to familiarize
themselves with the interface. Before starting navigation, subjects
were shown a map of the environment and explained the
characteristics of the maze. During navigation, they were asked
to reach the target room indicated in the UI at each trial, until
they completed 10 rooms.

Encoding block. In the encoding block, subjects had to
memorize 80 images that were encountered during navigation.
Images were located in one of the walls of each room in a
5 × 4 matrix (20 images per room). The matrix was designed so
that each item would be associated with a unique spatial context
in the environment, determined by its location in the maze
(room) and its position on the wall. When the target room was
reached at each trial, the correspondent stimulus was presented
for 1 s, and then made invisible for the rest of the block.

Testing block. In the testing block subjects were asked to
navigate again and visit a new set of 80 images (20 per room),
from which half have been seen previously and half were new. As
in the encoding phase, after reaching the target room at each trial,
an item was revealed for 1 s. After stimulus presentation, subjects
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FIGURE 1 | Task description. (A) A view showing the spatial layout of the maze. Four satellite rooms are connected to a central one. (B) Twenty items are positioned
in one of the walls in each room forming a 5 × 4 matrix. The target room at each trial is indicated in the top right of the user interface (UI) with a texture.
(C) Schematic showing a trial in each of the phases of the experiment.

were asked to indicate whether they had seen the image in the
previous block of the experiment using a 6 points confidence
scale—from 1 (Sure unfamiliar) to 6 (Sure familiar) as in a
traditional recognition memory experiment (Squire et al., 2007).
The confidence question was presented in the UI and remained
visible until participants reported their answers.

Two categories of items were distinguished: those presented
in the same room and position on the wall matrix during the
encoding and retrieval phases of the experiment (congruent
items), and those presented in a different room and position on
the wall (incongruent items).

All items (targets and lures) were extracted from the same
pool of images belonging a dataset available in Moreno-Martínez
and Montoro (2012). From the 360 objects in the dataset, a
smaller pool of 160 items was selected from eight semantic
categories (food, furniture, human body, musical instruments,
buildings, tools, clothes and animals). For each subject separately,
a subset of 80 images was selected randomly from this pool of

160 images, and assigned (again randomly) to specific conditions.
In total, 20 images were assigned to the congruent condition and
20 to the incongruent condition. Eighty images were assigned
to the ‘‘new’’ condition, from which 40 were presented during
encoding and not shown at retrieval, and 40 were presented
at retrieval but not shown during the encoding phase of the
experiment.

Participants were not instructed to optimize their spatial
behavior in order to find the shortest path connecting two rooms,
but were informed about the spatial layout of the environment
during the learning phase.

Dependent Variables
Three dependent variables were measured in the experiment.

Recognition accuracy: number of correct answers divided by
the total number of trials in a correspondent condition.

Decision Time (DT): time elapsed from question
onset until participant’s responses. We only considered
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correct responses and excluded trials in which it was more
than 2.5 SD away from the mean for each participant
separately.

Navigation Optimality: ratio between the shortest possible
trajectory length connecting initial and target rooms at each trial
and the actual trajectory length of that trial. The measurement
ranges from 0 (if a subject never reaches the target room)
to 1 (shortest trajectory length). Given the shape of the
environment, only one possible combination of corridors
connecting two rooms was the correct choice to achieve optimal
performance. This measure was created to evaluate how well
participants learnt the maze before the testing phase of the
experiment.

A repeated measures ANOVAmodel was built to characterize
the relationship between familiarity (novel/familiar), and
confidence (high/low) with recognition performance.
A second ANOVA model was constructed to quantify
the influence of elapsed time (short/long) and old
item condition (congruent-incongruent) on recognition
performance. For the analysis of DTs we used a one-way
ANOVA with factor item condition (old congruent—old
incongruent—new). Pairwise post hoc comparisons were
performed using paired t-tests. All reported post hoc tests
are corrected for multiple comparisons using the Bonferroni
method.

RESULTS

Overall Results
We first aimed to evaluate if our VR based recognition
test could capture the dynamics of recognition memory
previously identified in traditional laboratory setups (Squire
et al., 2007; Wixted, 2007). We conducted a Receiver Operating
Characteristic (ROC) analysis for each participant, to assess
how well they could discriminate targets and lures at different
levels of confidence. A ROC is simply a plot of the hit
rate (old items are correctly identified as old) as a function
of the false-alarm rate (new items are incorrectly identified
as old) at different levels of confidence (Squire et al.,
2007).

All participants performed above chance levels (0.5 for
Hits and False Alarms, along the diagonal in Figures 2A,B)
at different levels of confidence. The average area under
the curve (AUC) was 0.86 ± 0.01 (SE, Figure 2B). As
expected for declarative memories (Kahana, 2012), the z-ROC
curve was asymmetrical along the chance diagonal (mean
z-ROC slope = 0.86), indicating a greater variance in the
distribution of the old items memory strength (Squire et al.,
2007).

Participants responded in general with high confidence
(74.9% of the trials, SE = 4.6%); medium and low confidence were
assigned less frequently and in similar proportions (M = 17.4%,
SE = 2.3% and M = 13.3%, SE = 1.7% respectively, Figure 2C).
Due to this unequal distribution, we pooled data from trials
with intermediate and low confidence ratings for a comparison
between high and low confidence with an equivalent number
of samples. Normalized accuracy was significantly better in the

high confidence group (0.89 ± 0.01 vs. 0.64 ± 0.02; main
effect of confidence, F(1,32) = 97.9, P < 0.01, η2 = 0.76).
Post hoc tests revealed that indeed performance for items
retrieved with high confidence was significantly higher than
low confidence trials t(32) = 9.98, p < 0.01, d = 1.73;
Figure 2D.

In general, these results are consistent with a recent report that
measured performance, confidence and decision times (DTs) in
a traditional recognition memory experiment (Rutishauser et al.,
2015), suggesting that the main features of recognition memory
were well captured by our spatial test.

Spatial Behavior
The analysis of spatial behavior revealed that all four satellite
rooms were occupied an equivalent amount of time across
participants (Wood: M: 12.72 min, SD = 1.41 min, Stone:
M = 12.9 min, SD = 1.57 min, Brick: M = 12.64 min,
SD = 1.46 min, Concrete: M = 12.54 min, SD = 1.4 min,
F(3,96) = 2.58, P = 0.06, η2 = 0.07, Figure 3A). Two example
trajectories are shown in Figure 3B.

Participant’s navigation was close to optimal after the
learning session, although some learning also took place
during the first trials of the encoding block (Figure 3C).
Mean optimality was higher in the testing block (M = 0.91,
SE = 0.01) compared to the encoding block (M = 0.87,
SE = 0.009, t(32) = 7.76, p < 0.01, d = 1.35; Figure 3C).
The individual data revealed the different profile of
responses observed across participants (Supplementary
Figure S1).

We aimed to assess the statistical dependency of navigation
optimality and recognition accuracy. For this we calculated a
mean optimality value for each session and participant. Neither
optimality or recognition accuracy were normally distributed
(Shapiro Wilk’s normality test, p < 0.05). Therefore, we used
the Spearman’s rank correlation coefficient. Results indicated
that optimality in navigation and overall performance in the
recognition test were positively correlated, r(3753) = 0.37, p = 0.03,
Figure 3D.

We next assessed the relationship between the two variables
by dividing subjects into those who scored high in navigation
optimality (>median of all subjects), and those that performed
low (<median). Recognition accuracy was not significantly
different in the two groups t(29) = 1.5, p = 0.14, d = 0.53.

Spatial Context Modulates Recognition
Performance
The main objective of this research was to assess differences in
performance related to the congruency of spatial context of items
at encoding and retrieval. Target items in the retrieval block were
presented in the same room and position on the wall with respect
to their location when encoding took place (congruent trials),
or in a different room and different position on the wall (non-
congruent trials).

A repeated measures ANOVAmodel revealed a main effect of
item condition (old congruent–old incongruent) in recognition
performance, F(1,32) = 7.77, P < 0.01, η2 = 0.19. Post hoc
analysis confirmed that accuracy in recognition was better
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FIGURE 2 | Recognition performance. (A) Performance as a function of proportion of trials correctly and incorrectly identified. Each point is one session (n = 33); red
point indicates the mean performance. (B) Behavioral Receiver Operating Characteristic (ROC) curve for individual sessions (gray) and average (red). Each data point
is a different confidence level. (C) Response probabilities for familiar and novel, correct and incorrect items. Error bars represent ± SE across subjects.
(D) Normalized recognition accuracy was significantly higher in trials recognized with high confidence compared to low confidence trials. ∗∗∗P ≤ 0.001. P values are
corrected for multiple comparisons.

for congruent compared to non-congruent trials (Congruent:
M = 0.87, SE = 0.01, Non-congruent: M = 0.81, SE = 0.02,
t(32) = 2.9, p = 0.01, d = 0.51, Figure 4A).

Given that the testing block included a recognition test at
each trial, mean duration was significantly higher in the testing
as compared to the encoding block (Encoding: M = 28.67,
SD = 3.75, Testing: M = 33.45, SD = 7.51, t(32) = 4.1, p < 0.01,
d = 0.71). Since subjects navigated with different levels of
optimality and that the order of presentation of items was
randomized, the target item’s elapsed time between encoding
and retrieval was different at each trial. To assess the influence
of this factor in recognition performance, we split trials into
those with short and long elapsed time (below and above the
median for each subject) and included this factor in our ANOVA
model. We found a main effect of elapsed time on recognition

performance (F(1,32) = 4.89, P < 0.05, η2 = 0.13). This effect did
not reach significance after Bonferroni correction in the Post hoc
Analysis (Short: M = 0.86, SE = 0.01, Long: M = 0.82, SE = 0.01,
t(32) = 2.23, p = 0.09, d = 0.38). No interaction between elapsed
time and item condition was found (F(1,32) = 0.01, P < 0.89,
η2 = 0.0005).

We next checked whether the observed differences in
performance for congruent and incongruent items were
confirmed in DT. Analysis showed a significant main effect of
condition F(2,64) = 10.88, p < 0.01. Post hoc analysis revealed
that although DT was shorter for congruent items (M = 0.87,
SE = 0.09), compared to non-congruent (M = 0.98, SE = 0.11),
this difference did not reach significance after Bonferroni
correction, t(32) = 2.9, p = 0.05, d = 0.4 (Figure 4B). New items,
on the other hand, were recognized with significantly larger DTs
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FIGURE 3 | Navigation performance. (A) Mean time of all participants in each room. Error bars represent ±SD across subjects. (B) Example trajectories from the
same participant indicating different optimality values (green = 0.97, pink = 0.60). (C) Optimality in navigation as a function of trial number. Trial 80 marks the start of
the testing block. Blue line represents mean optimality and shaded area the standard deviation. (D) Navigation optimality as a function of recognition accuracy. Blue
line shows the least square fit.

FIGURE 4 | Recognition performance for congruent and non-congruent items. (A) Normalized accuracy in non-congruent and congruent trials. (B) Decision Time
(DT) for non-congruent and congruent trials. ∗∗P ≤ 0.01. P values are corrected for multiple comparisons.

than old congruent and old incongruent trials (new: M = 1.2,
SE = 0.11), compared to old congruent t(32) = 4.56, p < 0.01,

d = 0.79; compared to old incongruent t(32) = 7.14, p < 0.01,
d = 1.24.
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DISCUSSION

According to the encoding specificity principle (Tulving and
Thomson, 1973), humanmemory is improved when information
available at encoding is also available at retrieval. Previous
research has shown that the principle is valid in recognition
memory (Smith and Vela, 2001), although in highly constrained
experimental setups. Here, we approached the problem from the
perspective of space and human spatial behavior. Using VR, we
could generate encoding and retrieval conditions that are more
likely to occur in the real world, and that are known to modulate
memory in rodents (Rennó-Costa et al., 2010; Lu et al., 2013). In
our setup, each item to be learned was associated with a unique
spatial context, and active navigation was required to reach the
items at encoding and retrieval. This allowed us to create a strong
contextual association for each item, which included spatial and
navigational aspects.

Our results confirm a significant modulation of recognition
memory by incidental context. Recognition accuracy was
significantly higher for items in which contextual information
was congruent compared to those in which it was different.
Furthermore, we identified a tendency for congruent items
to be recognized in shorter DTs as compared to incongruent
ones, although this difference did not reach significance after
Bonferroni correction (p = 0.05).

These findings contribute to a long tradition of investigations
that have explored the modulation of recognition memory by
environmental context in experimental psychology. Indeed, early
studies have reported mixed results on the effects of spatial
context in recognition i.e., inexistent (Fernandez and Glenberg,
1985) or small (Smith, 1985; Murnane and Phelps, 1994). Our
data confirms the current view that such effects exist (Smith and
Vela, 2001), and we further quantify that recognition accuracy
was 6% higher for items in which spatial position at encoding
and retrieval was congruent compared to that of trials in which it
was different (a bigger effect than the 2% reported for instance in
Smith, 1985, for lists of words).

On the other hand, the analysis of trajectory data revealed
that on average subjects learned the maze throughout the
experiment, which is reflected in the increased navigation
performance during the testing as compared to the encoding
block. Interestingly, we observed that navigation optimality
and recognition accuracy were positively correlated.
However, the observed variability in the individual data
indicated that navigation optimality was differently liked to
performance in the memory test across subjects (Supplementary
Figure S1). For instance, subject 15 navigated optimally
(Mean optimality = 0.96) but had an overall recognition
accuracy of 0.68, whereas subject 8 navigated similarly well
(Mean optimality = 0.98), with an overall memory of 0.975.
The high inter-subject variability and the fact that some
subjects performed poorly in the last trials of the encoding
block suggests that participants used different strategies to
navigate and did not learn the maze equally. Although the
positive correlation we observe is consistent with a critical
role of space representation in the association of items
with their context (Nadel, 2008), the relationship of spatial

learning and memory for spatialized items will require further
investigation.

A final remark related to the spatial behavior analyses is that
navigation performance affected the time elapsed between the
encoding and retrieval blocks of the experiment. At an item level,
the time elapsed between these two moments was dependent
on spatial performance and on the order of presentation of
stimuli, which was randomized. We controlled for this potential
confound variable in our analyses and found that time elapsed
did not significantly affected memory and did not interact with
the modulation of recognition performance by spatial-context
previously discussed.

In terms of overall accuracy, our results are consistent
with several studies that have characterized human behavior
in recognition memory experiments (Squire et al., 2007;
Rutishauser et al., 2015). This can for instance be appreciated in
the asymmetrical shape of the ROCs, the distribution of AUCs,
the enhanced performance in high confidence trials as compared
to low confidence ones, or in the faster DTs for familiar items
as compared to new ones (Squire et al., 2007; Rutishauser et al.,
2015).

Moreover, our results suggest that VR can be a powerful
tool to investigate the modulation of memory by incidental
context. Previous studies have questioned the validity of virtual
environments for the study of spatial behavior and particularly
route memory (van der Ham et al., 2015). Indeed, disembodied
navigation does not capture key factors of navigation that
affect memory, such as proprioceptive or vestibular information
(Chrastil and Warren, 2012). Nonetheless, it is likely that the
effects we observe are not related solely to the visual information
associated with the items, but to a broader context which includes
spatial and navigational aspects. It has been shown that the brain
systems for navigation including Grid and Place cells activate
during stationary VR navigation (Ekstrom et al., 2003; Jacobs
et al., 2013).Moreover, place cells that fire when specific items are
encoded during navigation in Desktop VR also discharge when
these items are retrieved in free recall (Miller et al., 2013). We
speculate that the activity of place cells representing space might
have contributed to a stronger context effect in our setup, even
in the absence of real movement. Indeed, even if subjects were
not actually moving when the stimulus was presented, each item
was shown in a specific place, i.e., a room, probably encoded
by place cells in the hippocampus. The specific contribution of
embodiment in the modulation of memory will remain to be
determined in future experiments.

In future research, we also aim to investigate the neural
signatures of the behavioral effect we observe in the human
hippocampus, a key structure in the binding of items and context
(Bird and Burgess, 2008; Nadel, 2008; Dede et al., 2013). Indeed,
previous research conducted with intracranial recordings in
humans has shown increases in hippocampal gamma power for
associative vs. non-associative recognition in a non-spatial setup
(Staresina et al., 2016). Moreover, neurons in the hippocampal
formation have been reported to encode several components of
recognition tasks, such as object categories, novelty/familiarity
and confidence (Rutishauser et al., 2015). Hippocampal cells
have also been linked to the encoding of recollection and
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familiarity—both key cognitive processes that are thought to
underlie recognition memory (Merkow et al., 2015).

In summary, by extending the study of recognition memory
to the domain of spatial behavior, we report for the first time
human behavioral data expressing the link between space and
recognition memory performance. This is a novel finding that
extends our current understanding of recognition memory, and
could be used in the design of novel educational paradigms
(Pacheco et al., 2014).
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