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Recent research on the crossmodal integration of visual and auditory perception

suggests that evaluations of emotional information in one sensory modality may tend

toward the emotional value generated in another sensory modality. This implies that

the emotions elicited by musical stimuli can influence the perception of emotional

stimuli presented in other sensory modalities, through a top-down process. The aim

of this work was to investigate how crossmodal perceptual processing influences

emotional face recognition and how potential modulation of this processing induced

by music could be influenced by the subject’s musical competence. We investigated

how emotional face recognition processing could be modulated by listening to music

and how this modulation varies according to the subjective emotional salience of the

music and the listener’s musical competence. The sample consisted of 24 participants:

12 professional musicians and 12 university students (non-musicians). Participants

performed an emotional go/no-go task whilst listening to music by Albeniz, Chopin,

or Mozart. The target stimuli were emotionally neutral facial expressions. We examined

the N170 Event-Related Potential (ERP) and behavioral responses (i.e., motor reaction

time to target recognition and musical emotional judgment). A linear mixed-effects model

and a decision-tree learning technique were applied to N170 amplitudes and latencies.

The main findings of the study were that musicians’ behavioral responses and N170 is

more affected by the emotional value of music administered in the emotional go/no-go

task and this bias is also apparent in responses to the non-target emotional face. This

suggests that emotional information, coming from multiple sensory channels, activates

a crossmodal integration process that depends upon the stimuli emotional salience and

the listener’s appraisal.

Keywords: music cognition, face recognition, N170 ERP, emotional salience, crossmodal integration, emotional

biases, musical appraisal

INTRODUCTION

The wide discussion of recent research on the interaction between music and emotion addresses
various issues, mainly those relating to comparisons between emotional processing and sensory
experience, and the definition of music a process of “sense making” that involves and influences
aspects of perception and cognition, as posited in a joint model of embodied mind (Reybrouck,
2005; Reybrouck and Brattico, 2015; Schiavio et al., 2016). Pioneering research on the crossmodal
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integration of visual and auditory perception suggests that
evaluations of emotional information in one sensory modality
may tend toward the emotional value generated in another
(de Gelder and Vroomen, 2000; Logeswaran and Bhattacharya,
2009; Balconi and Carrera, 2011). Ad example, a realistic model
able to explain emotional recognition process and crossmodal
integration is the model of Balconi (Balconi and Carrera, 2011).
This model is based on an experiment of a face recognition
task interfaced, in crossmodal condition, with prosody, and
analyzed through P2 ERP. The model highlights how an early
ERP component (i.e., P2) can be considered a cognitive marker
in multisensory processing. Thus, the emotion produced by
musical stimulation, as could be prosody in the previous model,
may influence the stimuli perception of stimuli, presented in
other sensory modalities, through a top-down process (Sekuler
et al., 1997; Jolij and Meurs, 2011; Wong and Gauthier,
2012). Different musical genres can also modulate arousal
and others psychophysiological parameters eliciting different
emotions (Schellenberg, 2005; Caldwell and Riby, 2007; Sammler
et al., 2007; Fritz et al., 2009; Ladinig and Schellenberg, 2012;
Schellenberg and Mankarious, 2012; Kawakami et al., 2014;
Bhatti et al., 2016). For example, Baumgartner and colleagues
investigated the psychophysiological effect of the interaction
between emotional visual images, music, and a crossmodal
presentation (music and images; Baumgartner et al., 2006).
More intensely perceived emotions emerged in the crossmodal
condition, and this was accompanied by predominant alpha band
activity in EEG.

It has been proposed that music primes emotional
responses to information in the visual domain (Logeswaran

TABLE 1 | Independent-samples t-tests of VAS results.

Musician Emotion t df Two-tailed

significance

Mean VAS score

Musicians Non-musicians

Albeniz Pleasant 2.138 22 0.044 9.09 7.23

Mozart Happy 3.537 22 0.002 8.91 6.85

Chopin Pleasant 2.690 22 0.013 9.27 7.46

Chopin Sad 6.546 22 0.000 8.64 4.31

T-tests are conducted with respect to the Group variable (Non-Musicians vs. Musicians)

over different emotional levels (Pleasant, Happy, Sad) and different Music (Albeniz, Chopin,

Mozart). Note that T-value are computed with the t-statistics corrected for paired groups,

df indicates the degree of freedom of the test, whereas p-values are computed considered

alpha = 0.05

TABLE 2 | Mean of the behavioral reaction times (in millisecond) in response to

neutral faces during the emo go/no-go task.

Group Reaction time

Albeniz Chopin Mozart

Musicians 744.75 721.31 662.15

Non-Musicians 564.29 587.42 570.57

Mean of reaction time in musicians is slower than in non-musicians group.

TABLE 3 | Results of linear mixed-effects model: fixed effects for group and music

on N170 amplitude.

ROI B (SE) t

L-Ant Baseline −1.423 (0.231) −6.144

Group

Non-Musicians vs.

Musicians

−0.175 (0.279) −0.628

Music

Albeniz vs. Chopin 0.209 (0.137) 1.523

Albeniz vs. Mozart 0.019 (0.141) 0.134

Group × music

Non-Musicians ×

Albeniz vs. Musicians ×

Chopin

−0.456 (0.212) −2.152*

Non-Musicians × Albeniz

vs. Musicians × Mozart

0.070 (0.212) 0.331

R-Ant Baseline −1.431 (0.208) −6.868

Group

Non-Musicians vs.

Musicians

−0.419 (0.214) −2.11*

Music

Albeniz vs. Chopin 0.299 (0.114) 2.701**

Albeniz vs. Mozart 0.003 (0.110) 0.282

Group × music

Non-Musicians × Albeniz

vs. Musicians × Chopin

−0.360 (0.168) −2.133*

Non-Musicians × Albeniz

vs. Musicians × Mozart

0.541 (0.171) 3.161**

L-Post Baseline −2.245 (0.365) −6.137

Group

Non-Musicians vs.

Musicians

−0.687 (0.285) −2.412*

Music

Albeniz vs. Chopin 0.123 (0.106) 1.155

Albeniz vs. Mozart 0.024 (0.110) 0.225

Group × music

Non-Musicians × Albeniz

vs. Musicians × Chopin

0.514 (0.328) 1.568

Non-Musicians × Albeniz

vs. Musicians × Mozart

0.857 (0.330) 2.596**

R-Post Baseline −2.245 (0.379) −5.920

Group

Non-Musicians vs.

Musicians

−1.187 (0.550) −2.157*

Music

Albeniz vs. Chopin −0.105 (0.211) 0.617

Albeniz vs. Mozart −0.392 (0.225) −1.741

Group × music

Non-Musicians × Albeniz

vs. Musicians × Chopin

0.286 (0.339) 0.845

Non-Musicians × Albeniz

vs. Musicians × Mozart

0.827 (0.341) 2.422*

Participants and EEG channels were treated as random effects; degrees of freedom of the

model were calculated with the Satterthwaite approximation. L-Ant: left-anterior; R-Ant:

right-anterior; L-Post: left-posterior; R-Post: right-posterior.

*p < 0.05; **p < 0.01.
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and Bhattacharya, 2009). Logeswaran and Bhattacharya
demonstrated that musical priming (positive or negative)
can modulate perceptions of emotional faces. In their study,
participants were asked to rate the emotional salience of
the faces, and the results demonstrated the existence of a
crossmodal priming effect. Happy faces were rated as happier
when they were presented after a happy piece of music
and vice versa. The priming effect of music is evident with
neutral targets. Analysis of Event-Related Potential (ERP)
components showed that the N1 response to neutral faces
increases when stimulus presentation is preceded by happy
music than when it was preceded by sad music. Previous studies
have observed an increased N1 component in the auditory
cortex during simultaneous presentation of an emotionally
congruent face (i.e., face–voice pairs; Pourtois et al., 2002).
The N1 component was distributed over the frontal regions,
suggesting the involvement of top–down psychophysiological
mechanisms (Zanto et al., 2011; Gilbert and Li, 2013). Moreover,
the perception of music is affected by the listener’s emotional
and cognitive state (Kawakami et al., 2013, 2014). Many studies
have highlighted differences between the cognitive processing
and cortical responses of musicians and non-musicians (Pantev
et al., 1998; Brattico et al., 2010; Müller et al., 2010; Pallesen
et al., 2010; Herholz and Zatorre, 2012; Proverbio et al.,
2013).

Recent studies suggest that musical stimulation may interact
with fatigue and motor activity, thereby affecting the motivation
of individuals who are under intense physical stress (Bigliassi
et al., 2016a,b). Music can modulate perception and cognition

via a complex interaction between the perceptual and emotional
characteristics of a musical stimulus and the physical (i.e., sex
differences; Miles et al., 2016), psychophysiological, (Gosselin
et al., 2007) and cognitive characteristics of the listener. Because
of this interaction, the emotion invoked by music can result
in biased responses (Chen et al., 2008). The aim of our study
was to investigate how cross-modal perception—in this instance
processing of emotional faces whilst performing a task that
involves listening to music—varies with the subjective emotional
salience of the music and with musical competence. This effect
can be seen at cognitive and behavioral level, in decisions and
appraisals, (Ellsworth and Scherer, 2003) and at motor level
(in motor reaction time; Brattico et al., 2013). In fact, the
motor and perceptual systems can be subject to early, top-
down modulation induced by crossmodal stimulation, which
can induce emotional bias, reflected at the behavioral level
and in cortical responses (i.e., electrophysiological level). We
also evaluated whether this bias could be modulated by the
participant’s appraisal of the musical stimulus (Brattico and
Jacobsen, 2009) choosing an electrophysiological investigation
of N170 ERP component. N170 ERP component is the most
sensible ERP component able to be modulated in the Face
Recognition Tasks (Eimer, 2000, 2011; Heisz et al., 2006; Kolassa
et al., 2009; Ibanez et al., 2012; Leleu et al., 2015; Almeida
et al., 2016). In particular, N170 is strictly linked to automatic
processes (Heisz et al., 2006), instead of P2, that is a demonstrated
cognitive marker in crossmodal cognition (Balconi and Carrera,
2011; Peretz, 2012). Still, in the condition in which music is
perceived as a cognitive expertise, the emotional salience of the

FIGURE 1 | N170 amplitudes in non-musicians and musicians in R-ANT ROI (Right Anterior Region of Interest).
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stimulus observed (i.e., face expression), may be affected by
emotional bias, and this effect can be early observable through
N170 modulations.

MATERIALS AND METHODS

Participants
Twenty-four participants were recruited in University and
in Musical Conservatory, and were selected according to
their musical skills. Twelve musicians, graduates in a Musical
Conservatory, (5 men and 7 women; mean age = 29.8 years;
SD ± 7.2) were compared to a group of 12 non-musicians,
University students (graduated of the three-year degree and
attending the specialist degree) without educational musical
training (7 men and 5 women; mean age = 26.9 years; SD
± 4.5). The instruments played by the group of musicians
included piano, guitar, trumpet, and trombone; onemusician was
a singer. All participants were right-handed, had normal hearing,
and normal or corrected-to-normal vision. Participants provided
written, informed consent to participation in accordance with the
Helsinki Declaration. Participants did not receive any financial
compensation. The local ethics committee (ASL Lecce, Apulia
Region, Italy) approved the study.

Materials
Participants performed an emotional go/no-go task (emo go/no-
go), presented using E-Prime 2.0 (Richard and Charbonneau,
2009), during the EEG recordings.

FIGURE 2 | Matching ERP of Grand average elicited by the emo go/no-go

face recognition task in non-musicians in (black line) and musician (red line) in

right anterior, right posterior, left anterior, and left posterior regions. The

Graphic of ROIs Regions has been performed through the channels pooling

processing.

The emotional go/no-go task (Schulz et al., 2007; Waters and
Valvoi, 2009; Yerys et al., 2013) is a variant of the cognitive go/no-
go task (Gomez et al., 2007) in which emotional information,
measured through a decision-making process, is accompanied by
a motor response. Generally, during an emo go/no-go task, the
participant has to press the spacebar of a keyboard in response
to an emotional face (neutral, angry, fearful, or happy). The
choice of the face emotional expression depends on the task and
on the process being investigated. The emo go/no-go task is a
paradigm often used in ERP studies investigating a mismatch
in response to stimulus salience (Jodo and Kayama, 1992; Smith
et al., 2013; Moreno et al., 2014; Invitto et al., 2016). The N170
ERP component is the most sensitive in face recognition tasks
(Eimer, 2000, 2011; Heisz et al., 2006; Blau et al., 2007). In this
study, the computerized behavioral task required participants
to press the spacebar when they identified a neutral face; EEG
data were recorded whilst they were performing the task. Facial
expressions were extracted from the NimStim Set of Facial
Expressions (http://www.macbrain.org/resources.htm).

The NimStim Set is a collection of 672 images of the faces of
70 professional actors displaying various emotional expressions.
The actors are of varying ethnicity and are represented in the
same proportions by women and men. The collection consists
of images of eight emotional facial expressions: fear, happiness,
sadness, anger, surprise, disgust, neutral, and calm. In this
experiment, we presented a sample of 64 images of fearful, happy
and neutral faces, the expression categories were matched for sex
and ethnicity.

In each condition the go-no-go task was accompanied by one
of the following pieces from the classical piano repertoire:

FIGURE 3 | Grand average of the ERP components elicited by the emo

go/no-go face recognition task in non-musicians in the Albeniz (black line),

Chopin (red line), and Mozart condition (blue line) in right anterior, right

posterior, left anterior, and left posterior regions.
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• Chopin: Nocturne Op. 9 n. 1 and Nocturne Op. 9 n. 2.
• Mozart: Sonata in D major, K.V. 311.
• Albeniz: In Iberia, Rondeña.

Musical stimuli were delivered via two earphones, with a
Windows 7 reproduction intensity of 60% (−6.4 dB), Conexant

Smart Audio HD, Roland Sound Canvas, with a sampling rate

of 48,000 Hz and 24-bit depth (system information: professional
quality).

Each condition began with the listening of a musical
piece, selected from the pieces above, whilst participants were
performing the emo go/no-go task, looking at the emotional face
displayed on the screen.

Participants rated the sadness and happiness each piece
of music invoked using visual analog scales (VASs). The
scales were administered immediately after each condition.
The VASs consisted of a ten-centimeter line with the
poles labeled 0 (absence of pleasure, sadness or happiness)
and 10 (highest possible degree of pleasure, sadness, or
happiness).

Each condition lasted approximately 500 s. Images of neutral
(target), fearful and happy (non-target) faces were presented
in pseudo-random order. Both target and non-target images
were presented for 1,500 ms and the interstimulus interval was
1,500ms.

Participants were instructed to sit so that there was a gap
of about 75 cm between the front edge of the chair and the

base of the computer screen. They had to listen to the pieces of

classical music and respond to the presentation of neutral face on
the screen by pressing the spacebar of the computer keyboard.

At the end of each condition participants rated the emotions
the accompanying music had elicited using the VASs described
above.

FIGURE 5 | Grand average of the ERP components elicited by the emo

go/no-go face recognition task in non-musicians in the Albeniz (black line),

Chopin (red line), and Mozart conditions (blue line) in right anterior, right

posterior, left anterior, and left posterior regions.

FIGURE 4 | N170 amplitudes in non-musicians and musicians in L-POST ROI (Left Posterior Region of Interest).
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N170 ERP Recording
EEGs were recorded from 64 active channels, mounted in
an electrode cap according to the International 10–20-system.
Signals were recorded through Brain Vision actiCHamp (Brain
Products GmbH); the recording software was Brain Vision

Recorder and the analysis software was Brain Vision Analyzer
(Brain Products GmbH). Electrode impedance was kept below

15 k�. The EEG was amplified (band pass 0.1–40Hz, 24 dB),
with a sampling rate of 1000Hz. Electrodes were referenced
online to the FpZ. One electrode placed at the outer canthus of

the right eye and used to monitor horizontal eye movements.
Vertical eye movements and blinks were monitored by electrodes
above and below the left eye. Trials contaminated by eye

movements, amplifier conditioning, or other artifacts were
rejected. The signal was filtered offline (0.01–50Hz, 24 dB), and

the threshold for artifact rejection was set at > |125|µV. The

ocular rejection was performed through independent component
analysis (ICA). The ERP epochs included a 100-ms pre-stimulus
baseline period and a 500-ms post-stimulus segment. Separate
averages were calculated for each facial expression (neutral,
happy, and fearful) in each music condition (Albeniz, Mozart,
and Chopin). The onset of ERP N170 peaks was estimated
from grand average waveforms, according to the ERP latency
definition (Heisz et al., 2006; De Vos et al., 2012; Smith
et al., 2013). Peaks were automatically detected for all channels,
using the global maxima in interval method (Giroldini et al.,
2016).

DATA ANALYSIS AND RESULTS

To investigate the role of the experimental manipulation
on behavioral and psychophysiological data, we combined a
linear mixed modeling with a decision-tree learning approach.
Statistical analyses on linear mixed-models were performed with
lme4, car, and lmertest packages supplied in the R environment
whereas the decision-tree model was built by means of a tailor-
made algorithm (Menolascina et al., 2007).

Behavioral Data
Independent-samples t-tests were used to analyze data from the
three VASs for each condition (see Table 1).

A repeated measures ANOVA was performed to analyze
behavioral Reaction Time to neuter faces in the Emo Go/No-
Go paradigm. The analysis considered Music (Albeniz, Chopin,
Mozart) as within factor (3 Levels) and Group (2 Levels) as
between factor. The model showed significant results in Group (F
= 57.055, df= 1, p= 0.01), results just over the limits of statistical
significance inMusic condition (F= 2.947, df= 2, p= 0.053) and
an interaction Music condition × Group (F = 3.012, df = 2, p =
0.049). The results showed a trend in higher response times in the
musicians group, with a slower reaction time in Chopin session
(Table 2).

Psychophysiological Data
The latency and amplitude of the N170 component were analyzed
using separate linear mixed-effects models (LMMs) lme4 package

FIGURE 6 | N170 amplitudes in non-musicians and musicians in R-POST ROI (Right Posterior Region of Interest). N170 amplitudes in non-musicians and musicians

in R-POST ROI (Right Posterior).
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(Bates et al., 2015) supplied as part of the R package (Bates
et al., 2013, 2014). In both models, Group (musicians; non-
musicians) and Music (Albeniz; Mozart; Chopin) were defined
as fixed factors and participant and channel were coded as
random effects. The interaction between Group and Music was
also examined in the models. Sixty-one EEG electrodes were
clustered into four main regions (ROIs): left anterior (L-Ant),
right anterior (R-Ant), left posterior (L-Post) and right posterior
(R-Post). Left and right were defined according to the standard
international 10–20 system whereas anterior and posterior were
defined according to the following rule: ANT (F, Fp, FC, FT, C, T,
AF) and POST (TP, CP, P, PO, O; Frömer et al., 2012; Bornkessel-
Schlesewsky and Schlesewsky, 2013) and as according the recent
suggestions about the reduction of data dimensions (Luck and
Gaspelin, 2017). To investigate potential regional differences,
separate LMM analyses were run for reach ROI. In all these
models, the Face variable was kept fixed at the Neutral emotional
level (i.e., Target variable in the behavioral task, as described
in the Materials section). To identify graphically the Regions
of interest (ROIs), were processes through Analyzer a Pooling
Elaboration with the creation of 4 New areas: Right Anterior
(R-Ant), Right Posterior (R-Post), Left Anterior (L-Ant) and Left
Posterior (L-Post).

FIGURE 7 | Topographies of N170 amplitude elicited by neutral facial

expressions in non-musicians.

N170 Amplitude
Table 3 shows the results of LMMs for N170 amplitude. In the
L-Ant region there was no effect of Group or Music, although
there was an interaction (B=−2.152, t896 =−2.152, p= 0.03). In
the R-Ant region there were main effects of Group (B = −0.419,
t32 = −2.11, p = 0.04; Figure 1) and Music (B = 0.299, t906
= 2.69, p = 0.007), reflecting ampler N170 in the musicians
group and in the Chopin condition (Figure 2). There was also
an interaction between Group and Music: musicians, in Chopin
condition, revealed an increased amplitude (B = −0.360, t910 =
−2.13, p = 0.03) and a decreased amplitude elicited in Mozart
condition (B = 0.541, t913 = 3.16, p = 0.001; Figure 3). In
the L-Post region there was an effect of Group (Figures 2, 4),
reflecting increased N170 amplitude in musicians (B = −1.276,
t26 = −6.13, p = 0.002). There was also a Group × Music
interaction reflecting an increase in N170 amplitude in non-
musicians during the Mozart condition (B = 0.857, t537 = 2.59,
p = 0.009; Figure 5). In the R-Post region there was an effect of
Group (Figure 6): N170 amplitude was greater in the musicians
(B = −1.187, t25 = −2.16, p = 0.04; Figure 5), and Group ×

Music interaction: non-musicians showed an increase in N170
amplitude in the Mozart condition (B = 0.827, t552 = 2.42, p
= 0.01). Respect these results, more negative components are

FIGURE 8 | Topographies of N170 amplitude elicited by neutral facial

expressions in musicians.
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visible through a Mapping imaging reconstruction in musicians
vs. non-musicians (Figures 7, 8).

N170 Latency
Table 4 shows the results of LMMs for N170 latency. There were
no effects of Group or Music in the L-Ant region. In R-Ant
latencies (Figure 9) were shorter in the Chopin condition (B
= −15.800, t919 = −4.25, p < 0.001), the opposite effect was
found in L-Post (Figure 10), with slower latencies in the Chopin
condition (B = −8.743, t730 = −2.16, p = 0.03). Finally, in
the R-Post (Figure 11) region latencies were shorter in both the
Chopin (B=−15.285, t741 =−4.88, p< 0.001) andMozart (B=

−15.543, t743 =−4.81, p < 0.001) conditions.

Assessing the Gender Effect
In order to evaluate whether the bias could be related to a gender
effect, we proceed by comparing the fixed-effects structure of
the previous linear-mixed models by adding and excluding the
factor gender from the models. The results were evaluated in
terms ofmodel fit by using an information theory based approach
(McElreath, 2016). To do so, for each ROI we considered two
models: M0 (Simple model: excluding Gender variable) and
M1 (Complex Model: including the Gender variable) and we
fit the model via maximum likelihood. The BIC information
criterion was then computed on the log-likelihood of the models
along with the Vuong’s statistic (Vuong, 1989; Merkle et al.,
2016). Finally, asymptotic confidence intervals (CIs) on the
BIC differences of the models (1BIC) were also computed. All
the computations involved were performed by means of the
nonnest2 package in the R environment.

Table 5 shows results for the model comparisons considering
Amplitude and Latency of N170. As for the previous analyses
(see Tables 2, 3), four models were considered with respect
to the four ROIs previously defined. Overall, the Vuong’s test
did not allow to reject the null hypothesis of indistinguishable
between models with and without the Gender Variable. The
model, in all ROI, showed very similar BICs. This strongly
suggests that the evidence of the models is the same. Indeed, the
95% confidence intervals of 1BIC overlapped the zero, implying
that the models are enough close and M1s cannot be preferred
over M0s. These results would suggest that including the gender
variable in the models (M1s) did not improve their evidence
with regards to the previous models (M0s). In this case, adding
Gender Effect, don’t significantly change the evidence of the
model, when compared to the sample data. Therefore, using
Occam’s razor, we resorted to considering the simplest models in
terms of parameters, according to the principle of simplifying the
variables in an experiment (Srinagesh, 2006; Luck and Gaspelin,
2017).

Decision-Tree Modeling: Target and Non-target

Stimuli
To validate that the emotional bias, generated by combined
stimuli, is correlated with the class of participant (musicians/non-
musicians), we processed the input data calculating, for each
participant, the relative variation between the music conditions
considering each EEG channel.

TABLE 4 | Results of linear mixed-effects model: fixed effects for group and music

on N170 latency.

ROI B (SE) t

L-Ant Baseline 166.283 (34.783) −0.609

Group

Non-Musicians vs.

Musicians

9.178 (6.968) 1.317

Music

Albeniz vs. Chopin −6.022 (3.935) −1.531

Albeniz vs. Mozart 1.214 (4.057) 0.299

Group × music

Non-Musicians × Albeniz

vs. Musicians × Chopin

4.147 (5.958) 0.696

Non-Musicians × Albeniz

vs. Musicians × Mozart

4.111 (6.039) 0.681

R-Ant Baseline 172.94 (4.38) 39.486

Group

Non-Musicians vs.

Musicians

8.612 (6.320) 1.363

Music

Albeniz vs. Chopin −15.80 (3.715) −4.253***

Albeniz vs. Mozart −4.655 (3.829) −1.216

Group × music

Non-Musicians × Albeniz

vs. Musicians × Chopin

9.990 (5.624) 1.776

Non-Musicians × Albeniz

vs. Musicians × Mozart

−4.621 (5.701) −0.811

L-Post Baseline 101.215 (7.47) 21.569

Group

Non-Musicians vs.

Musicians

16.991 (10.931) 1.554

Music

Albeniz vs. Chopin −8.743 (4.041) −2.163*

Albeniz vs. Mozart −2.552 (4.174) −0.611

Group × music

Non-Musicians × Albeniz

vs. Musicians × Chopin

14.881 (6.126) 2.430*

Non-Musicians × Albeniz

vs. Musicians × Mozart

9.282 (6.214) 1.493

R-Post Baseline 169.701 (7.599) 22.332

Group

Non-Musicians vs.

Musicians

21.699 (11.314) 1.918

Music

Albeniz vs. Chopin −15.285 (3.216) −4.889***

Albeniz vs. Mozart −15.543 (3.229) −4.813***

Group × music

Non-Musicians × Albeniz

vs. Musicians × Chopin

15.226 (4.739) 3.213**

Non-Musicians × Albeniz

vs. Musicians × Mozart

14.184 (4.808) 2.950**

Participants and EEG channels were treated as random effects; degrees of freedom of the

model were calculated with the Satterthwaite approximation. L-Ant: left-anterior; R-Ant:

right-anterior; L-Post: left-posterior; R-Post: right-posterior.

*p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 9 | N170 Latency in non-musicians and musicians in R-ANT ROI (Right Anterior Region of Interest).

FIGURE 10 | N170 Latency in non-musicians and musicians in L-POST ROI (Left Posterior Region of Interest).
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FIGURE 11 | N170 Latency in non-musicians and musicians in R-POST ROI (Right Posterior Region of Interest).

TABLE 5 | Comparison respect to gender effect.

Gender effect

Model BIC M0 BIC M1 Vuong’s statistic 95% CIs 1BIC

N170

Amplitude

L-ANT 3432.45 3448.54 0.026 (p = 0.994) [−35.38, 3.20]

R-ANT 3160.68 3157.28 0.053 (p = 0.3) [−24.47, 31.26]

L-POST 2323.46 2345.85 0.026 (p = 0.998) [−37.30, −7.47]

R-POST 2460.68 2461.10 0.048 (p = 0.997) [−21.13, 20.30]

N170

Latency

L-ANT 9825.47 9826.65 0.042 (p = 0.5) [−26.18, 23.83]

R-ANT 9703.89 9719.64 0.017 (p = 0.6) [−31.77, 0.27]

L-POST 7927.17 7929.67 0.05 (p = 0.5) [−26.69, 21.71]

R-POST 7696.23 7675.25 0.09 (p = 0.6) [−11.63, 53.0]

In the Table, M0 indicates the model without the gender variable whereas M1 the

model where the gender variable was instead added. The Vuong’s statistic considers the

difference of two models in terms of log-likelihood. The statistic evaluates the hypothesis

that the models M0 and M1 are indistinguishable with regards to the sample data.

∆BIC indicates the difference (M0-M1) in terms of their BIC values whereas 95% CIs

are computed with the asymptotic formula.

To do this, we used the following equation (Equation 1):

1xij =

∣

∣

∣

∣

xk − xa

xa

∣

∣

∣

∣

(1)

where i ∈ 1, . . . , 24 was the participant, j ∈ 1, . . . , 61 was the
EEG channel, a= Albeniz; k= Chopin or Mozart.

TABLE 6 | Mean performances of the predictive models – N170 amplitude.

Face Dataset Accuracy % Sensitivity Specificity AUC

Fear Albeniz vs. Mozart 32.75 0.28 0.38 0.31

Albeniz vs. Chopin 62.00 0.52 0.73 0.72

Happy Albeniz vs. Mozart 66.88 0.60 0.74 0.67

Albeniz vs. Chopin 37.00 0.33 0.41 0.37

Neuter Albeniz vs. Mozart 63.50 0.68 0.60 0.64

Albeniz vs. Chopin 49.88 0.54 0.46 0.50

These models highlight that in happy faces ERP amplitude is modulated as in neuter faces

(in Albeniz vs. Mozart predictive model).

TABLE 7 | Mean performances of the predictive models – N170 latency.

Face Dataset Accuracy % Sensitivity Specificity AUC

Fear Albeniz vs. Mozart 64.50 0.61 0.68 0.70

Albeniz vs. Chopin 41.88 0.36 0.48 0.41

Happy Albeniz vs. Mozart 51.88 0.47 0.57 0.53

Albeniz vs. Chopin 75.88 0.70 0.81 0.76

Neuter Albeniz vs. Mozart 42.88 0.41 0.45 0.41

Albeniz vs. Chopin 65.5 0.46 0.85 0.66

These models highlight that in happy faces ERP latencies are modulated as in neuter faces

(in Albeniz vs Chopin predictive model)
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The output data was further processed to evaluate which
EEG channels showed the best discrimination capability for
the classification between the two groups. A predictive model
was implemented using a tree-building algorithm (Menolascina
et al., 2007), by generating prediction rules from partially pruned
decision trees that were built using C4.5 Quinlan’s heuristics
(Quinlan, 1993), whose main goal consists in the minimization
of the tree levels and nodes number, thereby maximizing data
generalization. This technique uses an information theoretical
procedure to select, at each choice point in the tree, the attribute
that would maximize the information gained from splitting the
data.

Predictive Model Results
The predictive model was trained and tested 200 times
considering different random combinations of training and test
sets, obtained from the input dataset considering a splitting
percentage of 81.82%. The results are expressed as mean values,
considering 200 iterations, of Accuracy, Sensitivity, Specificity
and Area Under the Curve (AUC) and are reported inTables 6, 7.

We tried to improve the performance of the previous
predictive model by reducing the number of the considered EEG
channels using a correlation-based filter that selects the most

TABLE 8 | Mean performances of the FCBF-filtered predictive models – N170

amplitude.

Face Dataset EEG

channels

Accuracy

%

Sensitivity Specificity AUC

Fear Albeniz vs. Mozart – – – – –

Albeniz vs. Chopin P3–CPz 71.65 0.70 0.74 0.77

Happy Albeniz vs. Mozart T8–F4 69.27 0.64 0.74 0.72

Albeniz vs. Chopin – – – – –

Neuter Albeniz vs. Mozart CP1 79.13 0.69 0.8925 0.81

Albeniz vs. Chopin FCz–CPz 66.38 0.73 0.60 0.67

In this amplitude dataset, we can see electrodes more sensible to predictive model. In

Fear face, EEG channels are P3 and CPz, In Happy face T8 and F4 and in Neuter Face

CP, FCz, and CPz.

highly correlated features. A fast correlation-based filter (FCBF)
algorithm (Yu and Liu, 2003) was adopted.

The same procedure discussed in the previous section was
applied considering the obtained subset of EEG channels, and a
new predictive model was implemented and evaluated.

The performance of the new predictive model is reported in
Tables 8, 9.

DISCUSSION

Our aim was to investigate modulation of emotional face
recognition by cross-modal perception, treated as a function
of background music. Synesthesia and crossmodal perception
can have a strong modulatory effect on cortical processing,
conditioning or facilitating perception and interpretation of
the administered stimulus. We analyzed how musicians’
recognition of facial expressions was affected by music-induced
emotions. These data allow us to suggest that the presence
of emotional information from another sensory channel (i.e.,
auditory information from background music) activates cross-
modal integration of information and that this process can
be modulated by the perception of the musical stimulus. This
salience, for emotional face, could be explicable in terms adaptive:
identifymore early stage emotions is a skill that, developmentally,
can be crucial for the survival and, proximal and contingent,
is an indispensable social competence (Niu et al., 2012). So,
in a condition where the participants are more “emotionally
involved,” the neuter face, that is ambiguous for a defined
emotional recognition and that is more difficult to recognize,
can be more affected by emotion music induced. This justifies
the fact that the musicians evaluated music as more pleasant
and emotional (happy and sad) than non-musicians, and this
judgment on emotional engagement is in agreement with their
musical appraisal and competence. This emotional involvement
leads to a delay in reaction times. These results imply that the
motor and perceptual systems can be modulated, in a top-down
process, by music-induced emotions. The electrophysiological
data revealed increased N170 amplitudes in musicians in all
conditions. The background music had less impact in non-
musicians, then can produce less bias in the task. Instead, an
earlier onset of the global processing of the stimulus indicates that

TABLE 9 | Mean performances of the FCBF-filtered predictive models – N170 latency.

Face Dataset EEG channels Accuracy % Sensitivity Specificity AUC

Fear Albeniz vs. Mozart Fp1–AF7 79.75 0.84 0.76 0.80

Albeniz vs. Chopin F8 65.50 0.45 0.86 0.66

Happy Albeniz vs. Mozart CP5 61.13 0.94 0.45 0.69

Albeniz vs. Chopin CP1–C5–CPz–AF4 82.00 0.78 0.87 0.82

Neuter Albeniz vs. Mozart – – – – –

Albeniz vs. Chopin FC1–O2–F4–AF7–FT7–FT8–AF8 70.63 0.49 0.92 0.71

In this latency dataset we can see electrodes more sensible to predictive model. In Fear face, EEG channels are Fp1, AF7 and F8; in Happy face CP5, CPP1, C5, CPz, and AF4 and in

Neuter Face FC1, O2, F4, AF7, FT7, FT8, and AF8.
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music interacts with the interpretation of salience, producing a
behavioral delay and an increased cortical arousal in musicians.
This result suggests that perception of facial expressions can vary
according to perceptions of a concurrent auditory stimulus and
an individual’s musical background.

The decreased ERP amplitude, faster reaction times and
lower VAS scores in the non-musicians group, suggests that
non-musicians found the background music less engaging and
emotionally arousing. Hence their top-down processes (less
modulated by musical listening), doesn’t bias the face perception.
The relative changes in arousal, during the face recognition
process, are driven by the subjective emotional reaction and top-
down processing. The evidence of this concept was obtained
from the comparison of responses to the neutral face (Target)
whilst listening to music by Albeniz (pleasant), Mozart (happy)
and Chopin (judged, at the same time, both sad and pleasant).
We also assessed whether, within our model, there was a gender
effect (Miles et al., 2016), but, in our study, gender analysis did
not improve evidence with regards to the simpler model. In this
case, adding gender effect, don’t significantly change the evidence
of the model, when compared to the sample data. We chose
to keep the simpler model, even in accordance with the latest
methodological ERP guidelines (Luck, 2005; Luck and Gaspelin,
2017). Probably in a future study, increasing the number of the
sample, so that we can analyze the gender effect within the model,
we could implement the complex model.

In view of these results, to investigate other possible bias
variable-related, we sought to determine whether the bias
effect could be present not only on neutral faces, as literature
highlight. According to this hypothesis, we tested, using the
predictive model, the N170 components for the other face
emotional expressions showed during the task (happy and
fear).

The predictive model allowed us to determine the most
significant decision-tree features; in fact, the classification
performances obtained using the trained predictive model were

high, regardless of training and test sets. In this case, we find

modulation of the response even in happy faces, but not in
fear faces. This could also be explained by theories on emotions
where the stimulus that produces fear is the least susceptible to
alterations because it is the one most immediately and easily
perceived (Vuilleumier et al., 2001; Phelps and LeDoux, 2005;
Almeida et al., 2016).

Emotional salience allows the recognition and discrimination
of neutral expressions. Our data indicate that the simultaneous
presence of emotional information from multiple sensory
channels activates a process of crossmodal integration that
could be facilitated by music. Further research using different
neuroscientific and behavioral techniques and paradigms is
needed to improve our understanding of emotional crossmodal
integration.
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