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It is well established that neurons of the mammalian medial prefrontal cortex (mPFC)
modulate different behavioral outputs, including several memory types. This behavioral
modulation is, at least in part, under the control of the D1-like Dopamine (DA) receptor
(D1/5R) which comprises D1 and D5-specific subtypes (D1R and D5R, respectively).
Here, combining a set of behavioral assays with pharmacology, we determined whether
the activation of D1/5R in the mPFC during almost neutral or weak negative-valence
experiences induces aversive behaviors. The intra mPFC bilateral infusion of the
D1/5R agonist SKF 38393 (6.25 µg/side) immediately after exposing rats to the white
compartment of a place conditioning apparatus promotes a incubated-like aversive
memory when tested 7 days thereafter, but it was not seen 24 h after conditioning.
No signs of fear or changes in the anxiety state were observed after the exposure to
the white compartment. This aversive response is observed only when the experience
paired with the mPFC D1/5R activation has a context component involved. By using
specific agonists for D1R or D5R subtypes we suggest that D5R mediate the induction
of the aversive behavior. No aversive effects were observed when the D1/5R agonist
was infused into the dorsal hippocampus (HP), the nucleus accumbens (NAcc) or the
basolateral amygdala (BLA) of rats exposed to the white compartment. Taken together,
our present findings endorse the idea that activation of mPFC D1/5R is sufficient to
induce incubated-like aversive memories after exposing rats to an apparent neutral
or weak negative-valence environment and that mPFC might be considered a key
brain region involved in providing adaptive emotional behaviors in response to an
ever-changing environment.

Keywords: mPFC, dopamine receptors, conditioning experiments, aversive memory, dopamine agonist,
dopamine antagonists

INTRODUCTION

The ability to differentiate between neutral, rewarding or aversive stimulus is a key feature for
our survival. When this differentiation is affected, cognitive disorders emerge that affect our
quality of life (Puig et al., 2014). Diseases such as schizophrenia, depression, or anxiety disorders
are characterized by abnormal emotional, cognitive or personality states. All these affections share a
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deregulatory key factor, which is an imbalance in the
dopaminergic system (Grace, 1991; Robbins, 2000; Arnsten,
2009).

Dopamine (DA) neurotransmission is thought to play a role
in associative learning and memory (Goldman-Rakic et al., 2004;
Lisman and Grace, 2005; Puig et al., 2014), it participates in the
processing of emotional salient stimuli and aversive signals in the
environment (Lammel et al., 2014; Pignatelli and Bonci, 2015),
and it is well established that aversive or stressful events excite
ventral tegmental (VTA)DAneurons and causeDA release in the
mPFC (Abercrombie et al., 1989; Bassareo et al., 2002; Lammel
et al., 2014). Moreover, learning andmemory impairments found
in psychiatric and neurological disorders are generally associated
with abnormalities in the mPFC dopaminergic transmission
(Floresco et al., 2006). Within the mPFC, cognitive (Goldman-
Rakic et al., 2004; Puig et al., 2014) and emotional processes are
under the control of the DA transmission (Pezze et al., 2003;
Lauzon et al., 2009; Gonzalez et al., 2014). D1-like receptors
(comprising D1R and D5R subtypes) in the mPFC have been
shown to modulate working memory (Goldman-Rakic, 1995),
object recognition memory (Rossato et al., 2013), inhibitory
avoidance and conditioned taste aversion (CTA) memories
(Gonzalez et al., 2014, 2015), spatial and non-spatial memories
(Clausen et al., 2011) and associative learning (Puig and Miller,
2012). However, in recent years, it has been observed varied
responses after activation of these receptors, which led to propose
that D1R and D5R could be regulating different phenomena
(O’Sullivan et al., 2004; Hansen and Manahan-Vaughan, 2012).
Cortical expression of the D5R is higher than D1R subtype,
and pharmacological studies demonstrated that D5R has over a
10-fold higher affinity for DA than D1R subtype (Sunahara et al.,
1991; Weinshank et al., 1991).

Due to the relevance of the mPFC dopaminergic signaling on
strong negative-valence experiences, we aim to elucidate if the
merely activation of the mPFC D1/5R would be able to induce
an aversive behavior when it is paired with an otherwise neutral
or slightly negative-valence experience. Using a combination
of behavioral and pharmacology experiments, we report that
the activation of the D1/5R in the mPFC produces an aversive
behavior when it is paired with a slightly aversive stimulus.
Moreover, this mechanism appeared to be mediated by the D5R
subtype and has a incubated-like expression, since the effect is
only observed when memory is tested at 7 days, but not at 24 h,
after training.

MATERIALS AND METHODS

Animals
A total of 372 Sprague-Dawley rats (Faculty of Veterinary
Science, Argentina) were housed five per cage in a vivarium
maintained on a reversed 12-h light-dark cycle (lights off
at 0700 h) at a constant temperature of 21◦C. Experimental
procedures followed the guidelines, and were approved by the
Animal Care and Use Committees of the University of Buenos
Aires (CICUAL). The protocol was approved by the same
committee. Each experiment involves an independent group of
animals.

Drugs
Cocaine hydrochloride (Coc, 20mg/ml/kg, Laboratorios Verardo
y Cia., Argentina), Lithium Chloride (LiCl, 150 mg/ml/kg,
Cicarelli, Argentina) and the DA D1/5R antagonist SCH
23390 hydrochloride (SCH, 1.5 µg/µl, Sigma-Aldrich) were all
dissolved in sterile 0.9% physiological saline. The DA D1/5R
agonist SKF 38393 hydrochloride (SKF, 12.5 µg/µl, Sigma-
Aldrich), the selective DAD1R agonist SKF 83822 hydrobromide
(SKF 83822, 1 µg/µl, Sigma-Aldrich) and the selective DA D5R
agonist SKF 83959 hydrobromide (SKF 83959, 10 µg/µl, Sigma-
Aldrich) were all dissolved in sterile 0.9% physiological saline
supplemented with DMSO (10% final concentration, Ernesto van
Rossum y Cia., Buenos Aires, Argentina). The doses utilized
were determined based on previous studies showing the effect
of each compound on learning or behavioral performance
(Majchrzak and Di Scala, 2000; Lima et al., 2009; Kramar et al.,
2014).

Surgical and Intracerebral Infusion
Procedures
Each rat was anesthetized with a mix of ketamine (85 mg/kg)
and xylazine (10 mg/kg) administered intraperitoneally (i.p.)
and placed in a stereotaxic frame. The skull was exposed
and leveled (flat skull, lambda and Bregma at the same
elevation degree) 22-G guide cannulae for intracerebral infusions
were bilaterally implanted aimed at different structures. The
stereotaxic coordinates used were as follows for the different
structures: For mPFC: AP +3.20 mm/L ±0.75 mm/DV
−3.20 mm; for nucleus accumbens (NAcc): AP +1.5 mm/L
±1.2 mm/DV−1.2 mm, for hippocampus (HP): AP +3.90 mm/L
±3.00 mm/DV −3.00 mm and for basolateral amygdala (BLA):
AP −2.8 mm/L ±4.6 mm/DV−6.6 mm from Bregma; (Paxinos
and Watson, 2004; Supplementary Figure S1). Cannulas were
fixed to the skull with acrylic cement. After surgery, animals
were injected with a single dose of meloxicam (0.2 mg/kg) as
analgesic and animals were left on their homecage to recover for
1 week. For intracerebral infusions, 30-G needles connected to
Hamilton syringes were used. The infusions were always bilateral
with 1 µl per side as volume infusions for HP and 0.5 µl for the
other structures (injection rate: 1 µl/30 s). The needle was left in
place for an additional minute after infusion to allow diffusion
and to prevent reflux. At the end of each experiment cannulae
placement was verified by infusions of 1 µl of 4% methylene blue
in saline for HP and 0.5 µl for the other structures. Animals were
killed after 15 min by decapitation and histological localization
of the infusion site was established. The extension of the dye
infused was taken as indicative of the presumable diffusion of
the drugs previously given to each animal. Infusions spread with
a radius of ranging from 1 mm3 to 1.5 mm3 depending on the
volume infused (Gonzalez et al., 2014; Tomaiuolo et al., 2014).
Animals with both cannulae in the correct place were included in
the study.

Behavioral Paradigm
Place conditioning experiments were carried out using a three-
compartment apparatus; the center compartment was a short
connecting passageway between two other compartment. One
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FIGURE 1 | Infusion of D1/5R agonist SKF 38393 in medial prefrontal cortex (mPFC) produces an aversive behavior. (A) Schema of the protocol used. (B) Animals
were infused with the D1/5R antagonist SCH 23390, with the D1/5R agonist SKF 38393 or their respective vehicles in the mPFC region immediately after the
exposure of the white compartment. When animals were tested 7 days later, animals infused with SKF 38393 show an aversive behavior regarding the white
compartment (Veh vs. SKF p = 0.0074, n = 9). (C) No effect of any of the drugs was observed when animals were tested at 24 h (p > 0.05, n = 6). (D) Infusions of
SKF 38393 immediately after the black compartment exposure. Test was performed 7 days later. No aversive effect was found (p > 0.05, n = 12). (E) Scores for the
pre-test phase of the protocol. Animals show a natural preference for the black compartment (p < 0.001, black vs. white; black vs. gray, n = 39). (F) Animals were
infused with the D1/5R agonist SKF 38393 or vehicle in the hippocampus (Hp), nucleus accumbens (NAcc) or basolateral amygdala (BLA) region immediately after
exposure to the white compartment of the apparatus. There is no effect of the D1/5R activation in either structure when test was performed 7 days later (p > 0.05, n
is indicated on each column). ∗p < 0.05.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 3 October 2017 | Volume 11 | Article 209

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Castillo Díaz et al. D1/5R Activation and Aversive Responses

of them had black walls, white square patterns and grid floor
whereas the other one had white walls, black lines pattern and
perforated floor. The size of the squares is 4 × 4 cm and
the stripes are 1.8 × 30 cm. There are 44 squares distributed
in the black compartment (14 on the longest walls and 8 on
the shortest) separated 1.5 cm from each other and 20 stripes
in the white compartment (6 on the longest walls and 4 on
the shortest) separated approximately 4 cm from each other.
The perforated floor has 270 holes with a diameter of 6 mm
each separated by 1 cm from each other. The grid floor has
18 smooth circled rods separated by 1 cm from each other
with a diameter of 6 mm each. The connecting passage had
gray walls with no pattern and smooth floor. The dimensions
of the compartments were 29 × 25 × 30 cm for the black
and white compartments and the 10 × 25 × 30 cm for
the gray corridor. The connecting passage had gray walls
with no pattern and smooth floor. The dimensions of the
compartments were 29 × 25 × 30 cm for the black and
white compartments and the 10 × 25 × 30 cm for the gray
corridor. All the experiments were independent and carried
out with different groups of animals, but they shared part
of the protocol, consisted on three phases (Figure 1A): a
pretest phase in which the animals were allowed to explore the
entire apparatus freely for 15 min and the preference for each
compartment was determined measuring time spent in each
compartment, a conditioning phase 24 h after the pretest in
which they were restricted to one of the compartments after
saline i.p. injections and, on the next day, confined to the
other compartment after saline, cocaine (Figures 3A,B), or LiCl
(Figures 3C,D) i.p injections, depending on the experiment.
Immediately after removing them from this compartment,
animals were infused with SKF 38393 (Figures 1, 3–5), SCH
23390 (Figures 1B,C), SKF 83959 (Figure 6) or SKF 83822
(Figure 6) into the mPFC, HP (Figure 1F), NAcc (Figure 1F)
or BLA (Figure 1F) according to the experiment. Results were
analyzed using the Score corresponding to time spent in the
compartment that was followed by a drug infusion in the
brain minus time spent in that compartment on the pretest.
Time was measured with timers by a blind subject seated near
the apparatus at a distance where rats cannot see it directly.
The position of the CPP apparatus regarding the walls or the
experimenter was counterbalanced, being some trials the white
compartment closer to the experimenter and the others, the
white compartment close to the wall. The environment where
the experiment was performed consisted on a quiet room,
with light gray walls, temperature and humidity controlled.
The intracerebral injections were performed on a separate
table, away from the CPP apparatus, while there were no
animals being conditioning at that moment. The experiments
using two drugs (Figures 3B,D) have only one conditioning
drug (cocaine or LiCl) with its corresponding VEH and one
modulating drug (SKF or SCH) with its corresponding veh.
Therefore, conditioning drug and modulating drug are the
two statistical factors with a 2 × 2 design. Finally, the test
phase was made at 24 h or 7 days, in which the animals
were allowed again to explore freely the entire apparatus
for 15 min in a drug-free state, where time spent in each

FIGURE 2 | Exposure to the white compartment does not produce an
anxiogenic state in rats. Animals were conditioned following the same protocol
as before. Immediately after exposition to the white or black compartment,
animals were tested on a Plus Maze paradigm. (A) Percentage of time spent
in the open arms. There is no significant differences between groups
(p > 0.05, n = 10). (B) Number of entries in the open arms and total entries
into both arms. There is no significant differences in any of the variables
studied (p > 0.05, n = 10).

compartment was also measured. All the experiments were
performed during the dark-cycle of the animals using a red
mild light to illuminate the room. For detailed information of
each experiment, please see ‘‘Supplementary Material’’ section.
The training simply established an association between the drug
and the contextual cues of one of the compartments. Whether
the animal approaches or avoids the compartment in the test
phase depends on whether the drug has rewarding or aversive
effects. All experiments were analyzed separately, since they were
performed separately, always with their corresponding controls
(Veh suministration). During pretest phase, animals that spend
less than 90 s in any of the compartments were excluded from
the study. Two animals out of 372 were excluded for this
reason. The description of the previous protocol was followed
on all place conditioning experiments, except on the ‘‘homecage’’
experiment, explained next.

In the ‘‘homecage’’ experiment, two new groups of naïve
independent animals were used for this experiment. We aimed
to understand if the mPFC D1/5R activation could generate
aversion at 7 days without being paired to a conditioning
compartment. One week after surgery animals were infused
with Vehicle or SKF 38393 in the mPFC and placed back
to their homecage. Seven days later animals were allowed
to explore freely the CPP apparatus for 15 min (Test 1).
As we did not find significant differences, we next wanted
to assess if the incubated aversive effect observed in the
experiment 1 (Figure 1B) also occurs even when animals were
not conditioned on the white compartment. If this happens
after a conditioning phase onto the black compartment, it could
denote a generalization effect of the experience regarding the
same neural pathway. This would mean that D5 stimulation
after the black compartment conditioning leads the aversive
behavior incubation that may be expressed in the white
compartment, although no white compartment conditioning
was made. Therefore, the following day after Test 1 animals
were conditioned in the black compartment for 30 min and
immediately infused with Vehicle or SKF 38393 into the mPFC.
Seven days later animals were again allowed to explore freely
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FIGURE 3 | Challenging effects of Cocaine or Lithium Chloride (LiCl) reverse or promote the effects of D1/5R activation on mPFC. (A) A single dose of cocaine (Coc,
20 mg/kg, i.p) generates a positive conditioning to the associate, white compartment when animals are tested at 24 h (Sal vs. Coc p = 0.003, n = 18–19). (B) The
infusion of the D1/5R agonist SKF 38393 in the mPFC after a single cocaine conditioning does not generate the aversive behavior observed at 7 days (Tukey
post hoc, p(interaction) = 0.0478, n = 10). (C) A single dose of LiCl (150 mg/kg i.p.) induces an aversive conditioning shown at 24 h but not at 7 days (Sal vs. LiCl
p = 0.0032 n = 9). (D) Animals infused with the D1/5R agonist SKF 38393 or vehicle in the mPFC region immediately after the conditioning in the black compartment
paired with LiCl promotes an aversive behavior 7 days later (Tukey post hoc p(interaction) = 0.0137 n = 10–11). ∗p < 0.05.
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the entire apparatus for 15 min (Test 2). Time is shown as a
score of Test 2-Test 1 white compartment exploration time to
determine changes in their natural behavior. Student’s t-test was
made to compare sal and SKF groups in both tests, independently
(n = 11).

In the positive-valence experiment, cocaine was used as a
positive agent. During the conditioning phase animals were given
i.p. saline injection before placement in the black compartment
for 30min on the first conditioning day and were given a Cocaine
injection (20 mg/ml/kg, i.p.) before placement in the white
compartment for 30 min on the following day. Immediately after
removing from the white compartment, animals were infused
with Vehicle or SKF 38393 into the mPFC and returned into
their home cages. Control groups received saline i.p. injections
both days. Animals were tested at 7 days. In the negative-
valence experiment, LiCl was used as a negative agent. Animals
were given an i.p. saline injection before placement in the
initially non-preferred white compartment for 60min on the first
conditioning day andwere given a LiCl injection (150mg/kg, i.p.)
before placement in the initially preferred black compartment for
60 min on the following day. Immediately after removing from
the black compartment, animals were infused with Vehicle or
SKF 38393 into the mPFC and returned into their home cages.
Control groups received saline i.p. injections both days. Animals
were tested at 7 days.

Plus Maze Test
The plus-maze was made of acrylic and had two open arms
(50 × 10 cm) and two enclosed arms of the same size with walls
40 cm high; it was elevated 100 cm above the ground. Each rat
was placed in the central square (10 × 10 cm) and allowed 5 min
to freely explore the maze. The total number of entries into the
four arms, the number of entries, and the time spent in the open
arms were recorded (Pellow and File, 1986). Student’s t-test were
made for each comparison (n = 10).

Taste Aversion Test
After recovery from surgery, animals were trained in a modified
CTA task (CTA; Gonzalez et al., 2015; Figure 5). Briefly, animals
were deprived of water for 24 h and then habituated to drink
water from a graduated tube for 20 min each day for 3 days. In
the training session, water was substituted with a 0.1% saccharin
(Sigma-Aldrich) solution. After saccharin consumption animals
were infused with Vehicle or SKF 38393 into the mPFC.
After training animals received free water for 3 days and
then were deprived again for 24 h followed by 3 days of
limited water intake like the habituation days. Seven days
after training animals were tested only once by giving them
again a 0.1% saccharin solution. Saccharin consumption (in
percentage) was calculated as follow: consumption in the test
session × 100/consumption in the training session. Student’s
t-test was made to compare both groups veh vs. SKF,
n = 6, respectively.

Statistical Analysis
Data is presented as a score in seconds (s), total exploration
time, % of exploration time or number of entries for Plus

FIGURE 4 | D1/D5 activation on the mPFC did not generate the aversive
behavior without white compartment conditioning. (A) Schema of the protocol
used. (B) Previous any exposure to the apparatus, animals were infused with
D1/5R agonist SKF 38393 in the mPFC and left on their homecage.
Test/Pre—test was performed 7 days later. No differences were found in the
exploration time of the white compartment (p > 0.05, n = 10–11). (C) Animals
were then conditioned only on the black compartment, and infused with
D1/5R agonist SKF 38393 in the mPFC immediately after. A new test was
performed 7 days later. No differences were found between groups (p > 0.05,
n = 10–11).

Maze experiments. For the conditioning experiments the score
was calculated as the time spent in the LiCl/Coc-associated
compartment minus time spent in the to-be LiCl/Coc-associated
compartment during the pretest. Results were presented as

FIGURE 5 | Activation of mPFC D1/5R after exposure of a neutral,
context-independent paradigm did not generate an aversive response.
(A) Schema of the modified conditioned taste aversion (CTA) protocol used.
(B) Animals were infused with D1R agonist SKF 38393 in the mPFC
immediately after being trained on saccharin consumption. Test was
performed 7 days later. No significant differences were found between groups
(p > 0.05, n = 6).
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FIGURE 6 | The aversive effect observed is mediated through the activation of
dopamine (DA) receptor D5 in the mPFC. Animals were infused with the
selective D1R dopaminergic agonist SKF 83822, with selective dopaminergic
agonist SKF 83959 or Vehicle in the mPFC region immediately after the
exposure to the white compartment of the apparatus. Test was performed
7 days later. Animals infused with SKF 83959 showed an aversive behavior
(p = 0.047, n = 8–19) while the animals infused with SKF 83822 showed no
changes in preference or aversive behavior (p > 0.05, n = 8–19). ∗p < 0.05.

mean ± SEM. Data was analyzed using two way analysis
of variance (ANOVA). In cases of significant interaction
post hoc analysis were made with Tukey test when one or two
factors p-value were significant. In cases with non-significant
interaction, a main effect ANOVA was made. A result was
considered significant when p < 0.05. Single comparisons
were made with Student’s t-tests. All data was analyzed using
Graphpad and InfoStat software.

RESULTS

Activation of Dopaminergic D1/5R in mPFC
Produces a Long-Lasting Aversive
Behavior
We first aimed to determine if the activation of D1/5R in the
dorsal mPFC has an effect on an otherwise almost neutral
experience.We trained the animals on amodified place paradigm
that avoids the use of rewarding or aversive agents. Animals were
confined to a ‘‘white’’ and a ‘‘black’’ compartment (Figure 1A)
for 30 min after a saline injection on consecutive days. A
group of animals were infused in the dorsal mPFC with the
D1/5R agonist SKF 38393 (6.25 µg per side) or its respective
vehicle, immediately after the conditioning session in the white
compartment, while another group was infused with the D1/5R
agonist after the conditioning session in the black chamber.
Animals were tested 7 days after the last conditioning session,
where animals were placed in the three-compartment apparatus

and were able to explore freely for 15 min. The group infused
with the D1/5R agonist SKF 38393 after the white compartment
conditioning session spent significant less time on the white
compartment than control group. Moreover, they account a
negative score suggesting an aversive behavior probably due
to D1/5R activation (Figure 1B, Student’s t-test veh vs. SKF,
p = 0.0074, n = 9). On the other hand, this behavior was
not observed when animals were tested 24 h after the last
conditioning session (Figure 1C, Student’s t-test veh vs. SKF,
p > 0.05, n = 6), suggesting a particular effect of DA signaling
on the expression of a long-lasting long term memory (LTM;
tested at 7 days) but not being the case for the expression of
a recent LTM (tested at 24 h). No effect was observed when
animals received an infusion of the D1/5R antagonist SCH23390
(0.75 µg per side) or its respective vehicle, immediately after the
conditioning session in the white compartment and were tested
at 7 days (Figure 1B, Student’s t-test veh vs. SCH p > 0.05,
n = 6 or 7, respectively) or at 24 h (Figure 1C, Student’s t-
test veh vs. SCH p > 0.05, n = 12). Surprisingly, the group
of animals infused with the D1/5R agonist immediately after
the conditioning session in the black chamber did not show
any aversive behavior (Figure 1D, Student’s t-test, veh vs. SKF
p > 0.05, n = 12 or 8, respectively). This could suggest that
the white compartment has different features, being somehow
less attractive than the black one, even though, not sufficient
to generate an aversive behavior per se. Indeed, an analysis of
the time spent in each compartment during the pre-test phase
shows that animals spent more time in the black compartment
than the white one (Figure 1E, Tukey post hoc test after one-way
ANOVA(2,116); F(treatment) = 30.37, p < 0.0001, black vs. white
p < 0.05; black vs. gray p < 0.05, n = 39).

Activation of D1/5R in Other Brain Regions
Does Not Produce Any Behavioral Effect
The mPFC is part of the mesocortical circuitry and it is known
to be involved in appetitive and aversive memories (Quirk and
Sotres-Bayon, 2009). However, there are other structures that
are intimately connected to it and that are also involved in this
type of memories as the HP, NAcc and BLA. We further aimed
to understand if any of these structures are also involved in
the modulation of this aversive behavior. Therefore, we infused
cannulated animals aiming the HP, NAcc or BLA with the D1/5R
agonist SKF 38393 after the saline conditioning in the white
compartment. Animals were tested at 7 days and no aversive
behavior was observed, as shown in Figure 1F, suggesting that
this aversive behavior could be triggered mainly by the mPFC
at the doses used here (Student’s t-tests veh vs. SKF for each
structure, p > 0.05, n indicated on each column).

Exposure to a White Compartment Does
Not Produce an Anxiogenic State in Rats
To determine if the exposure to any of these compartments
could produce an anxiogenic state on the animals, we performed
a plus-maze test (Pellow and File, 1986), in which animals
were exposed to both compartment, but one group was
tested after the white compartment exposure while the other
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was tested after the black compartment exposure. We did
not find significant differences between groups, indicating
no particular anxiogenic state in white compartment-exposed
groups of animals (Figures 2A,B). No significant differences
were found neither in the time spent nor the number of
entries into the open arms between groups (Student’s t-test,
p > 0.05 for each comparison, n = 10). In addition, in our
experimental conditions no signs of freezing or changes in
other fear-related measures (number of boluses or rearings)
were observed during the experiments. However, it cannot be
totally ruled out the possibility that a mild undetected state
of anxiety is actually present in white compartment-exposed
animals.

Challenging Effects of Cocaine or LiCl
Reverse or Promotes the Effects of D1/5R
Activation on mPFC
To further analyze the idea of the negative-valence component
that the white compartment could have, we decided to challenge
this negative-valence by reversing this effect with a rewarding
agent (cocaine 20 mg/kg, i.p; Kramar et al., 2014). Cocaine
generates a preference for the paired compartment 24 h after
conditioning (Figure 3A, Student’s t-test, sal vs. coc p = 0.003,
n = 18 or 19 respectively). Animals were conditioned as
previously, except that now a group of animals received an
injection of cocaine (20 mg/ml/kg i.p.) prior being confined
on the white compartment. Immediately after conditioning,
animals were infused with veh or SKF 38393. No effect of
the D1/5R agonist infusion on cocaine group was observed
when animals were tested at 7 days and again, the aversive
response was observed on the saline group infused with
SKF (Figure 3B, Tukey post hoc after two-way ANOVA(1,35);
F(conditioned drug) = 12.02, p = 0.0014, F(modulating drug) = 16.96,
p = 0.0002, F(interaction) = 4.205, p = 0.0478, n = 10 for each group).

In accordance with this rationale, providing an aversive
component to the naturally non-aversive environment as is
the black compartment, infusion of the D1/5R agonist SKF
38393 following conditioning on the black compartment would
cause the same incubated aversive LTM observed in animals
conditioned in the white compartment. We worked with
a previously developed one-trial conditioned place aversion
protocol (Kramar et al., 2014) in which the animals were
conditioned in the black compartment with a low dose of Lithium
Chloride (LiCl), an aversive agent known to be capable of
establishing taste and place avoidance (Nachman, 1963; Tenk
et al., 2005), as our negative reinforcement. The one-trial version
is considered a weak training that establishes a relatively weak
memory for the LiCl-compartment association, where animals
normally show memory retention at 24 h (Figure 3C, Student’s
t-test sal vs. LiCl p = 0.032, n = 9) but not at 7 days (Figure 3D,
vehicle groups; Kramar et al., 2014). In this case, a group
of animals received a LiCl injection (150 mg/kg, i.p.) before
black compartment conditioning. Animals were infused into
the mPFC with the D1/5R agonist SKF 38393 immediately
after conditioning on the black compartment and tested
7 days later. The activation of the mPFC D1/5R promoted a

long-lasting aversive memory regarding the black compartment
(Figure 3D, Tukey post hoc after two-way ANOVA(1,38);
F(conditioning drug) = 5.860, p = 0.0204; F(interaction) = 6.682,
p = 0.0137, n = 10 for veh groups and n = 11 for SKF
groups).

The Effect Observed Is Due to an
Enhancement of an Aversive Contextual
Component
To better understand the behavioral outcome we were observing,
we wanted to determine if this aversive behavior was exclusively
a pharmacological effect or if it had a contextual component.
We perform a ‘‘homecage’’ experiment in which at first, animals
that had never been exposed to the three-compartment apparatus
were infused with D1/5R agonist SKF 38393 or Veh in the dorsal
mPFC (Figure 4A, Schema of the protocol used). Following
infusion, animals were returned to their home-cage. Seven days
post infusion, animals were placed in the apparatus and time
spent in the white compartment was measured. There were no
significant differences between exploration times of each group
(Figure 4B, Student’s t-test veh vs. SKF, p > 0.05, n = 10 or
11, respectively). On the second phase of this experiment we
aimed to understand if a generalization effect occurred, or if
the D1/5R agonist infusion should be paired with the white
compartment. Briefly, we conditioned the animals only in the
black compartment and they received an infusion of D1/5R
agonist SKF 38393 or Veh in the mPFC following conditioning.
Animals were tested 7 days later. Again, we did not find
significant differences between groups (Figure 4C, Student’s
t-test veh vs. SKF, p > 0.05, n = 10 or 11, respectively).
These results show that the effect observed is probably due
to an enhancement of an aversive contextual component,
rather than merely generalization of an indistinct aversive state.
Therefore, the animals should have been previously exposed
to the context in order to obtain a long-lasting aversive
behavior.

Activation of mPFC D1/5R after Exposition
of a Neutral, Context-Independent
Paradigm Did Not Generate an Aversive
Response
Previous results suggest that normal maintenance of CTA
memory lasting 20 days requires an early post-trainingphase
of D1/5R signaling in the mPFC (Gonzalez et al., 2014).
We asked what would be the effects of D1/5R activation in
mPFC immediately after training in a completely neutral and
context-independent paradigm using a CTA protocol without
conditioning with an aversive agent as LiCl (Figure 5A, Schema
of the protocol used). When we infused the D1/5R agonist in
the mPFC immediately after training and tested 7 days later, no
significant differences between groups were found (Figure 5B,
Student’s t-test, veh vs. SKF, p > 0.05, n = 6). These results
indicate that activation of mPFC D1R after exposure of a neutral,
context-independent paradigm like the one we performed here
did not generate an aversive response.
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The Incubated Aversive Effect Observed Is
Mediated through the Activation of
Dopamine Receptor D5 in the mPFC
DA D1/5Rs comprising of D1R and D5R subtypes are
intimately implicated in dopaminergic regulation of fundamental
neurophysiologic processes such as mood, motivation, cognitive
function and motor activity. To understand more about the
mechanisms underlying the aversive behavior observed here, we
aimed to determine the involvement of the D1R or D5R subtype
activation, on this long term aversive behavior. We trained
the animals using the same protocol as above (see Figure 1A)
but in this case, one group of animals was infused with the
specific D1-subtype receptor agonist SKF 83822 and the other
one received the specific D5-subtype receptor agonist SKF 83959.
Animals were tested 7 days later. We found that the aversive
behavior observed 7 days after training is mediated by D5R
signaling while D1R activation had no effect (Figure 6, Tukey
post hoc analysis after One-way ANOVA(2,37), F(treatment) = 10.88,
p = 0.0002, SKF83959 vs. veh p < 0.05, SKF 83959 vs. SKF 83822
p < 0.05, n = 19 for veh, n = 11 for SKF 83822, n = 8 for SKF
83959).

DISCUSSION

Most experiences have an aversive or rewarding component,
even if it is so slight that does not affect the behavioral outcome.
In this study we aimed to study what would be the implications
of D1/5R activation of the mPFC when the experience has no
significant valence, it means, no apparent aversive or rewarding
component strong enough to produce a change in behavior.

The main finding of the present study is that activation
of D1/5R in the mPFC promotes incubated-like aversive
responses. This is consistent with the idea that ‘‘the mPFC is
conceived as a network mapping events within a given spatial
and emotional context with the most adaptive action and/or
emotional responses’’ (Euston et al., 2012). The D1/5R agonist
SKF 38393 infused into the mPFC immediately after rats were
exposed to a mild, brighter environment (because of the light
reflection on the white walls) with a perforated floor type (we
cannot rule out the possibility that different tactile experience’s
on both chambers could also be an aversive factor) promoted
the acquisition of a persistent contextual aversive memory that
is noticeable 7 days after training. Interestingly, no evidence of
place aversion was found 24 h after the administration of the
drug. When drugs are infused in the brain they might affect
different memory phases depending on the moment in which
they were infused. In the present work the infusions were made
immediately after conditioning and therefore they may affect the
formation and/or persistence of memory storage. Dopaminergic
system is involved in amechanism known as memory persistence
(Medina et al., 2008; Rossato et al., 2009). It refers to as the
process by which memories can last longer on time. It has
been proved that during an inhibitory avoidance training (IA)
the VTA becomes active and therefore releasing DA in certain
structures as the mPFC and the HP that are involved in fear
memory processing (Rossato et al., 2009; Gonzalez et al., 2014).

VTA-mPFC DA signaling at the moment of the training is
decisive for the storage of these persistent memories (Gonzalez
et al., 2014). Therefore it is not surprising that an imbalance in
this system could impair the normal functioning of this memory
persistence machinery. In fact, blocking them PFC dopaminergic
system immediately after strong IA training impairs memory
retention when it is measured at 7, but not at 2 days. It seems
that this aversive process is not generated immediately after
the agonist infusion. On the contrary, a few days are required
to evidence it. Activation of mPFC DA activity after a weak
IA training promotes the persistence of this memory, also
suggesting the importance of mPFC DA signaling on memory
storage (Gonzalez et al., 2014). In these experiments the aversive
component was strong enough to generate a memory that lasts
at least 24 h. What is interesting is that the affected outcome is
observed in the animal behavior at longer times, 7 days or longer,
after the manipulation of them PFC DA system. This may be
because we are affecting the persistence phase of this memory,
without manipulating its formation. In our present study the
activation of D1/5R in the mPFC associated with a mild aversive
environment provokes a incubated-like behavioral aversion that
also needs time to be built up.

On the other hand, the infusion of SKF38393 in the mPFC
produced no signs of aversion when rats were exposed to a
dark environment, which appears to havemore neutral-valence
components than the white one. However, when we paired the
black compartment with an aversive component (a single dose of
LiCl), coupled to D1/5R activation, a delayed aversive response
was obtained. This would seem to be not only the result of the
value of the experience, but also the type of learning. When we
worked with a context-independent protocol, we did not observe
any effect.

It has been suggested that the mPFC is an important part of
the brain circuit involved in fear behavior. Within this circuit,
the prelimbic (dorsal) and infralimbic (ventral) subdivisions of
the mPFC are thought to exert top-down control over BLA,
NAcc and periaqueductal gray matter to regulate appropriate
behavioral responses including the expression and suppression
of learned fear (Corcoran and Quirk, 2007; Sierra-Mercado et al.,
2011; Cheriyan et al., 2016; Dejean et al., 2016). However, it has
been also suggested that both subdivisions of the mPFC may act
in concert (Giustino andMaren, 2015) andmay influence similar
populations of neurons in the BLA (Arruda-Carvalho and Clem,
2015). Previous findings suggest that fear memory conditioning
is under the modulatory control of DA in the NAcc and BLA
in mice (Fadok et al., 2010) and in the HP in rats (Rossato
et al., 2009). However, our results showed that the activation of
D1/5R in these three brain structures did not induce a contextual
aversive memory (Figure 1F) like that observed in the present
study, suggesting that mPFC is a key node on aversive LTM
processing. Other brain regions such as the lateral habenula (LH)
and the periaqueductal gray matter which receive inputs from
the mPFC (Euston et al., 2012) are candidates to participate in
the neural circuits involved in long-lasting aversive responses
(Tomaiuolo et al., 2014).

Lesion and pharmacological inactivation of mPFC on fear
behavior gave inconsistent findings (Courtin et al., 2013). The
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lack of consistency of mPFC lesion and inactivation studies
has been attributed to differences in species, in the precise
prefrontal territory targeted, in the type of training or in
the time when the lesion or the inactivation are performed
in relation to the training. However, it has been recently
demonstrated that dorsal mPFC participates in the encoding,
consolidation and reconsolidation of aversive memories (Sharpe
and Killcross, 2014; Gonzalez et al., 2014). In this context,
optogenetic interrogation of dorsal mPFC neuronal assemblies
initiated freezing behavior in unconditioned animals, modulated
fear expression in previously conditioned animals (Courtin
et al., 2013), promoted the acquisition of conditioned fear (Yau
and McNally, 2015) and controlled the precise timing of fear
responses (Dejean et al., 2016). Therefore, the role of the mPFC is
not limited to regulate fear expression but also plays an important
role in the encoding of fear behavior itself (Arruda-Carvalho and
Clem, 2014).

DA neurotransmission in the mPFC plays a role in
the processing of emotional information, fear encoding and
expression (Pezze et al., 2003; Lauzon et al., 2009; Arruda-
Carvalho and Clem, 2014; Gonzalez et al., 2014) contextual
information (Seamans et al., 1998), and aversion inputs coming
from the LH (Lammel et al., 2012; Stamatakis and Stuber, 2012)
through activation of D1/5Rs. It is well-established that aversive
and stressful events can excite VTA DA neurons and can cause
DA release in target structures (Frankland and Bontempi, 2005;
Lammel et al., 2014). Strong aversive stimuli cause modifications
on synapses on the medial VTADA neurons projecting to mPFC
(Lammel et al., 2011) and receiving from LH (Pignatelli and
Bonci, 2015). Optical stimulation of the LH terminals in the
VTA produces conditioned place aversion, and it is blocked by
the D1R antagonist SCH 23390 administration (Lammel et al.,
2012). In humans, an aversive experience activates VTA and
LH and increases the functional connectivity between LH, VTA
and mPFC (Hennigan et al., 2015). In this context, would be
interesting to further study LH-VTA-mPFC circuitry regarding
incubated-like aversive responses as the ones found by activating
D1/5R in the mPFC.

Given that SKF 38393 does not discriminate between
D1R and D5R subtypes, we used SKF 83822 who selectively
recognizes D1R-linked to adenylyl cyclase (Undieh, 2010) and
SKF 83959 which is an atypical DA receptor agonist that
selectively activates PLC mediated by the D5R, but does not
activates adenylyl cyclase-linked D1R (Sahu et al., 2009; Undieh,
2010). The D5R is more abundant than the D1R in the
mPFC (Luedtke et al., 1999). Our findings support the idea
that the activation of D5R is involved in the promotion of a

incubated-like spatial aversive memory. It has been shown that
strong footshock training in rats using a fear conditioning task
induces an enhancement of fear between recent and remote
memory retention (Poulos et al., 2016). All together this suggests
that a D5R activation signaling could be involved in amechanism
of fear incubation during time.

In mPFC the activation of D5R by the atypical DA agonist
SKF 83959 enhances BDNF-mediated signaling in rats and in
mice gene-deleted for the D1R but not for the D5R (Perreault
et al., 2012). Given the known facilitatory effect of BDNF on
memory persistence in cortical regions (Bekinschtein et al., 2007;
Martínez-Moreno et al., 2011; Katche and Medina, 2015), which
is under the control of dopaminergic neurotransmission (Rossato
et al., 2009), we are tempting to suggest that the promotion of
an aversive memory 7 days after the activation of D1R in the
mPFC might be due to the involvement of BDNF signaling.
Further experiments will be needed to test this assumption.

In conclusion, our present findings indicate that the activation
of D1/5R in the dorsal mPFC induces incubated aversive
outcome in response to mild negative-valence experiences. It also
suggests that an unbalanced D5R subtype activation in dorsal
mPFC might provoke aberrant lasting avoidance behaviors. This
could have important implications on the study of emotional
processes, aversive learning and even so, psychiatric diseases
where the DA system is clearly affected.
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