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An increasing amount of research aims at recognizing the molecular mechanisms

involved in long-lasting brain architectural changes induced by antipsychotic treatments.

Although both structural and functional modifications have been identified following

acute antipsychotic administration in humans, currently there is scarce knowledge on

the enduring consequences of these acute changes. New insights in immediate-early

genes (IEGs) modulation following acute or chronic antipsychotic administration may help

to fill the gap between primary molecular response and putative long-term changes.

Moreover, a critical appraisal of the spatial and temporal patterns of IEGs expression

may shed light on the functional “signature” of antipsychotics, such as the propensity

to induce motor side effects, the potential neurobiological mechanisms underlying

the differences between antipsychotics beyond D2 dopamine receptor affinity, as well

as the relevant effects of brain region-specificity in their mechanisms of action. The

interest for brain IEGs modulation after antipsychotic treatments has been revitalized by

breakthrough findings such as the role of early genes in schizophrenia pathophysiology,

the involvement of IEGs in epigenetic mechanisms relevant for cognition, and in neuronal

mapping by means of IEGs expression profiling. Here we critically review the evidence

on the differential modulation of IEGs by antipsychotics, highlighting the association

between IEGs expression and neuroplasticity changes in brain regions impacted by

antipsychotics, trying to elucidate the molecular mechanisms underpinning the effects

of this class of drugs on psychotic, cognitive and behavioral symptoms.

Keywords: Arc, BDNF, Homer1a, clozapine, haloperidol, schizophrenia, bipolar disorders, cognition

INTRODUCTION

There is growing interest in unraveling the cellular mechanisms putatively involved in long-term
changes in brain architecture and function following antipsychotic administration (Ahmed et al.,
2008; Ho et al., 2011; Cannon et al., 2015; Vita et al., 2015; Yue et al., 2016; Emsley et al., 2017). In
vivo human studies have pointed out that volumetric and functional changes may be detected after
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acute antipsychotic treatments (Emsley et al., 2015, 2017).
However, the long-term consequences of these acute changes
remain still elusive.

Immediate-early genes (IEGs) may represent a significant
candidate to explore how acute antipsychotics administration
may set the molecular scenario for long-term changes.

New insights in IEGs expression following acute or chronic
antipsychotic administration in preclinical models may help
to fill the gap between primary molecular responses to
antipsychotic administration and putative long-term synaptic
changes (Figure 1). Recent observations are opening new
avenues in our understanding of how antipsychotics work
and strongly challenge the old idea that significant changes
in synaptic plasticity may be caused by prolonged treatments.
Indeed, multiple lines of evidence demonstrated that in vivo
antipsychotic treatment may significantly impact the architecture
of the synapse, as well as the re-arrangement of gene expression
of scaffolding and adaptor proteins after acute exposure to the
drugs. In line with this view, haloperidol acute administration
has been shown to reduce dendritic spines size, possibly
through a beta-adducin-mediated mechanism (Engmann et al.,
2016). Moreover, the acute administration of typical and
atypical antipsychotics has been demonstrated to re-arrange the
topography of Homer1a gene expression in cortical and sub-
cortical brain regions (Buonaguro et al., 2017b).

Acute antipsychotics administration has been demonstrated
to impact signal-transduction pathways in specific brain regions
with significant implications for long-term treatment (De
Bartolomeis et al., 2013b, 2015a). For instance, acute i.v. infusion
at therapeutic doses of haloperidol may trigger changes in the
volume of the striatum (Tost et al., 2010), this effect being
consistent with the rapid and transient IEGs induction by acute
dopamine D2 receptors (D2Rs) blockade.

IEGs activation after antipsychotics acute administration
could be pivotal to dissect primary molecular and cellular events
that may prime the long-term effects of antipsychotic treatment.
Similarly, multiple studies have pointed out the significant
functional changes in cortical and subcortical networks after
acute administration of antipsychotics (Emsley et al., 2015, 2017).

At the same time, new exciting discoveries in early gene
functions have reinvigorated the research on the role of IEGs
in the brain, thanks also to novel techniques, such as the
following: serial two-photon tomography (STP) for automated
whole-brain histology using fluorescent reporters (Ragan et al.,
2012); light sheet fluorescence microscopy (LSFM) coupled with
tissue clearing for imaging IEG expression in the intact brain
(Renier et al., 2016); optogenetics for selectively activate target
neurons (Bepari et al., 2012).

Despite the relevance of the issue, the role of IEGs in
antipsychotics action has not been reviewed recently and a
comprehensive analysis is still lacking.

Herein, starting from the major IEGs proven to be induced
by antipsychotics and from their involvement in brain functions
believed to be translationally relevant for schizophrenia as well
as for antipsychotic mechanism of action, we will review the
following issues:

1) IEGs regulation with focus on dopamine-related mechanisms
relevant for or related to antipsychotics action;

2) IEGs expression in psychosis and differential modulation by
antipsychotics.

Moreover, we will consider:

1) How IEGs induction may impact directly or indirectly
synaptic architecture;

2) How IEGs are differentially affected by acute and chronic
antipsychotic treatment;

3) How antipsychotics with different receptor profile or the same
antipsychotic at different doses may affect the expression of
different IEGs with regard of brain topography.

BACKGROUND: ANTIPSYCHOTICS, IEGs,
AND BRAIN CHANGES

IEGs Relevance for Synaptic Plasticity
IEGs are a heterogeneous class of genes that are rapidly and
transiently activated by a large number of stimuli, including
environmental (i.e., light/dark phase changes, exposure to
behavioral stressors such as intruder animals, learning session
during acquisition tasks), pharmacological, and physical stimuli
(Perez-Cadahia et al., 2011; Sauvage et al., 2013). IEGs represent
a primary response to cellular perturbation, which is a standing
process that is activated at the transcriptional level and occurs in
the absence of de novo protein synthesis. IEGs are dynamically
regulated by different forms of synaptic activity underlying
information processing and storage, therefore they are excellent
candidates involved in both Hebbian and homeostatic plasticity
(Hu et al., 2010; Hayashi et al., 2012; Shin et al., 2012).
Several studies demonstrated, indeed, that long-term forms
of synaptic plasticity—such as long-term potentiation (LTP)—
require new production of intracellular macromolecules, whereas
short-term synaptic plasticity processes do not (Kandel, 2001;
Hayashi et al., 2012). IEGs expression occurring promptly after
stimuli is considered a fundamental step for the establishment
of synaptic plasticity, since synaptic plasticity changes may be
prevented when mRNA synthesis is blocked early after the
induction of a stimulus (Lanahan and Worley, 1998). Thus,
IEGs may be considered as “gateway” genes controlling synaptic
plasticity and may underlie processes like learning and memory
formation.

IEGs encode a large number of proteins with different
functions, such as transcription factors (e.g., c-Fos, Egr1, NGFI-
B), postsynaptic proteins (e.g., Norbin, Homer 1a, Arc) and
signaling molecules (e.g., RSG2, CaMKII).

The induction of an IEG is one of the earliest intracellular
mechanism mediating the cellular response to external stimuli
(Lanahan and Worley, 1998). According to these view, IEGs
induction may be considered a recent activity marker, and its
assessment may be used to determine when specific neural
populations are activated, making possible to assess the extent of
antipsychotics spatial and temporal impact on neural plasticity in
different brain areas.
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FIGURE 1 | Representative molecular imaging of Homer1a IEG expression by acute antipsychotics administration. Molecular imaging of IEGs expression may

represent a tool to investigate topographic distribution of antipsychotic-mediated acute and long-term molecular effects within brain Regions of Interest (ROIs). Here

we show a representative depiction of Homer1a IEG expression by different antipsychotics acutely administered in rodents. The autoradiographic film images of

Homer1a mRNA detected by means of in situ hybridization histochemistry in coronal brain sections have been extracted from different studies carried on by our

laboratory (Polese et al., 2002; Ambesi-Impiombato et al., 2007; Tomasetti et al., 2007, 2011; Iasevoli et al., 2009, 2010a,b, 2011; De Bartolomeis et al., 2015a) and

representatively placed side by side in order to outline gene expression topography after treatments with haloperidol (HAL), olanzapine (OLA), sertindole (SERT),

amisulpiride (AMS), risperidone (RISP), clozapine (CLO), and different doses of ziprasidone (4 mg/kg, ZIP4; 10 mg/kg, ZIP10), aripriprazole (12 mg/kg, ARI12; 30

mg/kg, ARI30), quetiapine (15 mg/kg, QUE15; 30 mg/kg, QUE30). Homer1a is a postsynaptic effector of plastic synaptic changes mainly mediated by dopamine and

glutamate-dependent signaling pathways. Therefore, in this case, IEG molecular imaging may also provide putative information on antipsychotic-triggered changes in

synaptic plasticity. ROIs: AC, Anterior Cingulate Cortex; M2, Medial Agranular Cortex; M1, Motor Cortex; SS, Somatosensory Cortex; I, Insular Cortex; dmCP, Dorso

Medial Caudate-Putamen; dlCP, Dorso Lateral Caudate-Putamen; vlCP, Ventro Lateral Caudate-Putamen; vmCP, Ventro Medial Caudate-Putamen; Core, Nucleus

Accumbens; Core, Shell, Nucleus Accumbens, Shell. Red, significant gene induction as compared to the respective control (p < 0.05); Dark red, significant gene

induction as compared to the respective control (p < 0.001).

IEGs: A Putative Gateway for
Antipsychotic-Induced Brain Changes
Antipsychotic drugs are the mainstay of pharmacological
treatment for schizophrenia, and their use has been expanded for
the treatment of bipolar disorder and, in some cases, for pervasive
disorders of the autistic spectrum (Geddes and Miklowitz, 2013).
All antipsychotics share a variable degree of antagonism, or
partial agonism, at D2 dopamine receptors (D2Rs) and both
therapeutic and motor side effects of either typical or atypical
antipsychotic drugs have been proven to directly depend on the
occupancy of D2Rs (Seeman, 2002; Ginovart and Kapur, 2012).
However, besides the dynamics of D2Rs binding by different

antipsychotics, emerging evidence demonstrates that the study of

the downstream signaling elicited by these compounds may help

to better understand themechanisms of action implicated in their

clinical effects (De Bartolomeis et al., 2013a; Iasevoli et al., 2013).
Additionally, dissecting the molecular basis of antipsychotic

actions may shed light on new avenues of investigation to bypass

the critical issues related to receptor pharmacodynamics, such

as D2Rs down- or up-regulation and D2Rs supersensitivity,

which have been considered among the potential reasons

of antipsychotic treatment resistance (Seeman, 2002; Nnadi
and Malhotra, 2007; Seeman and Seeman, 2014; Oda et al.,
2015).
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In the last decades, several studies on the effects of typical
and atypical antipsychotics on brain IEGs expression have been
carried out, trying to unravel the bases of regional neuronal
response to pharmacological stimuli (Dragunow, 1990; Miller,
1990; Young et al., 1998; Semba et al., 1999; Beaudry et al., 2000;
Kovacs et al., 2001; Cochran et al., 2002), as well as to shed
light on the molecular mechanisms implicated in antipsychotic
actions (Deutch et al., 1991, 1995). Transcriptional fingerprint of
IEGs, and their functionally related molecules, has progressively
emerged as a potential methodology to explore temporal and
functional brain regions recruitment by antipsychotics and
psychotomimetic compounds (Gonzalez-Maeso et al., 2003;
Tomasetti et al., 2007; Sakuma et al., 2015). Moreover, IEGs have
been found to be modulated also by other psychotropic drugs,
such as antidepressants (De Foubert et al., 2004; Alme et al.,
2007; Molteni et al., 2008; Calabrese et al., 2011), mood stabilizers
(De Bartolomeis et al., 2012), as well as by the combination of
antipsychotics and antidepressants or mood stabilizers, which
has been demonstrated to differentially induce IEGs patterns of
expression as compared to the compounds when individually
administered (Dell’aversano et al., 2009; Tomasetti et al., 2011).

LITERATURE RESEARCH METHODOLOGY

As a first step, we carried out multiple searches on Pubmed,
Scopus, and ISI Web of Knowledge using as a reference the
following keywords (we reported in parentheses the results
obtained on Pubmed for the search conducted on May 2017):
Immediate Early Genes AND brain (2335); Immediate Early
Genes AND antipsychotics (84); Immediate early genes AND
antipsychotics AND brain (74). Successively, we searched by the
name of each single IEG or related gene of interest, together
with the keywords “brain” AND/OR “antipsychotics.” The name
of the IEGs or related genes searched were: Arc/Arg, BDNF, c-
fos, fos, c-Jun, jun, Egr1, Delta-fos, Narp1, NPAS-4, Homer1,
Homer2, Homer3, Nor1, Nurr, Nurr1, NGFI-B/Nur77, Nerve
Growth Factor Inducible-B, NR4A.

A “parallel search” was conducted using as key words
the combination the following ones: antipsychotics AND
acute effects, antipsychotics AND brain volume, antipsychotics
AND cortical thickness, antipsychotics AND acute AND PET,
antipsychotics AND acute AND fMRI, antipsychotics AND brain
changes.

For the above-mentioned first search (keywords: Immediate
Early Genes AND brain), each abstract retrieved was considered
for coherence of the subject with the content of the review
by two independent co-authors. If the text of the abstract was
coherent with the review, the full text was considered and the
references double-checked for potential new articles of relevance.
All the articles retrieved with the second search (Immediate-early
genes AND antipsychotics) and the third search (Immediate-
early genes AND antipsychotics AND brain), as well as the
articles retrieved by the search for single early gene name, were
considered for the full text. The results of the first search where
then compared with the result of the other searches and with the
one of the “parallel search.”

C-fos, 1FosB, C-Jun: MAPPING THE
NEURAL ACTIVITY IN RESPONSE TO
ANTIPSYCHOTICS, OLD AND NEW
FINDINGS

Synaptic plasticity processes occurring in response to neural
activity are mediated by complex programs of gene expression
controlled by transcription factors (TFs; Beckervordersandforth
et al., 2015; Ortega-Martinez, 2015; Ehrlich and Josselyn, 2016).

Antipsychotics have been demonstrated to differentially
impact IEGs encoding neural TFs, thus inducing a significant
reprogramming in the expression of genes involved in synaptic
plasticity (Figure 2; Table 1).

C-fos: The Prototypical IEG
C-fos Regulation by Dopamine
C-fos is a proto-oncogene encoding for a TF that is induced
in response to multiple stimuli, included neural activity
(Durchdewald et al., 2009). In resting conditions, the product of
the c-fos gene, the Fos protein, is expressed in small amounts in
the brain.

C-fos transcription may be activated in response to many
different extracellular signals, including growth factors and
neurotransmitters, such as dopamine. Several early studies
demonstrated that transcriptional regulation after dopaminergic
stimuli, such as amphetamine/cocaine administration, is a pivotal
mechanism by which neurons may respond to environmental
adaptations (De Bartolomeis et al., 2013b). The phosphorylation
of the cAMP response element binding protein (CREB) is crucial
to couple dopamine stimulation to the IEG transcription. Indeed,
signals starting at dopamine receptors may promote CREB
phosphorylation, which in turn regulates c-fos transcription.
When translated, the Fos protein may dimerize with members
of Jun family in order to start the formation of the
Activator Protein-1 heterocomplex (AP-1), which in turn may
trigger the expression of genes involved in cell proliferation
and differentiation, as well as in activity-stimulated synaptic
rearrangements (Herrera et al., 1990).

Based on its fast induction dynamics, c-fos expression has
been widely used to characterize the different topographic
patterns of neural activation following treatments with different
antipsychotics (Nguyen et al., 1992; Merchant et al., 1994).

C-fos in Schizophrenia and Its Modulation by

Antipsychotics
Recent human studies have pointed out that specific
polymorphisms of c-fos gene may be either negatively or
positively associated to schizophrenia, since decreased Fos
protein blood levels may be found in schizophrenia patients
(Boyajyan et al., 2015), thus reinforcing the possibility of an
implication of this IEG in schizophrenia pathophysiology and,
possibly, in its treatment.

Early studies observed that typical and atypical antipsychotics
may induce different patterns of c-fos activation in cortical and
subcortical brain regions. Indeed, typical antipsychotics, such
as haloperidol, may induce c-fos expression in the dorso-lateral
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FIGURE 2 | IEGs modulation by antipsychotic drugs. Membrane receptors activate multiple signal transduction pathways, which interact at several sites through the

mediation of a large number of second messengers. A crucial role in the post-membrane interaction is played by the PSD, which serves as a physical connection

among ionotropic and metabotropic glutamate receptors, and links them to intracellular calcium stores. All these pathways converge in the end to appropriate nuclear

targets (i.e., transcription factors, TFs) via specific effectors, largely kinases (e.g., CAMK, MAPKs, PKA etc.), in order to fine modulate long-term activity dependent

neuronal rearrangements through changes in IEGs expression levels. On the left side of the picture, antipsychotic compounds are depicted near to the membrane

receptors to which they show maximum affinity. NMDAR, N-methyl-D-aspartate glutamate receptor; mGluR1a/5, metabotropic glutamate receptor type 1a/5; D1,

dopamine receptor D1; D2, dopamine receptor D2; DAG, diacylglycerol; IP3, inositol 1,4,5-trisphosphate; Akt1, RAC-alpha serine/threonine-protein kinase; PP2A,

protein phosphatase 2A; GSK3b, Glycogen synthase kinase 3 beta; DISC1, Disrupted in schizophrenia 1; CAMK, Ca2+/calmodulin-dependent protein kinase; cAMP,

cyclic adenosine monophosphate; PKC, protein kinase C; PKA, protein kinase A; MAPKs, mitogen-activated protein kinases; ERK, extracellular signal-regulated

kinase; CREB-P, cAMP response element-binding protein; IEGs, immediate early genes; PSD, post-synaptic density; PAMs, positive allosteric modulators of mGluRs;

GlyT, glycine transporter.

regions of the striatum, as well as in the nucleus accumbens
and in the lateral septum. Atypical antipsychotics, such as
clozapine, were found to induce c-fos expression in prefrontal
cortex and medial striatum (Robertson et al., 1994). Since the
dorso-lateral striatum has been implicated in motor control
(Balleine and O’doherty, 2010), it has been suggested that
the liability of an antipsychotic drug to induce extrapyramidal
side-effects (EPSEs) might be predicted by its propensity to
induce c-fos expression in the motor circuits of the striatum
(Robertson and Fibiger, 1996). On the other hand, the induction
of c-fos expression in prefrontal cortex and limbic striatum
by atypical antipsychotics (e.g., clozapine; Robertson et al.,
1994) has been potentially correlated with the ability of these
compounds to impact, at least in part, brain circuitry implicated
in the pathophysiology of negative symptoms of schizophrenia,
based on the hypothesis explaining negative symptoms with a

potential hypo-frontality in schizophrenia patients (Weinberger
and Berman, 1996). However, this observation should nowadays
be discussed with caution, considering recent advances in
molecular characterization of old and novel antipsychotics, as
well as the latest results on the real effect size of atypical
antipsychotics on negative symptoms (Kantrowitz, 2017).

Typical and atypical antipsychotics differentially enhance c-
fos expression in the two histological compartments of the
striatum, striosome, and matrix. Indeed, typical antipsychotics
induce c-fos at a similar extent in the striosome and in
the matrix, while most atypical antipsychotics preferentially
induce c-fos in the striosome (Hiroi and Graybiel, 1996;
Bubser and Deutch, 2002). It is noteworthy that no difference
in the striosome/matrix ratio (SMR) has been found for
typical antipsychotics between dorso-lateral caudate-putamen
and dorso-medial caudate-putamen, while clozapine showed a
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TABLE 1 | Detection of IEGs expression evaluation in rodents after antipsychotics administration.

Gene Drug Effect on gene

expression

Brain region References

c-fos Acute Amisulpride ↑ Medial Striatum De Bartolomeis et al., 2013b

Acute High dose Asenapine ↑ Striatum, NAc De Bartolomeis et al., 2015a

Acute Clozapine ↑ NAc, Thalamus, Striatum Robbins et al., 2008

Acute Clozapine ↑ NAc Shell Werme et al., 2000; Polese et al., 2002

Acute Haloperidol ↑ NAc Shell and Core,

Medial, and Lateral Caudate Putamen,

Lateral septum

Robertson et al., 1994; Werme et al., 2000

Robbins et al., 2008

Polese et al., 2002

De Bartolomeis et al., 2015a

Acute Haloperidol or acute Clozapine ↑ Anteroventral Thalamus Cochran et al., 2002

Acute but not chronic Risperidone ↑ Striatum Robinet et al., 2001

Transient treatment with Haloperidol but

not continuous treatment

↑ Striatum Samaha et al., 2008

Chronic Clozapine

(after 6 days of washout)

↑ PFC, FC, NAc Core Kontkanen et al., 2002

c-jun Acute Clozapine ↑ NAc Robbins et al., 2008

↓ Hippocampus

Acute Haloperidol ↓ NAc Robbins et al., 2008

Chronic Clozapine ↑ FC, NAc Shell Kontkanen et al., 2002

Nur family Acute Typical antipsychotics on Nurr1,

Nur77 and Nor-1

↑ Striatum Maheux et al., 2005

Acute Clozapine on Nor1 and Nurr77 ↑ NAc Shell Werme et al., 2000

Acute Haloperidol On Nor1 and Nurr77 ↑ NAc Shell and Core,

medial, and lateral Caudate Putamen.

Werme et al., 2000

Acute Clozapine or Haloperidol on

Nurr77

↑ PFC, cingulate cortex and NAc Shell Beaudry et al., 2000

Acute and chronic Haloperidol on Nurr77 ↑ Lateral striatum

Chronic Haloperidol or Clozapine on

Nurr77

↓ Primary Somato-sensory cortex Langlois et al., 2001

Egr1 Acute Haloperidol or Clozapine ↑ Striatum,

NAc

Nguyen et al., 1992; MacGibbon et al., 1994

Acute Haloperidol, Asenapine or

Olanzapine

↑ Striatum,

NAc Shell

De Bartolomeis et al., 2015a

Acute Lurasidone ↑ Striatum Luoni et al., 2014b

Chronic Haloperidol ↑ PFC Verma et al., 2007

Chronic low dose Lurasidone ↑ PFC, Striatum Luoni et al., 2014b

Chronic Olanzapine ↓ PFC, Locus Coeruleus Verma et al., 2006, 2007

Arc Acute Asenapine ↓ PFC De Bartolomeis et al., 2015a

Acute high dose Asenapine ↑ Striatum, NAc Core De Bartolomeis et al., 2015a

Acute Clozapine ↓ Thalamus, mPFC, Cingulate cortex Robbins et al., 2008

Acute Haloperidol or Olanzapine or

High dose Amisulpiride

↑ Striatum Robbins et al., 2008; Fumagalli et al., 2009;

Iasevoli et al., 2010b; De Bartolomeis et al., 2013b

Acute Haloperidol ↑ Striatum, NAc Core and Shell Polese et al., 2002; Dell’aversano et al., 2009;

Iasevoli et al., 2010a,b, 2011; De Bartolomeis

et al., 2015a

Acute Haloperidol or Olanzapine ↓ PFC Fumagalli et al., 2009

Chronic Haloperidol or Olanzapine ↓ Striatum Fumagalli et al., 2009

Acute Lurasidone ↑ Hippocampus, Striatum Luoni et al., 2014b

Chronic Aripiprazole ↑ PFC,

Striatum,

Hippocampus

Luoni et al., 2014a

Chronic Asenapine or Olanzapine or

Haloperidol

↓ PFC Buonaguro et al., 2017a

Chronic Lurasidone ↑ PFC, Hippocampus, and Striatum Luoni et al., 2014b

Homer1a Acute Asenapine or Olanzapine ↑ PFC,

Lateral Striatum,

NAc

Iasevoli et al., 2010a; De Bartolomeis et al., 2015a

(Continued)
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TABLE 1 | Continued

Gene Drug Effect on gene

expression

Brain region References

Acute Clozapine ↑ NA Polese et al., 2002

Acute Haloperidol, but not Clozapine, ↑ Lateral Striatum Cochran et al., 2002

Acute Risperidone ↑ Lateral Striatum,

NAc

Iasevoli et al., 2010a

Acute Sertindole ↑ PFC Iasevoli et al., 2010b

Acute Ziprasidone ↑ Striatum Iasevoli et al., 2011

Sub-chronic Amisulpiride ↑ PFC,

Striatum

De Bartolomeis et al., 2016

Chronic Haloperidol ↑ Striatum Iasevoli et al., 2010b; Buonaguro et al., 2017a

Chronic Olanzapine or high dose

Asenapine

↑ Striatum Buonaguro et al., 2017a

BDNF Acute Haloperidol ↓ Thalamus Robbins et al., 2008

Acute or chronic Clozapine nc Cortex, Hippocsmpus Linden et al., 2000

Acute and chronic Clozapine or

Haloperidol

↓ Hippocampus Lipska et al., 2001

Chronic Aripiprazole ↓ Hippocampus Luoni et al., 2014a

Chronic Clozapine ↑ Whole rat brain Kim et al., 2012; Rizig et al., 2012

Chronic Haloperidol or high-dose

Risperidone

↓ Hippocampus Chlan-Fourney et al., 2002; Parikh et al., 2004

Chronic Lurasidone ↑ PFC,

Hippocampus

Fumagalli et al., 2012

Chronic Olanzapine or Clozapine ↑ Hippocampus Bai et al., 2003

Chronic Quetiapine ↑ Hippocampus Park et al., 2006

Npas4 Acute Lurasidone ↓ Hippocampus Luoni et al., 2014b

Chronic Aripiprazole ↑ Dorsal Hippocampus Luoni et al., 2014a

Narp Acute Clozapine ↓ Striatum Robbins et al., 2008

Acute Haloperidol ↓ Thalamus

↑, Gene expression is up-regulated; ↓, Gene expression is down-regulated; NAc, Nucleus accumbens; PFC, Prefrontal cortex, FC Frontal cortex.

significantly higher SMR in dorso-lateral than in the dorso-
medial region of the caudate-putamen (Bubser and Deutch,
2002). Numerous studies have correlated the matrix with motor
behavior and stimulus-response memory consolidation, while
the striosome has been related to reward mechanisms (White
and Hiroi, 1998). Thus, the striosome/matrix architecture of the
striatum has been proposed as a morphological substrate for a
modular reinforcement-learning model (Amemori et al., 2011).
Moreover, it has been suggested that the striosome may be linked
to cognition, since it receives prominent inputs from association
cortex (Bubser and Deutch, 2002).

Differences in the putative clinical profile of typical and
atypical antipsychotics may be inferred by their specific spatial
pattern of c-fos induction.

D2Rs blockade by antipsychotics has been demonstrated to
relieve the inhibition of adenylyl cyclase and activate the PKA,
which in turn is responsible for the phosphorylation of CREB.
Phospho-CREB may then interact with the cAMP response
element (CRE) site in the promoter region the c-fos gene (Benito
and Barco, 2015). Considering that all the antipsychotics, with
few exceptions, are multireceptor-binding drugs, it is conceivable
that other receptors beyond D2Rs could be responsible and/or
contribute to c-fos activation.

Nevertheless, mapping c-fos expression to unravel
antipsychotics differential functional impact on brain areas
has some limitations. In fact, although antipsychotics show
specific topographical patterns of c-fos induction according to
their typical/atypical characteristics, the expression of c-fos in
neurons has been described to be coupled to multiple different
extracellular stimuli, hence it is difficult to attribute a specific
c-fos “fingerprint profile” to each antipsychotic compound.
C-fos induction may help to detect where and when a brain
area is activated by a certain compound, but it gives little
information on which is the specific intracellular pathway
stimulated by this compound. Thus, the data obtained by c-fos
induction in response to antipsychotics need to be integrated
with by other IEGs induction with a more direct function in the
synapse.

1FosB: An IEG with a Dual Function
1FosB is a splicing variant of the FosB gene, a member of the
FRA family (Fos Related Antigens). Depending on its expression
kinetics, the role of 1FosB can be either of transcription
activator or repressor, with lower levels leading to short-term
gene repression and higher levels leading to long-term gene
activation (Nestler, 2015).

Frontiers in Behavioral Neuroscience | www.frontiersin.org 7 December 2017 | Volume 11 | Article 240

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


de Bartolomeis et al. Immediate Early Genes and Antipsychotics

Among the main target genes of 1FosB there
are: metabotropic Glutamate Receptors subtype 2
(mGluR2), Dynorphin, the nuclear factor kB (NFkB) and
c-fos.

1FosB gene is rapidly induced in the dorsal striatum and
nucleus accumbens dynorphin-expressing Medium-sized Spiny
Neurons (MSNs)—two neural populations closely involved
into reward and addiction—in response to addictive drugs
such as cocaine and amphetamines (Maze and Russo, 2010).
1FosB induction is reported to not undergo tolerance, thus its
accumulation in those brain regions is quite stable after repeated
administrations. Moreover, unlike other IEGs, 1FosB levels in
striatum and nucleus accumbens are quite stable across the time,
and remain up-regulated for weeks after the initial stimulus
(Nestler, 2005).

1FosB Modulation by Antipsychotics
1FosB expression has been also studied in response to
antipsychotic drugs. Indeed, chronic treatment with haloperidol
may enhance the expression of 1FosB in the ventral, medial,
and dorso-lateral aspects of the striatum (Rodriguez et al.,
2001). Clozapine, on the other hand, may induce 1FosB-like
immunoreactivity not only in the ventral striatum but also in
the prefrontal cortex and lateral septum, with a weaker impact
on dorso-lateral striatum, whereas risperidone and olanzapine
only weakly induce 1FosB in striatum (Vahid-Ansari et al.,
1996; Atkins et al., 1999). Given the long-term standing of
1FosB activation in response to dopaminergic drugs, this IEG
has been proposed as a specific marker to identify neurons
undergoing prolonged activation in chronic paradigms (Dietz
et al., 2014).

C-Jun
C-Jun Regulation and Schizophrenia Preclinical

Modeling
C-Jun is a TF that dimerizes with Fos family members to form the
AP-1 complex. As an IEG, c-Jun plays a pivotal role in neuronal
apoptosis and neurons survival (Jochum et al., 2001). Various
extracellular stimuli may activate the JNK (c-jun kinase)/C-
Jun cascade, including stress, ischemia, and stroke, seizures,
learning and memory, axonal injury (Raivich and Behrens,
2006). Interestingly, a potential indirect role for c-Jun in a
preclinical model of schizophrenia pathophysiology has been
recently highlighted by investigating attentive function in mice
haploinsufficient for Map2k7 (Map2k7+/− mice). Specifically,
Map2k7 encodes for MKK7 (MAP kinase kinase 7), which is
responsible for the activation of JNK. The reduction of Map2k7
function has been found to be associated to cognitive deficits in
mice (Openshaw et al., 2017).

Moreover, putative links between c-Jun and schizophrenia
are suggested in preclinical models by several findings
showing that both psychotomimetic and antipsychotic
drugs modulate c-Jun levels in brain regions implicated in
schizophrenia. Indeed, c-Jun expression is affected by N-
methyl-D-aspartate (NMDA) receptor antagonists such as
MK-801 (Gerlach et al., 2002) mimicking a preclinical model of
schizophrenia.

C-Jun Modulation by Antipsychotics
C-Jun expression has been demonstrated to be modulated by
antipsychotics. Chronic treatment with clozapine or haloperidol
induces long-lasting c-Jun expression in the rat forebrain
and basal ganglia even after a washout period (Kontkanen
et al., 2002). A recent proteomic quantification analysis has
demonstrated that chronic haloperidol administration in rodents
may modulate the expression of 216 proteins in hippocampus,
including c-Jun N-terminal kinase signaling (Schubert et al.,
2016). In contrast, acute haloperidol or clozapine treatment have
been shown to exert no effects on c-Jun expression, although
both these treatments produce clear changes in the expression of
several other IEGs, including c-fos and other Jun-family members
(MacGibbon et al., 1994). These data suggest that antipsychotic
drugs may play different roles in modulating apoptosis-related
molecules, and are coherent with the findings suggesting that
typical and atypical antipsychotics may differentially affect
putative neuroprotection (Jarskog, 2006; Nandra and Agius,
2012).

Thus, taken together, the findings reviewed until now may
suggest that:

1) c-fos activation could represent a valuable tool to understand
how antipsychotics recruit different brain regions;

2) c-fos activation mirrors, with acceptable approximation, the
involvement by antipsychotics of motor vs. limbic brain
regions based on the different receptor profile of the
antipsychotic taken into account;

3) Based on the emerging role of c-fos polymorphisms in
schizophrenia, it will be of interest to investigate whether and
how the association with c-fos and related genes may have any
causative role in the pathophysiology of the disorder;

4) 1FosB expression is probably of higher interest to explore the
long-term effects of antipsychotics action;

5) Despite being less investigated compared to other IEGs, c-
Jun stands by itself for the recent proteome findings linking
its signaling pathway to antipsychotics action in a network
fashion.

NUCLEAR RECEPTORS (NUR)
SUPERFAMILY: ANTIPSYCHOTICS
MODULATION OF DOPAMINERGIC
NEURODEVELOPMENTAL FACTORS

The Nur Superfamily: Role in Dopamine
System Development and Modulation by
Antipsychotics
Nurr1, NGFI-B/Nur77 (Nerve Growth Factor Inducible-B) and
Nor1 (neuron-derived orphan receptor-1) are members of the
NR4A (Nuclear Receptors 4A) subgroup of nuclear orphan
receptors superfamily, which includes a wide variety of TFs,
such as retinoid hormone receptor, steroid, and thyroid hormone
receptor (Law et al., 1992; Maxwell and Muscat, 2006). All
the three Nur members share overlapping sequences and play
essential roles in the development of the dopaminergic system.
The three members of NR4A subgroup have been described to
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respond to several physiological and physical stimuli, such as
prostaglandins, stress, hormones, neurotransmitters, membrane
depolarization, and magnetic fields (Katagiri et al., 1997; Tetradis
et al., 2001; Kagaya et al., 2005) in an IEG-like fashion. Thus,
the immediate-early response of NR4A genes to environmental
stimuli is an essential feature of these nuclear receptors, which
has been extensively studied with regard to their correlation with
dopaminergic system (Campos-Melo et al., 2013).

Nurr1 is mainly expressed in the central nervous system,
especially in midbrain dopaminergic neurons of the substantia
nigra and the ventral-tegmental area (VTA; Backman et al.,
1999). Several studies have reported that Nurr1 plays an essential
role in the development and differentiation of dopaminergic
neurons of the midbrain. Given its role in dopamine neurons
development, Nurr1 has been implicated in neuropsychiatric
disorders in which dopamine system is dysfunctional, such as
schizophrenia. Recent studies reported that Nurr1 gene may be
considered as a possible candidate to explore the dysfunctional
gene-environment interaction that is considered to be at the basis
of these disorders. Indeed, two missense mutations in the gene
have been found in schizophrenia patients (Buervenich et al.,
2000) and may be directly related to their impaired cognitive
performances (Ancin et al., 2013).

Heterozygous deletion ofNurr1 gene inmice has been recently
considered as a possible animal model of schizophrenia, since
these animal display elevated dopamine levels in basal ganglia
(Moore et al., 2008), and characteristic dysfunctional behaviors
resembling psychotic symptoms in humans (Rojas et al., 2007).

Similarly, also Nur77 has been implicated in the
pathophysiology of schizophrenia. Indeed, reduced levels
of Nur77 have been detected in prefrontal cortex of post-mortem
schizophrenia patients (Xing et al., 2006). Moreover, single
nucleotide polymorphisms of Nur77 gene have been associated
with elevated risk of tardive dyskinesia (TD) in schizophrenia
patients (Novak et al., 2010).

Given the direct correlation between Nur IEGs and the
development of dopaminergic system, a large body of evidence
has been set up on the regulation of NR4A IEGs in response to
dopamine manipulation.

Nur IEGs Modulation by Antipsychotics
The first studies with antipsychotics demonstrated that Nur
IEGs response to these drugs may resemble that of c-fos in
rat brain. For instance, typical and atypical antipsychotics
induce differential patterns of Nur IEGs expression. Indeed,
acute haloperidol administration pronouncedly increases Nur77
expression in dorso-lateral striatum, whereas clozapine induces
this gene preferentially in prefrontal cortex and in the shell of the
nucleus accumbens (Beaudry et al., 2000). Moreover, haloperidol
selectively increases Nur77 dorsolateral striatal expression in
enkephalin-containing neurons, which are MSN neurons mostly
expressing D2Rs, whose up-regulation has been correlated to
extrapyramidal symptoms induced by neuroleptics. In addition,
the same report showed that chronic haloperidol administration
provokes a further increase in Nur77 dorso-lateral striatal
expression, whereas chronic clozapine reduces Nur77 gene
expression below basal values in prefrontal and accumbal areas.

To confirm the role of Nur77 in acute neuroleptic-induced
EPSEs, later studies demonstrated that in Nur77-deficient mice
haloperidol-induced acute catalepsy was completely abolished,
as well as the Nur77 mRNA overexpression in enkephalin-
positive neurons (Ethier et al., 2004). Therefore, similarly to c-fos
expression, Nur IEGs modulation by antipsychotics may be used
as a tool to dissect the propensity of a neuroleptic drug to induce
extrapyramidal side effects.

Some other significant similarities with c-fos have been shown
in the regulation ofNR4Amembers expression by antipsychotics.
Indeed,Maheux and coworkers demonstrated thatNur IEGsmay
be induced by typical antipsychotics selectively in striatal areas
that control motor functions, whereas atypical antipsychotics
induced Nur IEGs expression in limbic areas (Maheux et al.,
2005). This induction pattern tightly correlates with D2Rs
affinity by each antipsychotic in striatum and with D2/D3Rs
affinity in the nucleus accumbens. The same research group
further demonstrated that selective serotonergic and adrenergic
drugs may modulate haloperidol-induced Nur IEGs expression,
suggesting that also serotonin neurotransmission may take part
into the differential patterns of regulation of these genes by
typical and atypical antipsychotics (Maheux et al., 2012).

There are substantial differences in response to antipsychotics
between the different members of Nur family: both Nur77 and
Nor1 are de novo induced in dopamine neurons and striatal areas,
whereas Nurr1 is basally expressed in VTA and substantia nigra
and its expression is enhanced by antipsychotics (Eells et al.,
2012).

Regarding the mechanisms involved in Nur regulation
by antipsychotics drugs and D2Rs antagonists, it has been
demonstrated that, at least for Nur-77 and Nor-1, the
induction/increase in mRNA are depending by both mitogen-
associated and extracellular signal-regulated kinases (MEK) and
Protein Kinase C (PKC) in the case of Nurr-77 and by PKC only
in the case of Nor-1 (Bourhis et al., 2008).

Hence, Nur IEGs modulation by antipsychotics appears to
provide a complementary information as compared to c-fos
expression patterns, thereby contributing to shed further light on
the impact of these drugs not only on brain areas that are targeted
by dopamine neurons, but also on areas in which dopamine
neurons localize. Thus, although still elusive, the analysis of Nur
IEGs modulation by antipsychotic drugs may be a further tool
to dissect the mechanisms of action of these compounds on
dopamine systems, as well as it may help to further clarify the
molecular mechanisms by which these drugs alter locomotor
activity in animal models and in humans.

MODULATION BY ANTIPSYCHOTICS OF
IEGs INVOLVED IN SYNAPTIC PLASTICITY:
PUTATIVE TARGETS FOR COGNITIVE
DEFICITS IN PSYCHOSIS

Abnormal synaptic plasticity may account for several cognitive
and behavioral processes that are dysfunctional in schizophrenia.
Cognitive impairment, indeed, is a striking clinical aspect of
psychotic illnesses, is detectable before the onset of other
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symptoms, and it is considered among the best predictors of
long-term lifetime functioning (Green, 1996).

Since long-term neural plasticity requires protein synthesis,
IEGs expression could be considered as a necessary step
in synaptic architecture remodeling. For several IEGs
involved in these processes, a role in the pathophysiology
of psychosis has been proposed. In the following section, we will
summarize how antipsychotic therapy may impact these genes
expression.

Egr1: How Antipsychotics Impact Synaptic
Processes Underpinning Memory and
Learning
Egr1 Regulation and Involvement in Synaptic

Plasticity
The Egr-family consists of four highly homologous zinc-finger
TFs: Egr1 (Early growth response gene 1, also named NGFI-
A, zif-268, Krox 24), Egr2 (Krox 20), Egr3 (PILOT), and Egr4
(NGFI-C).

Egr1 is an immediate-early gene (IEG) coding for a
TF and is constitutively expressed in the cortex, amygdala,
striatum, nucleus accumbens, hippocampus, and cerebellum
(Beckmann and Wilce, 1997). Several stimuli have been
demonstrated to induce Egr1 overexpression in these areas, such
as seizures, ischemia, stress, and drug administration (Hughes
and Dragunow, 1995). Many of these stimuli share the common
feature of elevating intracellular calcium (Ca2+; Ghosh et al.,
1994). Pharmacological stimuli provoking massive Ca2+ influx
in neurons have been described to increase Egr1 expression
(Shirayama et al., 1999; Zhou et al., 2009; Gangarossa et al.,
2011). Egr1 activity has been related to the transcription of other
IEGs involved in synaptic plasticity, above of all Arc (Penke
et al., 2011). In turn, Egr1 expression may be under the control
of other genes, such as the Brain-Derived Neurotrophic Factor
(BDNF; Robinet and Pellerin, 2011) and other proteins involved
in intracellular signaling (Lam et al., 2009).

Egr1 synaptic action has been related to neural plasticity, in
particular to synaptic processes leading to memory consolidation
and behavioral adaptations (Davis et al., 2003; Okada et al., 2015)
Intriguingly, dysfunctions in the postsynapticmachinery deputed
to control memory and learning processes have been recently
related to cognitive impairment in major neuropsychiatric
disorders, such as schizophrenia (Grant, 2012). In paradigms
of instrumental learning, Egr1 is markedly induced in frontal
and cingulate cortices (Hernandez et al., 2006; Snyder et al.,
2012). Furthermore, Egr1 plays a pivotal role in maintaining the
late phase of LTP in hippocampus, in dorsal caudate-putamen
(Gill et al., 2007), and in the retrosplenial cortex (Amin et al.,
2006). Egr1, along with BDNF, also appears to play a role in
retrieval-dependent plasticity, a mechanism accounting for the
modification of previously consolidated memories being recalled
(Lee, 2010). Moreover, it has been shown that Egr1, together with
BDNF (Barnes et al., 2012),Homer1a and Arc, has a relevant role
in the mechanisms of the initial consolidation, reconsolidation
and extinction of fear- and anxiety-related memory (Lonergan
et al., 2010; Maddox et al., 2011; Cheval et al., 2012).

Dopamine and glutamate systems have been implicated in
synaptic processes involved in memory consolidation [e.g., long-
term Potentiation (LTP) and long-term depression (LTD)],
and several studies reported that Egr1 expression may be
modulated by stimuli affecting either glutamate or dopamine
neurotransmission (Li et al., 2016).

Egr1 Modulation by Antipsychotics
Several antipsychotics (e.g., clozapine) modulate synaptic
proteins related to memory formation in hippocampus and
improve cognitive tasks in animal models of pharmacological
NMDA receptor hypofunction (Ozdemir et al., 2012). With
regard to dopamine, Egr1 gene and protein expression are
modulated by both acute and chronic antipsychotic treatments
in preclinical settings (Wheeler et al., 2014; De Bartolomeis et al.,
2015a).

Clinical studies have reported an abnormal regulation of
Egr1 in schizophrenia patients compared to normal controls.
Specifically, post-mortem gene expression studies and in vivo
plasma detection have demonstrated that Egr1 is down-
regulated in prefrontal cortex of schizophrenia patients in a
fashion that is directly correlated with decrease in GAD1
(glutamate decarboxylase 1, the enzyme that is responsible for
GABA production), and plasma levels were reduced, therefore
supporting the view that Egr1 may be a potential biomarker of
the disease (Kimoto et al., 2014). Interestingly, an association
of SNPs in Egr3 and Arc with schizophrenia has been proposed
as a biological pathway of environmentally responsive, synaptic
plasticity-related, schizophrenia risk genes (Huentelman et al.,
2015).

Given the potential role of this IEG in schizophrenia
pathophysiology and treatment, it is to mention that early studies
have also compared Egr1 modulation by antipsychotics to the
modulation of the other well-known IEG c-fos, showing that these
two IEGs, although similarly impacted by typical and atypical
antipsychotics in cortex and striatum, displayed some substantial
differences. Haloperidol has been reported to induce both c-
fos and Egr1 expression in striatum, whereas clozapine may
induce Egr1 but not c-fos expression in the same region. Both
antipsychotics may induce the expression of both these genes
in nucleus accumbens (Nguyen et al., 1992; MacGibbon et al.,
1994).. Subsequent findings further demonstrated a differential
response of Egr1 from c-fos also in chronic antipsychotics
administration paradigms. Egr1, indeed, is robustly down-
regulated in locus coeruleus and prefrontal cortex of olanzapine
chronically administered rats, whereas c-fos expression remains
up-regulated (Verma et al., 2007). Moreover, chronic haloperidol
may increase cortical Egr1 expression, whereas it decreases c-fos
expression in this area (Verma et al., 2007).

Targeted experiments have demonstrated that Egr1
modulation by antipsychotic drugs may be directly related to the
synaptic functions of drug-associated memory consolidation.
For instance, high D2R-blocking antipsychotics (e.g., sulpiride)
may prevent the increase in Egr1 expression induced by acute
cocaine administration in striatum, but not in the cortex
(Daunais andMcGinty, 1996). The modulation of Egr1 and other
activity-regulated genes such as Arc and Npas4 has been studied
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in rodents after the administration of the novel antipsychotic
lurasidone, which is characterized by a multi-receptor profile and
particularly by a potent 5-HT7 receptor antagonism, considered
beneficial for mood and cognition (Luoni et al., 2014b).

Finally, Egr1 levels of expression have been recently
investigated in preclinical settings exploring new therapeutic
strategies in schizophrenia beyond current antipsychotic drugs
(Gentzel et al., 2015).

However, it should be considered that the dopaminergic
regulation of Erg1 is even more complicated by the action of
multiple pathways in reciprocal interplay with dopaminergic
system. Recent evidence, indeed, demonstrated that mu-opioid
receptors have also a major implication in psychostimulant-
induced sensitization (Shen et al., 2010) and antipsychotic
drugs seem unable to preventmethamphetamine-induced striatal
overexpression of Egr1 in mu-opioid receptors knock-out
animals (Tien et al., 2010).

Putting together the findings reviewed therein, the role of
Egr1 in antipsychotics action appears relevant mainly because
it is directly implicated in specific signaling and neuronal
plasticity programs related to memory, cognition and executive-
like functions in preclinical models. This is a major point, since
there is a need to explore new compounds in schizophrenia
that may address dysfunctions in the domains of cognitive
and negative symptoms, which are poorly affected by currently
available antipsychotic agents.

Arc/Arg3.1: Modulation of Long-Term
Activity-Dependent Synaptic Efficacy by
Antipsychotic Treatments
Arc Regulation and Involvement in Synaptic

Plasticity: Relevance for Schizophrenia
As other IEGs, Arc (activity-regulated cytoskeletal-associated
protein) also referred to as Arg3.1 (activity-regulated gene
homolog 3.1), is expressed at low levels in neurons, especially
in the hippocampus. However, Arc levels are relatively higher
in cortex, and are directly linked to NMDA receptor activation
(Link et al., 1995). Arc shows unique features, since its mRNA
may be induced together with other IEGs by neural activation
(i.e., single seizures), but differently from other mRNAs—such as
Egr1—that remain in the neuron soma,Arc is rapidly translocated
to dendritic spines (Wallace et al., 1998). The activity-dependent
translocation ofArc requires NMDA receptor activation (Steward
andWorley, 2001). Moreover, Arc protein is selectively produced
in dendritic spines near the activation site, even in the presence
of protein-synthesis inhibitors, thereby indicating that Arc
mRNA owns a unique intrinsic signal that permits the activity-
related targeting to stimulated dendrites (Bramham et al., 2010;
Steward et al., 2014). The activity-dependent regulation of Arc
expression has been extensively studied, thus leading to several
findings reporting its involvement in synaptic plasticity and
its implication in memory and learning processes, which have
been demonstrated to be altered in schizophrenia. Experience-
related stimuli may potently increase Arc expression in brain
areas involved in memory consolidation (Lyford et al., 1995).
Indeed, the exploration of new environments strongly induces

Arc expression in hippocampus and cortex (Vazdarjanova et al.,
2002). Consistently, Arc knock-out animals fail to form long-
term memories for learning tasks, displaying impaired LTP and
LTD, but unaltered short-term memory (Plath et al., 2006). A
role for Arc in synaptic scaling, a form of homeostatic synaptic
plasticity, has been postulated (Gao et al., 2010).

Hence, Arc functions seem to be required for synaptic
plasticity processes starting at multiple neurotransmitter
receptors, such as alpha-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA), NMDA, dopamine, serotonin,
acetylcholine, and adrenaline receptors (Chowdhury et al., 2006;
Rial Verde et al., 2006).

Dopamine and glutamate are considered among the principal
neurotransmitters implicated in memory and learning processes,
as well as in schizophrenia pathophysiology in which aberrant
salience has been reported. Dopamine has been demonstrated
to be pivotal for working memory in rodents and in non-
human primates (Castner et al., 2004; Rinaldi et al., 2007). Arc
response to memory and learning stimuli may account for a
direct involvement of this IEG into dopaminergic-dependent
mechanisms of memory consolidation, as well as for its
implication in dopamine-glutamate subcellular interactions that
control synaptic plasticity processes thought to be dysfunctional
in the pathophysiology of schizophrenia (Eastwood, 2004; Grant,
2012; Yin et al., 2012). To confirm the role of Arc in synaptic
processes of dopamine-dependent memory formation, it has
been demonstrated that amphetamines may modulate Arc
learning-induced expression in hippocampus (Wiig et al., 2009).
Bloomer and coworkers have reported a combined effect of
NMDA receptors and D1Rs on Arc expression in hippocampal
neurons (Bloomer et al., 2008), as well as a dramatic reduction
in Arc expression by dopamine agonists when NMDA receptor
blockers are concurrently administrated, thus confirming the
role of dopamine-glutamate correct interaction in memory
consolidation and the crucial functions of Arc in this process.
Arc gene has been reported to be affected by de novo mutations
in schizophrenia patients and it is part of an enriched gene
set characterized by rare disruptive mutations contributing to
the genetic risk for schizophrenia (Fromer et al., 2014; Purcell
et al., 2014). Further evidence of an implication of Arc in
schizophrenia pathophysiology comes from preclinical studies
(Manago and Papaleo, 2017). Disruption of Arc produces deficits
in sensorimotor gating, cognitive functions, social behaviors, and
amphetamine-induced psychomotor responses in mice that are
reminiscent of some features of psychosis (Manago et al., 2016).

Arc Modulation by Antipsychotics
Arc expression in response to antipsychotic challenges has
been extensively investigated, in order to shed further light on
the molecular mechanisms involved in antipsychotic-mediated
modulation of the synaptic plasticity processes putatively
disrupted in schizophrenia.

Early works demonstrated that Phencyclidine (PCP)-induced
Arc overexpression in prefrontal cortex and nucleus accumbens
may be inhibited by pretreatment with clozapine, olanzapine,
and risperidone, but not by haloperidol (Nakahara et al., 2000),
thus suggesting that Arc modulation may be useful to dissect
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typical from atypical antipsychotics impact on psychotomimetic
drug-induced synaptic dysfunctions. Subsequently, acute
administration of both typical and atypical antipsychotics was
demonstrated to induce Arc gene expression in striatum, with
haloperidol showing a more prolonged effect on Arc induction
than olanzapine (Fumagalli et al., 2009). These results have been
directly correlated to the degree of D2R blockade induced by
each antipsychotic, since a selective D2Rs antagonist, such as
raclopride, may induce Arc striatal expression and reduce its
cortical expression, whereas a selective D2Rs agonist, such as
quinpirole, may reduce Arc striatal expression and has no effects
on its cortical expression. Notably, Fumagalli et al. (2009) further
demonstrated that a prolonged treatment with haloperidol and
olanzapine markedly reduced Arc striatal expression, as well as
only olanzapine may reduce the expression of the gene in the
cortex.

With regard to cortical and subcortical expression of Arc,
work from our laboratory demonstrated thatArc gene expression
may be induced by haloperidol, but not by sertindole in the
striatum, thus further suggesting that Arc modulation may be
tightly related to the tuning of dopamine neurotransmission
exerted by each antipsychotic (Iasevoli et al., 2010b). Sertindole
shows a milder D2Rs impact than haloperidol in the striatum,
with a quite absent blockade of D2 autoreceptors (Valenti
and Grace, 2010). The involvement of serotonin 5-HT2A
receptors has been demonstrated inArc cortical modulation, with
NMDA receptor function being relevant in these effects, thereby
suggesting a crucial role of Arc in synaptic rearrangements
induced by combined serotonin-dopamine-glutamate stimuli in
the cortex by antipsychotics (Pei et al., 2004).

Arc has been shown to be responsive to acute (with significant
increase of the transcript in striatum) and chronic (with
prevalent gene expression increases in prefrontal cortex and
hippocampus and decreases in striatum) lurasidone treatment,
suggesting a region-specific fingerprint of Arc induction (Luoni
et al., 2014b). An intra-striatal specificity of Arc activation was
detected after acute administration of amisulpride (35 mg/kg)
with prevalent increase of the transcript in the medial caudate-
putamen compared to more pronounced induction in dorsal
caudate-putamen by haloperidol (0.8 mg/kg; De Bartolomeis
et al., 2013b). Again, a region-specific induction of Arc protein
was detected in the shell of the nucleus accumbens by clozapine
(20 mg/kg) compared to haloperidol (1 mg/kg; Collins et al.,
2014). Finally, Arc has been instrumental also for exploring
the brain region effect of innovative treatment approaches in
schizophrenia, such as augmentation strategies to antipsychotics
(i.e., minocycline in combination with haloperidol; Buonaguro
et al., 2017b).

Direct evidence exist that Arc induction can be responsible for
increasing the density and for reducing the width of dendritic
spine possibly by a mechanism involving AMPA endocytosis
(Peebles et al., 2010).

These data globally suggest that Arc is involved in the neural
plasticity mechanisms induced by antipsychotics in distinct brain
regions. Arc modulation may be demonstrated to occur before
the timing necessary to observe the therapeutic-like effects
commonly observed during antipsychotic therapies, possibly

suggesting that Arc is potentially relevant in establishing the
correct synaptic rearrangements underlying antipsychotic effects.
Finally, the recent discovery of Arc subdomains similar to the
domain of HIV capsid and its involvement in rapid synaptic
functions (possibly derived from the ancestral viral origin)
deranged in schizophrenia (Zhang et al., 2015), make this IEG of
relevant interest for studying specifically “fast” synaptic changes
during antipsychotic treatment.

Homer1a: IEG-Mediated
Activity-Dependent Postsynaptic and
Architecture Rearrangements in Response
to Antipsychotic Treatment
The Homer Family and Its Regulation by

Dopamine-Glutamate Interaction
Homer genes encode a family of scaffolding proteins (Homer1,
Homer2, Homer3) localized mainly at the glutamatergic
postsynaptic density (PSD) of dendritic spines, where they
act as multifunctional adaptors among multiple transduction
pathways. Homer1 gene encodes both constitutively expressed
long transcripts (Homer1b/c) and for a short isoform named
Homer1a, which is induced in an IEG-like fashion (Bottai et al.,
2002). Within the PSD, Homer proteins couple to metabotropic
and indirectly ionotropic glutamatergic receptors, bridging both
to intracellular receptors, such as the inositol 1,4,5-trisphosphate
receptor (IP3Rs), the ryanodine receptor (RyR), and to other
PSD scaffolding proteins, such as Shank (De Bartolomeis and
Iasevoli, 2003; Gao et al., 2013). When induced, Homer1a
protein disassembles constitutive Homers clusters by acting as a
“dominant negative,” thus modifying synaptic architecture and
Ca2+ homeostasis (Shiraishi-Yamaguchi and Furuichi, 2007).
Several studies demonstrated a pivotal role of Homer1a in
modulating the crosstalk between PSD proteins involved in
mechanisms underlying synaptic plasticity, such as receptor
localization, distribution and internalization (Iasevoli et al.,
2013). For example, it has been observed that Homer1a is
rapidly up-regulated during enhancement of network activity
and promotes the agonist-independent signaling of group I
mGluRs that may in turn scale down the expression of AMPA
receptors (Hu et al., 2010). To note, in animal models, impaired
homeostatic scaling has been reported in a NMDA receptor-
blocking experimental paradigm, which mimics psychotic states
(Wang and Gao, 2012). Based on the crucial role of Homer1a in
synaptic plasticity, dysfunctions in its fine-tuning activity have
been closely related to psychiatric disorders (Luo et al., 2012).
Homer1 polymorphisms have been associated with schizophrenia
(Spellmann et al., 2011) and cocaine addiction (Dahl et al., 2005)
and Homer1 knock-out mice exhibit a behavioral phenotype
resembling psychotic disorders (Szumlinski et al., 2005), as
well as Homer2 proteins have been implicated in regulating
addiction to cocaine in animal models (Szumlinski et al., 2004).
A fine-tuned modulation of Homer1a expression has been
associated to a number of mechanisms of adaptation to different
environmental and pharmacological stressors: for instance,
Homer1a overexpression in cortical structures may facilitate the
ability to cope with stress (Szumlinski et al., 2006). Finally,
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Homer1 gene variants have been associated with neuropsychiatric
disorders such as psychosis in Parkinson disease (De Luca et al.,
2009), major depression pathophysiology (Serchov et al., 2016),
and response to lithium treatment (Benedetti et al., 2018).

Homer1a Modulation by Antipsychotics
Dopamine indirect agonists, such as cocaine or amphetamines,
may induce Homer1a expression in striatum and nucleus
accumbens with peculiar patterns of expression (Yano and
Steiner, 2005; Zhang et al., 2007). Moreover, although the
acute administration of cocaine may induce strong Homer1a
expression in cortico-striatal circuits, these effects are abolished
after 2 or 3 weeks of withdrawal (Ghasemzadeh et al., 2009),
suggesting a crucial role of Homer1a in cocaine-mediated
synaptic plasticity. Specific studies demonstrated that dopamine
agonists-dependent Homer1a induction is regulated by selective
activation of D1Rs but not D2Rs (Yamada et al., 2007).
Recent findings by our group have demonstrated that this
IEG may be differentially induced by antipsychotics, with a
peculiar pattern of expression depending on the degree of D2R
blockade by each compound and on the selective brain area
in which each antipsychotic exerts its functions (Tomasetti
et al., 2007). Haloperidol has been demonstrated to induce
Homer1a expression specifically in dorso-lateral regions of
caudate-putamen and in the core of the nucleus accumbens, a
feature that is consisting with the propensity of this compound to
provoke EPSE in humans at high dosages (Ambesi-Impiombato
et al., 2007). By contrast, atypical antipsychotics (i.e., aripiprazole,
clozapine, olanzapine, quetiapine, ziprasidone) preferentially
induce Homer1a gene expression in ventro-medial regions of
caudate-putamen and in the shell of the nucleus accumbens,
wh1ich are brain regions implicated in the control of reward
and motivated behavior (Tomasetti et al., 2007; Iasevoli et al.,
2009). It is worthy to note that each antipsychotic compound
has been described to induce a specific pattern of Homer1a
expression that is tightly related to its degree of D2R blockade,
being this latter essential in order to stimulate Homer1a
induction (Iasevoli et al., 2011). Homer1a has been shown
to be induced differentially also by the administration of the
same antipsychotic at different doses: for example, it has been
demonstrated that increasing doses of haloperidol not only
increase the intensity (i.e., higher autoradiographic signal level)
of gene expression in brain regions originally activated by
the same drug at lower doses, but also induce the expression
of the IEG in new brain regions (i.e., ventral caudate; De
Bartolomeis et al., 2015a). Moreover, Homer1a modulation has
been described in cortical areas only by antipsychotics that may
impact serotonergic neurotransmission (Iasevoli et al., 2010a,b).
Recent studies, indeed, demonstrated that cortical Homer1a
induction by antipsychotics may resemble that by selective
serotonergic agents, and when co-administered, haloperidol
plus a selective serotonergic reuptake inhibitor antidepressant
(SSRI, i.e., citalopram or escitalopram) may induce a pattern of
Homer1a cortical expression tightly resembling the pattern by
atypical antipsychotics (Dell’aversano et al., 2009; Serchov et al.,
2016). Further evidence demonstrated that Homer genes may be
involved also in synaptic rearrangements induced by combined

mood-stabilizing/antipsychotic treatment (Tomasetti et al., 2011)
and in switching between antipsychotics (De Bartolomeis et al.,
2016). In sum, regarding the mechanism by which antipsychotics
increase Homer1a and in turn may modify dendritic spine, D2Rs
antagonism or partial agonism is the major candidate, possibly
with a mechanism CRE-related, even if other pathways (i.e.,
ERK-related) can also be involved. Homer1a induction may
have a pivotal role in remodeling the dendritic spine, modifying
the availability of the constitutive isoform (Homer1b/c) that
is involved in a transient spine increase that is eventually
followed by more persistent modification by recruitment of other
postsynaptic proteins such as PSD-95 (Meyer et al., 2014).

Altogether, these data confirm the role of Homers
in the fine modulation of synaptic processes triggered
by psychotropic drugs also when co-administered with
antidepressant or mood stabilizers, posing the bases for
further understanding the molecular correlates of real-world
clinical psychopharmacology. The pattern of Homer inducible
isoform expression may therefore provide a specific “fingerprint”
profile of psychopharmacologic treatments, which could be a
useful tool for elucidating glutamate-dopamine interactions
putatively dysfunctional in schizophrenia pathophysiology.

BDNF: Neurotrophic Control of Synaptic
Plasticity by Antipsychotic Treatment
BDNF Activity-Dependent Modulation and Synaptic

Plasticity
BDNF belongs to a subfamily of neurotrophins that includes
the nerve growth factor (NGF), the neurotrophin-3 (NT3),
and the neurotrophins 4 and 5 (NT4/5). Several studies have
demonstrated that neuronal activity, or in general stimuli
that increase intracellular levels of Ca2+, may induce BDNF
expression in neurons (Aicardi et al., 2004; Aid et al., 2007).
Specifically, exon IV transcription seems to be directly controlled
by neural activation (Chen et al., 2003). Moreover, the rapid
activity-dependent increase in BDNF mRNA after a stimulus
and its independence from the most common TFs (such as
AP-1), have suggested that BDNF may be rather considered a
“secreted IEG,” because of its immediate-early response fashion
that does not involve new protein synthesis (Lauterborn et al.,
1996; Xu et al., 2000; Gartner et al., 2006). The activity-dependent
modulation of BDNF, as well as the BDNF-dependent master
control of synaptic functions, has increased the attention on
this molecule in synaptic plasticity. Several reports, indeed,
demonstrated that BDNF plays a crucial role in both early and
late phases of hippocampal LTP (Pang and Lu, 2004; Rex et al.,
2006; Yano et al., 2006), as well as suggest a pivotal role of BDNF
also in long-term memory processes (Lu et al., 2008; Waterhouse
and Xu, 2009). BDNF exerts also a regulatory role on other IEGs
expression: Arc has been found to be a key molecular effector
of BDNF action in synaptic plasticity since its expression is
necessary for stable LTP formation after BDNF levels increase
in both in vivo and in vitro experiments (Messaoudi et al., 2007;
Wibrand et al., 2012; Panja et al., 2014).

As in the case of the IEGs considered before, several
studies reported a direct correlation between dopamine
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neurotransmission and BDNF functions. Indeed, BDNF null
mice have been demonstrated to display a reduced number
of dopaminergic neurons in the substantia nigra (Baquet
et al., 2005). Moreover, BDNF is crucial for a correct D3Rs
expression in nucleus accumbens, and thereby it seems involved
in pathological conditions in which these receptors have been
reported as dysfunctional, such as Parkinson’s disease or
antipsychotic-induced TD (Guillin et al., 2001; Zai et al., 2009).

BDNF, Schizophrenia, and Modulation by

Antipsychotics
Given the tight association of BDNF functions with activity-
dependent dopamine-mediated synaptic plasticity, it is not
surprising that several studies have highlighted the role of
BDNF in the pathophysiology of neuropsychiatric disorders in
which dopamine-glutamate interaction is dysfunctional, such
as schizophrenia. The rs6265 single nucleotide polymorphism
(SNP)—which leads to the Val66Met substitution at codon 66—
has been reported to alter the activity-dependent trafficking and
release of BDNF in neurons (Chen et al., 2004). This SNP has
been associated with schizophrenia in Chinese and Caucasian
populations (Hong et al., 2003; Neves-Pereira et al., 2005;
Chen et al., 2006). Moreover, SNP homozygotes display reduced
hippocampal cortex (Takahashi et al., 2008). In post-mortem
studies, a decrease in BDNF levels in frontal cortices (Weickert
et al., 2003) and an increase in hippocampus have been reported
in schizophrenia patients (Iritani et al., 2003). Moreover, in the
assessment of 825 patients for Positive and Negative Syndrome
Scale in a single marker analysis, the BDNF rs10835210 mutant A
allele was significantly associated with schizophrenia. Haplotype
investigation detected higher frequencies of haplotypes with the
mutant A allele of the rs10835210 in schizophrenia patients
than in controls (Zhang et al., 2016). In addition, schizophrenia
patients showed lower basal serum levels of BDNF as compared
to healthy subjects (Grillo et al., 2007; Green et al., 2011;
Fernandes and Chari, 2016).

Association studies have further suggested that BDNF could
be involved in both susceptibility to schizophrenia and in clinical
symptom severity. Regarding the role of BDNF in the onset and
evolution of psychosis, it is of interest that the expression of the
two forms of BDNF receptors (active TrkB-FL and inactiveTrkB-
T1) in Peripheral Blood Monocyte Cells (PBMCs) of first
episode psychotic patients showed modifications according to
the trajectory of the disease, with TrkB-FL expression increasing
by 1 year after diagnosis and TrkB-T1 expression decreasing.
Notably, the TrkB-FL/TrkB-T1 ratio increased in the non-
affective psychosis group only (Martinez-Cengotitabengoa et al.,
2016). Multiple studies have assessed the effects of antipsychotic
treatments on BDNF expression in preclinical models, as well
as of BDNF serum levels in treated schizophrenia patients.
Early studies demonstrated that the acute blockade of NMDA
receptors may decrease BDNF expression in hippocampus and
cortical areas, whereas it may increase its expression in limbic
cortex (e.g., entorhinal cortex), and these effects may be not
reversed by the administration of haloperidol (Castren et al.,
1993). Further studies have confirmed the enhancement of BDNF
expression in entorhinal cortex by NMDA receptor-blocking

drugs (i.e., MK-801), these effects being contrasted by a pre-
treatment with haloperidol or clozapine (Linden et al., 2000).
However, the sole acute or chronic clozapine treatment did not
affect BDNF mRNA levels (Linden et al., 2000). Starting from
the assumption that antipsychotic treatment could be correlated
to neurotrophic actions in brain areas affected in schizophrenia,
Angelucci et al. (2000) reported that chronic treatment with
haloperidol or risperidone may decrease BDNF expression in
hippocampus, frontal and occipital cortices, also affecting TrkB
expression in these areas.

Typical and atypical antipsychotics have differential impact
on BDNF expression in distinct brain areas. Chronic haloperidol
administration may strongly decrease BDNF hippocampal
expression, whereas clozapine and olanzapine have been
demonstrated to enhance BDNF expression in the same areas,
probably due to 5HT2A receptor modulation by these atypical
antipsychotics (Bai et al., 2003). Moreover, olanzapine has been
successively demonstrated to normalize BDNF hippocampal
levels that were reduced by MK-801 administration (Fumagalli
et al., 2003). Switching from haloperidol or chlorpromazine
to olanzapine, even after a prolonged treatment, may restore
BDNF brain level that have been decreased by the previously
administered typical antipsychotics (Parikh et al., 2004; Pillai
et al., 2006).

Park et al. (2009) reported that ziprasidone, but not
haloperidol, may attenuate the decrease in BDNF expression
induced by immobilization stress in rats. Aripiprazole, a partial
agonist at D2/D3Rs and a functional selective antipsychotic (De
Bartolomeis et al., 2015b), has been shown to up-regulate BDNF
compared to haloperidol in cell cultures (Park et al., 2009). In
early clinical studies, clozapine-treated schizophrenia patients
showed higher serum BDNF levels than risperidone-treated
patients (Tan et al., 2005). With regard to clinical translation
it has been demonstrated that the increase in BDNF serum
levels in olanzapine-treated schizophrenia patients may directly
correlate with the progressive reduction in positive symptoms
(Gonzalez-Pinto et al., 2010).

Regarding the role of BDNF in dendritic spines modulation,
is remarkable that multiple lines of evidence point to a brain and
cell region specificity of BDNF action.

Specifically, has been shown that BDNF increase in cortical
regions may reduce the density of dendritic spines of pyramidal
neurons, whereas an increase has been reported for hippocampal
pyramidal neurons (Alonso et al., 2004). This finding, considered
in the light of antipsychotics modulation of BDNF, could
represent a significant morphological underpinning of the
association between antipsychotics and changes in brain
architecture.

It is questioned if a common ERK-dependent mechanism
is involved in the opposite changes observed in cortex and
hippocampus.

In summary, the study in preclinical and clinical settings of
BDNF response to antipsychotics may help to provide further
information on the differential impact of typical vs. atypical
antipsychotics on neurons survival and neurogenesis, as well
as on putative neurodegenerative mechanisms of dopaminergic
systems involved in the pathophysiology of schizophrenia.
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BDNF role as an immediate-early-like gene, TF, and growth
factor makes this molecule an exceptional candidate for
the investigation of long-term antipsychotic effects on brain
structure and function, and the study of the regulation of its
expression could provide a molecular tool to predict clinical
outcomes of antipsychotic response (Nandra and Agius, 2012).

IEGs RELATED TO GLUTAMATE
DEPENDENT PLASTICITY:
ANTIPSYCHOTIC TREATMENT EFFECTS
ON NPAS 4 AND NARP EXPRESSION

Npas4 and Narp are IEGs related to glutamate and γ-
aminobutyric acid (GABA) neurotransmission, whose
implication in schizophrenia pathophysiology and treatment
to date has been explored only by few clinical and preclinical
studies.

Npas4: An IEG Selectively Induced by
Neuronal Activation
Npas4 is a TF that belongs to the basic helix-loop-helix-PAS
protein family (Moser et al., 2004; Shamloo et al., 2006) that is
transcribed in response to excitatory synaptic activity induced
in both excitatory and inhibitory neurons. Npas4 is expressed
almost exclusively in neurons, it is activated selectively by
neuronal activity, and has been demonstrated to control directly
the expression of a large number of activity-dependent genes
(Coutellier et al., 2012). Recent evidence shows that Npas4 has
a regulatory function on the expression of multiple cortical
GABAergic markers and that animals null for Npas4 show a
decrease in GAD67 and parvalbumin, which can be reverted
after the administration of valproic acid (Shepard et al., 2017).
Moreover, Npas4 has been involved in stress response and
linked to the onset of resistance to L-acetyl carnitine in mice
(Bigio et al., 2016). Particularly, this IEG has been shown to
regulate the balance between neuronal excitation and inhibition
by contributing to the maintenance of the inhibitory pathways.
This balance is believed to be pivotal for processing sensory
information and for cognitive functioning, while an imbalance
between inhibitory and excitatory synapses has been associated
with multiple developmental disorders such as schizophrenia.
Not surprisingly, it has been recently published the first study that
investigated Npas4 expression after antipsychotic administration
in rodents. Indeed, the IEG has been demonstrated to be down-
regulated acutely, but not chronically, in the cortex by the novel
antipsychotic lurasidone (10 mg/kg) at the dose demonstrated
to be effective in animal models of schizophrenia (Luoni et al.,
2014b).

Narp: An IEG Secreted by Pyramidal
Neurons
Narp (Neuron activated regulated pentatraxin) is an AMPA
receptor binding protein with the peculiarity to be secreted
by pyramidal neurons onto parvalbumin interneurons and
whose gene is rapidly transcribed and regulated by physiological
synaptic activity (O’brien et al., 1999, 2002; Chang et al., 2010;

Lee et al., 2017). Functional studies suggest that Narp promotes
neuronal migration and dendritic outgrowth with a potency
comparable to neurotrophins and growth factors (Tsui et al.,
1996; Doyle et al., 2010). Narp is a direct transcriptional target
of BDNF. Intriguingly, acute BDNF withdrawal may promote
downregulation of Narp, whereas transcription of Narp is greatly
enhanced by BDNF (Mariga et al., 2015). Furthermore, it has
been demonstrated that BDNF directly regulatesNarp to mediate
glutamatergic transmission and mossy fiber plasticity (Mariga
et al., 2015). Hence, Narp serves as a significant epistatic target of
BDNF to regulate synaptic plasticity during periods of dynamic
activity. Recently, a close association between Narp expression
and schizophrenia pathophysiology has been suggested. In a
post-mortem study conducted on brain specimens (n = 206)
from schizophrenia, bipolar disorder, and major depressive
disorder patients, Narp transcript expression was measured at
the level of the dorsolateral prefrontal cortex. A significant
25% reduction of Narp mRNA expression was detected in
schizophrenia patients compared to normal controls (Kimoto
et al., 2015). Moreover, as in the case of Npas4, the expression of
Narp after antipsychotic administration has been explored only
in one study to date. Indeed, the IEG has been demonstrated
to be differentially regulated by haloperidol (1 mg/kg i.p.) and
clozapine (20 mg/kg i.p.) in cortical and subcortical rat brain
regions Particularly, it has been shown that clozapine causes
a specific decrease of Narp in the striatum (Robbins et al.,
2008).

In summary, Npas4 and Narp share peculiar IEGs
characteristics, the first one being expressed exclusively in
neurons, and the second one being specifically secreted onto
pyramidal cells. Both are deeply linked to glutamatergic and
GABAergic functions. All the above-mentioned features make
these early genes potential great players both in schizophrenia
pathophysiology and in antipsychotic mechanisms of action at
the intracellular level. Therefore, further studies are required in
order to better clarify their putative specific roles in the disease
development and treatment strategies.

CONCLUSIONS

IEGs May Set the Scenario for Acute and
Long-Term Changes Induced by
Antipsychotics
Antipsychotic agents are the mainstay of treatment in
schizophrenia and in other psychotic disorders. However,
despite half a century of research, their ultimate molecular
actions and the neurobiological mechanisms beyond D2R
occupancy are still elusive. In vivo human studies have shown
that volumetric and functional changes may occur after
chronic antipsychotic treatment and that some changes may be
detected even after acute antipsychotic administration. Notably,
schizophrenia has been considered a disease of synaptic plasticity
and of dendritic spines (Penzes et al., 2011), and it is conceivable
that antipsychotics exert their action by triggering a complex set
of structural and functional modifications, also at the level of
dendritic spines (De Bartolomeis et al., 2014).
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Tracking down the initial wave of molecular changes from
multiple receptor interactions to dendritic spines modifications
is a challenging task. In this context, IEGs may represent ideal
candidates to explore how antipsychotics may set the scenario
for acute and chronic re-arrangements of genes expression at the
synapse.

This essential role of IEGs may be justified by multiple
reasons:

1) IEGs control the early molecular processes of rapid synaptic
plasticity induced by antipsychotics, which do not always
require de novo protein synthesis.

2) IEGs are pleiotropic molecules that, beyond the common
feature of being activated rapidly by diversified stimuli, are
characterized by differential and specific functions spanning
from transcription modulation (i.e., c-fos), to neurotrophic
action (i.e., BDNF), to regulation of scaffolding proteins at the
PSD (i.e., Homer1a), all of which have been demonstrated to
be induced by antipsychotics.

3) IEGs are strongly involved in complex higher functions
affected by antipsychotics in key brain regions implicated in
memory and learning (i.e., prefrontal cortex), as well as in
reward and volition (i.e., limbic circuits), all of which have
been demonstrated to be altered in schizophrenia (Leber et al.,
2017).

4) IEGs expression may vary in response to antipsychotics,
with a differential level of expression related to the
receptor-binding profile (i.e., antipsychotics with prevalent
dopaminergic activity vs. antipsychotics with more complex
receptor profiles), to the dose, and to the duration of the
treatment.

5) Different antipsychotic compounds have been demonstrated
to induce specific patterns of IEGs expression in peculiar
brain areas implicated in schizophrenia pathophysiology
(Matosin et al., 2016).

Future Steps toward a Further Clarification
of IEGs Modulation by Antipsychotics
Despite the lot of findings that highlight the complex modulation
of IEGs by antipsychotics, the road for taking full advantage of
this class of molecules in better understanding antipsychotics
mechanisms of action is still long-lasting.

Here are listed few points that may make the issue progress:

1) It would be relevant to develop a research strategy to track
down IEGs as putative blood biomarkers for antipsychotics
activity under a diagnostic and therapeutic (“theranostic”)
approach. A recent preclinical investigation has tried to apply
this strategy to antidepressant therapy starting from IEGs
comparative analysis in brain regions and blood (Waller et al.,
2017).

2) IEGs monitoring after acute or continuous antipsychotic
treatments should be carried out in in vivo models, in order
to better understand the role of this class of molecules in
the mechanisms of action of antipsychotics. For example,
multiphoton imaging of IEGs signals in cortical circuits has

already been successfully used to get information on Egr1
expression after the exposure to a novel context (Xie et al.,
2014).

3) The correlation among IEGs induction, antipsychotics, and
epigenetic modulation is an attractive new scenario worth to
be explored, which is based on the demonstrated modulation
of the methylome by antipsychotics, on the recent findings
on epigenetic control of IEGs in brain, and on the relevance
of the contextual epigenetic-based mechanisms regulating
brain higher functions that are involved in psychosis
pathophysiology (Saunderson et al., 2016; Srivas and Thakur,
2016).

4) Under a translational perspective, more pharmacogenomic
studies and brain post-mortem imaging investigations
evaluating antipsychotics-dependent IEGs induction are
needed to address in humans the findings that have already
been described in animal models.

5) Finally, and again from a translational perspective, it will
be important to start considering the “druggable” potential
of some IEGs such as Homer1a, in order to search for new
putative therapeutic strategies that can reach the core of
the synapse and eventually correct the alterations linked to
aberrant synaptic plasticity (Dev, 2004; Menard et al., 2015).

In sum, IEGs modulation by antipsychotics may provide a key
tool to better understand the brain topography of antipsychotic
action, the multiple pathways involved in the acute effects
of these therapeutics beyond receptor interactions, as well as
the molecular background for long-term changes of synaptic
architecture promoted by chronic antipsychotic exposure.
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