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There is burgeoning evidence that, among HIV+ adults, exposure to high levels of
early life stress (ELS) is associated with increased cognitive impairment as well as
brain volume abnormalities and elevated neuropsychiatric symptoms. Currently, we
have a limited understanding of the degree to which cognitive difficulties observed in
HIV+ High-ELS samples reflect underlying neural abnormalities rather than increases in
neuropsychiatric symptoms. Here, we utilized a behavioral marker of cognitive function,
reaction time intra-individual variability (RT-IIV), which is sensitive to both brain volume
reductions and neuropsychiatric symptoms, to elucidate the unique contributions of
brain volume abnormalities and neuropsychiatric symptoms to cognitive difficulties in
HIV+ High-ELS adults. We assessed the relation of RT-IIV to neuropsychiatric symptom
levels and total gray and white matter volumes in 44 HIV+ adults (26 with high ELS).
RT-IIV was examined during a working memory task. Self-report measures assessed
current neuropsychiatric symptoms (depression, stress, post-traumatic stress disorder).
Magnetic resonance imaging was used to quantify total gray and white matter volumes.
Compared to Low-ELS participants, High-ELS participants exhibited elevated RT-IIV,
elevated neuropsychiatric symptoms, and reduced gray and white matter volumes.
Across the entire sample, RT-IIV was significantly associated with gray and white matter
volumes, whereas significant associations with neuropsychiatric symptoms were not
observed. In the High-ELS group, despite the presence of elevated neuropsychiatric
symptom levels, brain volume reductions explained more than 13% of the variance in
RT-IIV, whereas neuropsychiatric symptoms explained less than 1%. Collectively, these
data provide evidence that, in HIV+ High-ELS adults, ELS-related cognitive difficulties
(as indexed by RT-IIV) exhibit strong associations with global brain volumes, whereas
ELS-related elevations in neuropsychiatric symptoms appear to contribute minimally to
these cognitive difficulties. Such findings support a growing body of evidence indicating
that high ELS exposure is a significant risk factor for neurocognitive dysfunction in HIV+
adults. Further, these data highlight the need to better understand how ELS-related
pathophysiological mechanisms contribute to volumetric and other neural abnormalities
in HIV+ individuals.

Keywords: reaction time variability, adverse childhood experiences, childhood abuse, childhood trauma, gray
matter, white matter, subjective cognitive complaints

Frontiers in Behavioral Neuroscience | www.frontiersin.org 1 January 2018 | Volume 12 | Article 6

https://www.frontiersin.org/journals/behavioral-neuroscience/
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://doi.org/10.3389/fnbeh.2018.00006
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnbeh.2018.00006
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbeh.2018.00006&domain=pdf&date_stamp=2018-01-30
https://www.frontiersin.org/articles/10.3389/fnbeh.2018.00006/full
http://loop.frontiersin.org/people/236541/overview
http://loop.frontiersin.org/people/129187/overview
https://www.frontiersin.org/journals/behavioral-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-12-00006 January 27, 2018 Time: 14:31 # 2

Clark et al. ELS, Reaction Time, and HIV

INTRODUCTION

Recent studies indicate that exposure to high levels of early
life stress (ELS) can increase the risk of cognitive impairment
among HIV+ adults (Clark et al., 2012; Spies et al., 2012;
Womersley et al., 2017). Difficulties in the areas of executive
function and processing speed have been observed in HIV+
adults with high ELS (Clark et al., 2012; Spies et al., 2012,
2016) and have been linked to abnormalities in brain volume
(Clark et al., 2012; Spies et al., 2016). Yet, few studies
have been conducted in this area, resulting in an incomplete
understanding of the cognitive difficulties that are associated with
high ELS exposure in HIV+ adults. One unresolved question
is the degree to which cognitive difficulties in HIV+ High-
ELS adults reflect underlying neural abnormalities as opposed
to neuropsychiatric symptoms (e.g., depression, post-traumatic
stress disorder [PTSD]), which have detrimental effects on
cognitive functions (Ode et al., 2011; Swick et al., 2012; Fellows
et al., 2013). This is particularly concerning, given recent
findings indicating that high ELS exposure is associated with
elevated neuropsychiatric symptoms in HIV+ adults (Clark et al.,
2017).

There is thus a need to determine the unique contributions
of ELS-related neuropsychiatric symptoms and neural
abnormalities to cognitive difficulties in HIV+ adults.
Considering the evidence that neuropsychiatric symptoms
are a prominent component of the prodromal phases of
Alzheimer’s disease and other dementias (Lyketsos et al., 2011;
Gallagher et al., 2017), gaining greater clarity on these issues
may help to further delineate underlying factors associated
with HIV-associated neurocognitive disorders. Although
neuropsychiatric symptoms have known associations with
cognitive dysfunction, to date, only two prior studies have
examined the contribution of neuropsychiatric symptoms
to cognitive difficulties in HIV+ High-ELS adults (Clark
et al., 2012; Spies et al., 2012). Results from these studies
suggest minimal effects of depression levels on cognitive
difficulties in HIV+ High-ELS adults; however, the effects of
additional neuropsychiatric symptoms commonly elevated
in High-ELS samples, such as PTSD-related symptoms and
current stress, have not been systematically assessed. While the
aforementioned studies utilized neuropsychological batteries
that were tailored to detect HIV-related cognitive decline, the
current study takes a novel approach by utilizing a sensitive
behavioral measure of cognitive function, reaction time intra-
individual variability (RT-IIV), to examine these issues in greater
depth.

Reaction time intra-individual variability is a measure of
an individual’s variability in response times summarized across
a number of trials in a task. Elevations in RT-IIV arise, in
part, due to an increase in attentional lapses (Leth-Steensen
et al., 2000; Hervey et al., 2006; Tamm et al., 2012), which
are thought to reflect an inefficient regulation of cognitive
processes (West et al., 2002; Chuah et al., 2006; Ode et al.,
2011). RT-IIV is thus considered a marker of cognitive instability
(Fjell et al., 2011). Accordingly, RT-IIV provides information
about cognitive processes that is distinct from that captured

by traditional neuropsychological measures. There is some
indication that RT-IIV may even be more sensitive to subtle
cognitive impairments than standardized neuropsychological
measures (Collins and Long, 1996). Notably, prior studies
have used RT-IIV measures to differentiate between patient
groups with depression, trauma, and other neuropsychiatric
disorders (Kaiser et al., 2008; Swick et al., 2012). RT-IIV
measures have also been used to differentiate between individuals
with and without neurological conditions (e.g., traumatic brain
injury, mild cognitive impairment) (Collins and Long, 1996;
MacDonald et al., 2006; Dixon et al., 2007; Duchek et al., 2009).
Moreover, RT-IIV has been identified as a valuable indicator of
compromised neural integrity (MacDonald et al., 2006; Nilsson
et al., 2014). RT-IIV is sensitive to global white matter volume
reductions (Walhovd and Fjell, 2007; Jackson et al., 2012), as well
as frontal-lobe abnormalities (e.g., white matter hyperintensities)
(Bunce et al., 2007, 2010; MacDonald et al., 2012; Lovden et al.,
2013).

Only three prior studies have investigated RT-IIV in HIV+
samples (Levine et al., 2006, 2008; Ettenhofer et al., 2010). These
studies indicate that elevated RT-IIV is associated with greater
cognitive impairment and poorer clinical outcomes (reduced
antiretroviral adherence, greater immunological dysfunction)
(Levine et al., 2008; Ettenhofer et al., 2010). These associations
do not appear to be a function of slowed RTs, which are common
in HIV+ samples, as RT-IIV exhibits independent associations
with cognitive functions, even when controlling for RT latency in
HIV+ adults (Ettenhofer et al., 2010).

There is thus strong evidence indicating that RT-IIV is
sensitive to the presence of neuropsychiatric symptoms (e.g.,
stress exposure, depression), as well as changes in cognitive
function and neural integrity (e.g., brain volume). Accordingly,
this behavioral measure is well suited to the current investigation,
as the primary aim of this study is to examine whether ELS-
related cognitive reductions observed in HIV+ High-ELS adults
are more strongly associated with global brain volumes than with
neuropsychiatric symptoms. Building on prior findings (Clark
et al., 2012, 2017; Spies et al., 2012, 2016), we hypothesized that
HIV+ adults with high ELS, relative to those with low ELS,
would demonstrate elevations in RT-IIV, greater neuropsychiatric
symptom levels, and lower total gray and white matter volumes.
We further hypothesized that elevations in RT-IIV would be more
strongly associated with brain volume than with neuropsychiatric
symptom levels. As a test of the functional validity of our
RT-IIV measure, we examined the relation between RT-IIV and
a self-report measure of cognitive function. Based on prior
findings (Ettenhofer et al., 2010), we expected to observe strong
correlations between RT-IIV and subjective ratings of cognitive
function. Our final goal was exploratory in nature and assessed
potential contributory factors associated with brain volume
abnormalities in this HIV+ sample. Consistent with our general
hypothesis, we predicted that degree of ELS exposure, more
so than neuropsychiatric symptom levels, would be associated
with reductions in brain volume. We further predicted that
a measure of historical HIV-disease severity – nadir CD4
levels (i.e., the lowest ever T-cell count on record) – would
also demonstrate independent associations with brain volume
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(Clark and Cohen, 2010; Cohen et al., 2010; Jernigan et al.,
2011; Clark et al., 2012, 2015; Guha et al., 2016). Collectively,
such analyses aim to further clarify our understanding of
the neurocognitive correlates of high ELS exposure in HIV+
adults.

MATERIALS AND METHODS

Participants
We recruited 44 HIV+ adults from the Icahn School of Medicine
at Mount Sinai in New York, NY, United States and The Miriam
Hospital in Providence, RI, United States. One investigator (USC)
oversaw all procedures. The Institutional Review Boards at the
Icahn School of Medicine at Mount Sinai and The Miriam
Hospital approved this research. All participants gave their
informed written consent and were financially compensated for
their time.

Inclusion criteria were HIV-positive status, right-handedness,
completion of 8 or more years of education, and being a native
English speaker. HIV serostatus was documented by ELISA and
confirmed by Western blot test. All participants obtained a score
of ≥24 points on the Mini-Mental State Exam (MMSE) (Folstein
et al., 1975). Exclusion criteria included reported history of
uncorrected abnormal vision; developmental disability; learning
disability; major psychiatric illness (e.g., bipolar disorder,
posttraumatic stress disorder); neurological illness affecting the
central nervous system (e.g., stroke, progressive multifocal
leukoencephalopathy); and traumatic head injury with loss of
consciousness >10 min. Substance use exclusion criteria were
reported current alcohol dependence; use of heroin/opiates or
any intravenous drug within the past 6 months; use of cocaine
within the past month; and positive urine toxicology at the time of
assessment (cocaine, opiates, methamphetamine, amphetamine,
benzodiazepine, barbiturates, methadone, oxycodone).

Demographic Measures
HIV disease duration, nadir CD4 levels (i.e., the lowest ever
CD4 T-cell count), and antiretroviral (ARV) use were obtained
via self-report and verified against the medical record. Current
CD4 levels and plasma HIV viral loads (HIVL) were obtained
from medical records. All participants were prescribed ARV
medications. Participants were assessed for hepatitis C virus
(HCV) infection, defined as positive HCV antibody. Alcohol and
drug use histories for all participants were quantified using the
Kreek-McHugh-Schluger-Kellogg scale (KMSK) (Kellogg et al.,
2003), which provided three subscales characterizing lifetime
consumption of alcohol (KMSK-A), cocaine (KMSK-C), and
opiates (KMSK-O). The Wechsler Test of Adult Reading (WTAR)
estimated premorbid levels of intellectual function (Wechsler,
2001); scaled scores were derived using published normative data.
See Table 1 for group characteristics.

Early Life Stress Quantification
Early life stress exposure was quantified using the Early Life Stress
Questionnaire (ELSQ) (Cohen et al., 2006b), which assessed
the occurrence of 17 adverse childhood events (ACE) (e.g.,

physical abuse, sexual abuse, neglect, family conflict, bullying)
prior to age 18 years. Low ELS was defined by endorsement
of fewer than 3 ACEs, and high ELS was defined as an
endorsement of 3 or more ACEs, consistent with prior studies
(Cohen et al., 2006a; Paul et al., 2008; Seckfort et al., 2008;
Clark et al., 2012, 2017). Using these criteria, 18 participants
were classified as having low ELS and 26 were classified as
having high ELS. The proportion of Low-ELS and High-ELS
participants was similar across testing sites (New York, NY,
United States: Low-ELS = 12 [41%], High-ELS = 17 [59%];
Providence, RI, United States: Low-ELS = 6 [40%], High-ELS = 9
[60%]).

Neuropsychiatric Measures
We examined levels of neuropsychiatric symptoms known to
be elevated in HIV+ High-ELS individuals (Clark et al., 2012,
2017) and associated with RT-IIV performance (Kaiser et al.,
2008; Ode et al., 2011; Swick et al., 2012). Levels of current
depression, stress, and PTSD symptoms were quantified using
the Center for Epidemiological Studies-Depression Scale (CESD)
(Radloff, 1977), Perceived Stress Scale (PSS) (Cohen et al.,
1983), and Posttraumatic Checklist – Civilian (PCLC) (Weathers
et al., 1993), respectively. For each participant, z-scores were
calculated for each measure based on the mean of the entire
sample for that measure; the three z-scores were then averaged
to create a composite index score for each participant. The index
thus represents the overall degree of neuropsychiatric difficulty
reported across all domains assessed. To verify this, we conducted
a principal components analysis on the three neuropsychiatric
measures (Bartlett’s test: χ2 = 84.5, p < 0.001; KMO = 0.704).
Only one component had an eigenvalue over 1; this component
explained 83% of the total variance (all communalities >0.73).
Across the sample, component scores correlated strongly with
composite index scores (r[44] = 0.9999, p< 0.001) (Supplemental
Figure S1), supporting the use of the composite index in
subsequent analyses. Higher index scores indicate greater global
neuropsychiatric difficulty.

Reaction Time Task
A computerized N-back paradigm was used to assess mean RT
latency and RT-IIV. The N-back is a working memory task
in which a series of consonants is presented on the computer
screen. Participants indicate whether the letter is the same as,
or different from the letter presented N-back, where “N” is
a specific number of letters. Our paradigm included several
N-back conditions (0-back, 1-back, 2-back, 3-back), where larger
Ns provide increased difficulty (greater working memory load).
In this study, we examined performance during the 1-back
condition (Figure 1), based on prior evidence that HIV+ adults,
relative to adults without HIV, demonstrate greater RT latencies
during the 1-back, without significant reductions in accuracy
(Chang et al., 2001). Such findings suggest that the 1-back is
sensitive to HIV-related changes in RT without placing excessive
demands on cognitive processes. The 1-back thus permits
examination of RT abnormalities that arise under conditions that
minimize confounding influences of high cognitive demands,
thereby better isolating RT performance.
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The N-back was completed in the magnetic resonance imaging
(MRI) scanner as part of a broader study on brain response in
HIV+ adults involving functional MRI. Because the focus of the
current study was on volumetric MRI abnormalities, functional
data were not included in the current analyses. The N-back
paradigm was administered using E-Prime1, which recorded
trial responses and RTs. Responses were given using a button
box placed in the right hand. A total of 64, 1-back trials
were administered across four 1-back blocks, which lasted 32 s
each and alternated with additional N-back blocks. Trials were
presented at the rate of 1 every 2 s (stimuli presentation = 1”;
interstimulus interval = 1”). All participants practiced the
N-back prior to completing the in-scanner experiment to
avoid confounding influence of learning effects on performance.
During the in-scanner experiment, accuracy for one participant
(High-ELS) was below chance, and two participants (1 Low-
ELS; 1 High-ELS) responded to less than 80% of 1-back trials;
these three participants were excluded from all analyses involving
RT measures. In the remaining sample, correlations between
1-back performance during the brief out-of-scanner practice
session and the longer in-scanner task were high (% correct:
r = 0.52, p < 0.001; mean RT: r = 0.63, p < 0.001; RT-IIV:
r = 0.33, p = 0.037), supporting an examination of in-scanner
performance.

Mean RT latency was calculated for each participant across
all correct 1-back trials. To measure RT-IIV, we calculated the
coefficient of variation (CoV) for each participant using the
following formula: CoV = standard deviation across all correct
1-back trials/mean RT (Stuss et al., 2003). CoV thus provides a
measure of RT variability that controls for mean RT, where higher
scores indicate greater variability. To assess overall performance
on 1-back trials, we calculated a nonparametric measure of signal
detection, A′ (Snodgrass and Corwin, 1988), which takes into
account both omission and commission errors. A′ ranges from 0
to 1, where scores above 0.5 indicate that performance was above
chance.

Structural Brain MRI Acquisition and
Analysis
Magnetic resonance imaging scans were conducted at two
locations (New York, NY, United States; Providence, RI,
United States), each using a Siemens 3T scanner. Whole-brain
high-resolution T1-weighted MPRAGE images were acquired in
the sagittal plane in all participants (New York, NY, United States:
Siemens MAGNETOM Skyra, TE/TR = 2.07/2400 ms, 0.8 mm3,
FOV = 256 mm × 256 mm; Providence, RI, United States:
Siemens TIM TRIO, TE/TR = 2.98/1900 ms, 1 mm3,
FOV = 256 mm × 256 mm). Gray and white matter volumetric
segmentation was performed in an automated manner using
the FreeSurfer image analysis suite (v5.3.0) (Fischl et al., 2002).
Total gray and white matter volumes (including cerebral and
cerebellar regions) were thus derived for each participant. In one
participant (Low-ELS), the automated pipeline was unable to run
to completion. All other segmentations were visually inspected
for accuracy (e.g., segmentation alignment); none were omitted.

1www.pstnet.com

FIGURE 1 | Schematic of the 1-Back Task. During the N-back, a series of
consonants is presented on the computer screen one at a time; trials were
presented at the rate of 1 every 2 s. Participants indicate whether the letter on
the screen is the same as, or different from, the letter presented N-back,
where “N” is a specific number of letters.

Total gray and white matter volumes were adjusted for
differences in total intracranial volume (ICV) as follows: Adjusted
volume = raw volume – [b × (ICV − mean ICV)], where
b is the slope of the regression of the raw volume on ICV.
This covariance approach to correcting for ICV has been used
frequently in previous studies (Mathalon et al., 1993; Buckner
et al., 2004; Raz et al., 2005, 2008; Jackson et al., 2012; Pintzka
et al., 2015). Although FreeSurfer provides reliable estimates
of brain volumes across scanners (Han et al., 2006; Fennema-
Notestine et al., 2007; Han and Fischl, 2007; Dickerson et al.,
2008), and multisite volumetric data aggregation has been used
successfully in previous studies (Fennema-Notestine et al., 2007;
Desikan et al., 2009; Dewey et al., 2010), there is some evidence
that differences in MRI acquisition can systematically affect
volumetric estimates (e.g., Reig et al., 2009). Accordingly, we
adopted a conservative approach and included scanner type as
a covariate in all statistical analyses involving volumetric data.
As noted above, the proportion of Low-ELS and High-ELS
participants was similar across testing sites (Table 1).

Self-Reported Cognitive Function
The HIV Medical Outcomes Survey (MOS-HIV) (Wu, 1996) was
administered to assess self-reported rates of cognitive function.
The 35-item MOS-HIV is a widely used and accepted measure
of health-related quality of life in HIV+ adults (Wu et al.,
1997). Four MOS-HIV items contribute to the cognitive function
subscale, which assesses the degree to which participants have
experienced difficulty concentrating, reasoning, or remembering
within the past 4 weeks. Raw subscale scores were transformed to
z-scores based on published normative data (Wu, 1996). Lower
scores indicate greater subjective cognitive difficulty. Due to a
slight variation in study protocols across sites, MOS-HIV data
were only available from the New York cohort (N = 29).

Statistical Analyses
Differences in demographic variables and neuropsychiatric
symptoms between the ELS groups were assessed using

Frontiers in Behavioral Neuroscience | www.frontiersin.org 4 January 2018 | Volume 12 | Article 6

www.pstnet.com
https://www.frontiersin.org/journals/behavioral-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-12-00006 January 27, 2018 Time: 14:31 # 5

Clark et al. ELS, Reaction Time, and HIV

independent-samples t-tests, chi-square, and Fisher’s exact tests.
Mann–Whitney U tests were used to compare groups on variables
that were not normally distributed (nadir CD4 levels, log10
HIVL, 1-back A′). Our main goals were threefold. First, we
tested whether the High-ELS group demonstrated greater RT-
IIV than the Low-ELS group, using analyses of covariance
(ANCOVA) to control for group differences in neuropsychiatric

symptoms (composite scores). Partial eta-squared (η2
p) was

used as an indicator of effect size, where values of 0.01,
0.06, and 0.14 indicate small, medium, and large effects,
respectively (Cohen, 1988). Second, we used a similar approach
(ANCOVA) to test for possible group differences in total gray
and white matter volumes, while controlling for neuropsychiatric
symptoms (composite scores); scanner type was included in

TABLE 1 | Demographic, neuropsychiatric, and cognitive characteristics of the participant groups.

HIV+ Low-ELS (N = 18) HIV+ High-ELS (N = 26)

Mean SD Mean SD F/t/U/χ2 df p ES

Demographic characteristics

Recruitment Site (% New York, NY, United States) 67 65 0.01 1 0.930 0.013b

% Providence, RI, United States 33 35

Age (years) 44.44 9.42 46.08 9.36 0.57 42 0.574 0.008

Education (years) 13.08 2.68 13.73 2.51 0.82 42 0.417 0.015

% Male 50 65 1.04 1 0.307 0.154b

Mini-Mental State Exam (/30) 29.06 1.00 28.38 1.53 1.76 41.91 0.085 0.071

WTAR (SS) 99.89 14.34 96.58 19.01 0.63 42 0.535 0.010

Racial composition (% Caucasian) 17 27 0.489 0.120b

% African American 78 65

% Asian American 4

% Native American 4

% Bi/Multiracial 6

Ethnic composition (% Hispanic) 22 12 0.419 0.144b

% Hepatitis C positive 17 12 0.683 0.066b

KMSK – Alcohol (/13) 7.78 4.11 7.08 3.38 0.62 42 0.539 0.008

KMSK – Cocaine (/16) 5.39 7.16 7.88 6.37 1.21 42 0.231 0.032

KMSK – Opiate (/13) 1.67 4.02 0.62 1.68 1.20 42 0.238 0.025

% With positive marijuana toxicology 22 28 0.736 0.065b

Number of ACEs 1.17 0.86 5.23 2.27 8.32 34.24 <0.001 0.622

HIV-disease measures

Nadir CD4 (cells/µl) 261.59 262.97 210.58 214.76 202.50 0.646 0.005

Current CD4 (cells/µl) 594.28 298.40 608.85 272.19 0.17 42 0.868 0.001

Current log10 HIVL 2.21 1.23 1.75 0.87 165.50 0.161 0.047

% with HIVL below 50 copies/ml 53 65 0.67 1 0.415 0.124b

Length of HIV infection (years) 14.56 6.64 16.00 7.22 0.67 42 0.504 0.011

% on ARV medications 100 100

Neuropsychiatric measures

Depression – CESD (/60) 6.61 6.18 14.62 11.51 2.98 39.96 0.005 0.175

Current stress – PSS (/56) 14.11 5.70 19.35 8.38 2.30 42 0.026 0.127

PTSD symptoms – PCLC (/85) 24.33 10.02 33.19 12.72 2.47 42 0.018 0.137

Neuropsychiatric composite (z-score) –0.43 0.60 0.29 0.98 3.02 41.54 0.004 0.178

Cognitive measures

1-back trial response rate (%) 96.86 4.37 97.29 4.36 0.31 39 0.758 0.002

1-back A′ (signal detection) 0.92 0.08 0.90 0.08 151.00 0.161 0.049

1-back mean RT latency (ms)a 781.44 134.21 817.11 135.45 1.00 1,38 0.323 0.026

1-back RT-IIV (CoV)a 0.23 0.05 0.28 0.07 5.82 1,38 0.021 0.133

MOS-HIV cognitive function (z-score)a 0.22 0.81 0.13 0.69 0.01 1,26 0.911 0.000

ELS, early life stress; WTAR, Wechsler Test of Adult Reading; SS, Standard Score; KMSK, Kreek-McHugh-Schluger-Kellogg scale; ACE, adverse childhood events; HIVL,
HIV viral load; ARV, antiretroviral; CESD, Center for Epidemiologic Studies Depression Scale; PSS, Perceived Stress Scale; PCLC, PTSD Checklist - Civilian; RT-IIV, reaction
time intra-individual variability; CoV, coefficient of variation, a measure of variability where higher values indicate greater variability; MOS-HIV, The Medical Outcomes Study
HIV Health Survey; ES, effect size. aAnalysis includes neuropsychiatric composite index (depression, current stress, PTSD) as a covariate. Measures of effect size (ES)
include eta-squared (η2), partial eta-squared (η2

p), and the phi (φ) coefficient (Cohen, 1988; Lakens, 2013; Corder and Foreman, 2014). For η2 and η2
p, values of 0.01,

0.06, and 0.14 indicate small, medium, and large effects, respectively. bFor φ, values of 0.10, 0.30, and 0.50 indicate small, medium, and large effects, respectively.
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these analyses as a covariate, as our data suggested that
volume estimates derived from the NY protocol tended to be
smaller than those derived from the RI protocol. Third, we
examined the extent to which neuropsychiatric symptoms and
brain volumes accounted for variance in RT-IIV across the
entire sample using hierarchical regression. In each model, RT-
IIV was entered as the dependent variable; neuropsychiatric
composite scores were entered as the independent variable
in the first step, scanner type was entered as a covariate
in the second step, and the MRI volume of interest was
entered in the third step. Confirmatory regression analyses
were conducted within the High-ELS sample to examine
factors associated with RT-IIV in this subgroup alone; one-
tailed p-values were assessed as these analyses tested a specific,
directional hypothesis informed by prior findings (Jackson et al.,
2012).

To assess the functional validity of our RT-IIV measure,
we examined the relation between RT-IIV and subjective
cognitive ratings using linear regression. Here, RT-IIV was
entered as the dependent variable and MOS-HIV cognitive
subscale scores were entered as the independent variable. We
also conducted explanatory analyses to examine potential
etiological factors associated with brain volume abnormalities,
where the potential predictors included neuropsychiatric
symptom levels, ELS status, and nadir CD4 levels (a measure
of historical HIV-disease severity). Considering our sample
size, we focused these analyses on nadir CD4 levels, to
the exclusion of other HIV-disease variables (e.g., current
CD4, HIVL), given prior data identifying nadir CD4 as
one of the primary factors associated with brain volume
abnormalities in HIV+ adults (Clark and Cohen, 2010; Cohen
et al., 2010; Jernigan et al., 2011; Clark et al., 2012, 2015;
Guha et al., 2016). In each of these hierarchical regression
models, the brain volume of interest was entered as the
dependent variable; scanner type was entered as an initial
covariate; neuropsychiatric composite scores were entered as the
independent variable in the second step, followed by ELS status
in the third step, and nadir CD4 levels in the fourth step. All
statistical analyses were conducted using SPSS (version 23, IBM
Corporation).

RESULTS

Demographic Measures
Demographic data for each group are reported in Table 1,
including group means and statistics. High-ELS and Low-
ELS groups were well matched on several demographic
variables including age, estimated premorbid intelligence,
lifetime substance use, and HIV-disease factors (ps > 0.050)
(Table 1).

Neuropsychiatric Measures
The High-ELS group reported significantly higher levels
of depression, current stress, and PTSD-related symptoms
compared to the Low-ELS group (ts ≥ 2.30, ps ≤ 0.026)
(Table 1). Scores on the neuropsychiatric composite index were

FIGURE 2 | The High-ELS group exhibited greater RT-IIV than the Low-ELS
group. ELS, early life stress; RT-IIV, reaction time intra-individual variability;
CoV, coefficient of variation, a measure of variability where higher values
indicate greater variability. Asterisks indicate that the groups’ means are
significantly different at the ∗p < 0.05 level.

significantly greater in the High-ELS group than in the Low-
ELS group (t[41.54] = 3.02, p = 0.004) (Table 1). This effect
was maintained when covarying for age and gender (p = 0.002,
η2

p = 0.21).

RT Measures
Both groups responded to >96% of trials during the 1-
back blocks (Table 1). Groups did not differ significantly
in 1-back accuracy (A′, Table 1). RT latencies were slower
on average in the High-ELS than in the Low-ELS group,
but this difference was non-significant (Table 1). By
contrast, the High-ELS group demonstrated significantly
greater RT-IIV than the Low-ELS group (F[1,39] = 6.80,
p = 0.013, η2

p = 0.15) (Figure 2), even when controlling
for neuropsychiatric symptom levels (depression, current
stress, PTSD) (p = 0.021, η2

p = 0.13). Notably, mean
RT-IIV scores in the High-ELS group were one standard
deviation higher than in the Low-ELS group. This effect was
maintained when covarying for age and gender (p = 0.028,
η2

p = 0.12).

Brain Volumes
Results from the ANCOVA, controlling for neuropsychiatric
composite scores and scanner type, revealed that the High-
ELS group demonstrated significantly smaller gray and white
matter volumes relative to the Low-ELS group (F[1,39] = 5.21,
p = 0.028, η2

p = 0.12; F[1,39] = 4.62, p = 0.038, η2
p = 0.11,

respectively) (Figures 3A,B). Age did not contribute significantly
to the models (p = 0.408; p = 0.943, respectively) and was
therefore not included as a covariate in the final analyses.
The observed effects were maintained when including gender
as a covariate (p = 0.047, η2

p = 0.10; p = 0.062, η2
p = 0.09,

respectively).
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FIGURE 3 | Early life stress (ELS)-related reductions in gray matter (A) and white matter (B) volumes. ELS, early life stress; ICV, total intracranial volume. Asterisks
indicate that the groups’ means are significantly different at the ∗p < 0.05 level.

Relation of RT-IIV to Neuropsychiatric
Symptoms and Brain Volume Measures
We examined the relation of RT-IIV to neuropsychiatric
symptoms and gray matter volumes using hierarchical regression
(Table 2). Results revealed a non-significant association with
neuropsychiatric symptoms, whereas gray matter volumes were
significantly associated with RT-IIV across the entire sample
(β =−0.46; p = 0.007) (Figure 4A). These effects were maintained
when including gender as a covariate (β = −0.50; p = 0.008).
In this analysis, neuropsychiatric symptoms accounted for 1%
of the variance in RT-IIV and gray matter volumes accounted
for an additional 18%. These findings were replicated when
the model was restricted to the High-ELS sample; results from
this confirmatory analysis revealed a non-significant association
between RT-IIV and neuropsychiatric symptoms (one-tailed
p = 0.258), whereas associations with gray matter volumes were
significant (β = −0.44 [t = −1.92, one-tailed p = 0.035]). In
the High-ELS sample, neuropsychiatric symptoms accounted
for <1% of the variance in RT-IIV, and gray matter volumes
accounted for an additional 16%.

A similar pattern was observed in the model examining
associations between RT-IIV, neuropsychiatric symptoms, and
white matter volumes (Table 3). Across the entire sample,
we observed a non-significant association between RT-IIV and
neuropsychiatric composite scores, whereas associations with

white matter volumes were significant (β = −0.37; p = 0.026)
(Figure 4B). These effects were maintained when including
gender as a covariate (β = −0.42; p = 0.028). In this analysis,
neuropsychiatric symptoms accounted for 1% of the variance in
RT-IIV and white matter volumes accounted for an additional
13%. Results from a confirmatory analysis conducted in the High-
ELS group alone revealed a non-significant association between
RT-IIV and neuropsychiatric symptoms (one-tailed p = 0.284),
whereas associations with white matter volumes were significant
(β = 0.41 [t = −1.79, one-tailed p = 0.044]). In the High-ELS
sample, neuropsychiatric symptoms accounted for <1% of the
variance in RT-IIV, and white matter volumes accounted for an
additional 14%.

Associations of RT-IIV to gray and white matter volumes in
the Low-ELS group (r[13] = −0.349, p = 0.102; r[13] =−0.166,
p = 0.278, respectively; one-tailed p-values) did not differ
significantly from those in the High-ELS group (r[21] =−0.378,
p = 0.038; r[21] = −0.358, p = 0.047, respectively; one-
tailed p-values), as indicated by Fisher’s r-to-z transformations
(z = 0.09, p = 0.928; z = 0.59, p = 0.555, respectively).

Relation between RT-IIV and
Self-Reported Cognitive Function
Self-report ratings of cognitive function (MOS-HIV) were lower
on average in the High-ELS than in the Low-ELS group, but

TABLE 2 | Results from the hierarchical regression analysis assessing the relation of RT-IIV to neuropsychiatric symptoms and gray matter volumes (N = 40).

Task R2 F p 1R2 Predictor β t p

Step 1 0.014 0.54 0.468 0.014 Neuropsychiatric symptoms 0.12 0.73 0.468

Step 2 0.015 0.29 0.749 0.002 Neuropsychiatric symptoms 0.13 0.76 0.451

Scanner type 0.04 0.24 0.811

Step 3 0.198 2.96 0.045 0.183 Neuropsychiatric symptoms 0.16 1.02 0.317

Scanner type −0.11 −0.65 0.521

Total gray matter volumes −0.46 −2.86 0.007

Step 4 0.207 2.28 0.080 0.009 Neuropsychiatric symptoms 0.17 1.09 0.283

Scanner type −0.11 −0.65 0.523

Total gray matter volumes −0.50 −2.83 0.008

Gender 0.10 0.62 0.542
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FIGURE 4 | Greater RT-IIV is associated with reduced gray matter (A) and white matter (B) volumes. ELS, early life stress; RT-IIV, reaction time intra-individual
variability; CoV, coefficient of variation; ICV, total intracranial volume.

TABLE 3 | Results from the hierarchical regression analysis assessing the relation of RT-IIV to neuropsychiatric symptoms and white matter volumes (N = 40).

Task R2 F p 1R2 Predictor β t p

Step 1 0.014 0.54 0.468 0.014 Neuropsychiatric symptoms 0.12 0.73 0.468

Step 2 0.015 0.29 0.749 0.002 Neuropsychiatric symptoms 0.13 0.76 0.451

Scanner type 0.04 0.24 0.811

Step 3 0.144 2.02 0.128 0.129 Neuropsychiatric symptoms 0.15 0.91 0.371

Scanner type −0.04 −0.27 0.790

Total white matter volumes −0.37 −2.33 0.026

Step 4 0.152 1.57 0.203 0.008 Neuropsychiatric symptoms 0.16 0.98 0.335

Scanner type −0.04 −0.25 0.805

Total white matter volumes −0.42 −2.29 0.028

Gender 0.11 0.58 0.564

this difference was non-significant (Table 1). There was a
significant negative association between RT-IIV and subjective
ratings of cognitive function (β = −0.42 [t = −2.24, p = 0.035])
(Figure 5), which remained (p = 0.035), even when controlling
for neuropsychiatric symptoms.

Predictors of Brain Volume Abnormalities
Results from the exploratory analysis assessing potential
etiological predictors of gray matter volume abnormalities
(Table 4) revealed a non-significant association with
neuropsychiatric symptoms (p = 0.598), whereas ELS status
was a significant predictor of gray matter volumes (p = 0.046).
When nadir CD4 was added to the model, ELS status (p = 0.093)
and nadir CD4 (p = 0.072) exhibited trend-level effects. In this
analysis, neuropsychiatric symptoms accounted for <1% of the
variance in gray matter volumes, ELS status accounted for 9%,
and nadir CD4 levels accounted for an additional 7%.

We observed a similar pattern in the model predicting
total white matter volumes (Table 4), where associations with
neuropsychiatric symptoms were non-significant (p = 0.643),
while trend-level associations were observed with ELS status
(p = 0.060). When nadir CD4 was added to the model, a
non-significant association between nadir CD4 and white matter

volumes was observed (p = 0.215), and the association between
ELS status and white matter volumes rose just above the trend
level (p = 0.104). In this analysis, neuropsychiatric symptoms
accounted for <1% of the variance in white matter volumes, ELS
status accounted for 8%, and nadir CD4 levels accounted for an
additional 4%.

DISCUSSION

The current study examined the hypothesis that cognitive
difficulties observed in HIV+ High-ELS adults reflect brain
volume abnormalities rather than neuropsychiatric symptoms.
Several key findings emerged from this study. First, we observed
that High-ELS adults exhibited greater cognitive difficulties
than those with low ELS, as indexed by RT-IIV. This finding
supports prior data indicating that high ELS exposure is
associated with cognitive dysfunction in HIV+ adults (Clark
et al., 2012; Spies et al., 2012). Considering that high ELS
exposure in HIV+ adults is also associated with elevated
neuropsychiatric symptoms (Myers et al., 2006; Clark et al.,
2017), which are known to be associated with elevations in
RT-IIV (Ode et al., 2011; Swick et al., 2012), we examined
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FIGURE 5 | Greater RT-IIV is associated with poorer self-reported cognitive
function. RT-IIV, reaction time intra-individual variability; ELS, early life stress;
CoV, coefficient of variation; MOS-HIV, The Medical Outcomes Study HIV
Health Survey.

whether RT-IIV elevations in the High-ELS group were driven by
neuropsychiatric symptoms (depression, current stress, PTSD).
While the High-ELS group did indeed demonstrate elevated

neuropsychiatric symptom levels, group differences in RT-IIV
persisted even after controlling for neuropsychiatric symptom
levels. These data suggest that ELS-related elevations in RT-IIV
are not driven by increased neuropsychiatric symptoms.

By contrast, results from our neuroimaging analyses suggest
that ELS-related elevations in RT-IIV are strongly linked to global
brain volumes. As expected, RT-IIV elevations were significantly
associated with total gray and white matter volume reductions
across the entire sample. When examining the High-ELS group
alone, we found that measures of total gray and white matter
volumes accounted for more than 13% of the variance in
RT-IIV, whereas neuropsychiatric symptoms accounted for less
than 1%. Accordingly, these results demonstrate that, although
the High-ELS sample experiences elevated neuropsychiatric
symptoms, these symptoms contribute minimally to RT-IIV
elevations. These findings thus support our hypothesis that, in
HIV+ High-ELS adults, ELS-related RT-IIV elevations are more
strongly associated with global brain volume reductions than
with neuropsychiatric symptom elevations. Such results extend
prior data indicating strong associations between ELS-related
cognitive difficulties and regional brain volume abnormalities in
HIV+ samples (Clark et al., 2012; Spies et al., 2012).

Our study also revealed the novel finding that HIV+ High-
ELS adults demonstrated lower total gray and white matter
volumes than HIV+ Low-ELS adults, consistent with prior
reports of regional gray matter abnormalities in HIV+ High-
ELS adults (Clark et al., 2012; Spies et al., 2016). Notably,
ELS-related white matter volume abnormalities and reductions
in global gray matter volumes in HIV+ samples have not
been reported previously. Our data thus suggest that high ELS

TABLE 4 | Results from the hierarchical regression analyses assessing the relation of total gray and white matter volumes to neuropsychiatric symptoms, ELS status,
and nadir CD4 levels (N = 42).

Task R2 F p 1R2 Predictor β t p

Total gray matter volumes

Step 1 0.134 6.19 0.017 0.134 Scanner type −0.37 −2.49 0.017

Step 2 0.140 3.18 0.053 0.006 Scanner type −0.35 −2.89 0.028

Neuropsychiatric symptoms 0.08 0.53 0.598

Step 3 0.227 3.72 0.019 0.087 Scanner type −0.33 −2.70 0.029

Neuropsychiatric symptoms 0.20 1.27 0.211

ELS status −0.32 −2.06 0.046

Step 4 0.292 3.82 0.011 0.065 Scanner type −0.40 −2.68 0.011

Neuropsychiatric symptoms 0.14 0.86 0.396

ELS status −0.26 −1.73 0.093

Nadir CD4 cell count 0.27 1.85 0.072

Total white matter volumes

Step 1 0.070 2.99 0.091 0.070 Scanner type −0.26 −1.73 0.091

Step 2 0.075 1.58 0.220 0.005 Scanner type −0.25 −2.57 0.125

Neuropsychiatric symptoms 0.07 0.47 0.643

Step 3 0.158 2.38 0.085 0.083 Scanner type −0.23 −1.52 0.137

Neuropsychiatric symptoms 0.19 1.16 0.253

ELS status −0.31 −1.94 0.060

Step 4 0.193 2.21 0.087 0.035 Scanner type −0.27 −1.76 0.086

Neuropsychiatric symptoms 0.14 0.85 0.398

ELS status −0.27 −1.67 0.104

Nadir CD4 cell count 0.20 1.26 0.215
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exposure may have a broader impact on neural structure in
HIV+ adults than was previously understood. Indeed, when
we examined potential mechanistic factors associated with these
effects, we found that volumetric reductions were more strongly
associated with ELS status than with neuropsychiatric symptoms.
Moreover, ELS status and nadir CD4 levels explained similar
amounts of variance in brain matter volumes. Many studies have
identified nadir CD4 levels as a critically important historical
factor impacting neural outcomes in HIV+ adults (Clark and
Cohen, 2010; Cohen et al., 2010; Jernigan et al., 2011; Clark et al.,
2012, 2015; Guha et al., 2016). Our current findings suggest that
high ELS exposure may be as important to consider as nadir CD4
levels when examining factors that impact neural outcomes in
HIV+ adults.

As noted above, we found that RT-IIV exhibited significant
associations with global measures of both gray and white
matter volumes across the entire sample. The strength of these
associations did not differ significantly between High-ELS and
Low-ELS groups in the current sample; however, additional
studies with larger sample sizes are needed to provide greater
certainty regarding this finding. To our knowledge, this is the
first study to demonstrate that RT-IIV is sensitive to structural
brain abnormalities in HIV+ individuals. Such findings build
on prior results indicating that RT-IIV is sensitive to global
reductions in white matter volume and integrity in non-HIV
samples (Moy et al., 2011; Jackson et al., 2012). It is more novel,
however, to find significant correlations between RT-IIV and gray
matter volumes. For example, one recent study conducted in
a non-demented, non-HIV cohort did not observe significant
associations between RT-IIV and gray matter density (Moy et al.,
2011). It is likely that this inconsistency reflects differences in the
samples under investigation, where disease-related processes that
alter brain-behavior relations may be driving the current findings.
Indeed, prior studies have observed significant correlations
between regional MRI volumes and RT-IIV in adults with mild
cognitive impairment (MCI) that were not present in cognitively
intact individuals (Anstey et al., 2007). Such findings suggest
that stronger brain-behavior associations may arise within the
context of a neuropathological disease process, such as MCI,
or in the case of the current study, HIV and/or high ELS
exposure.

Although RT-IIV is considered to be a strong indicator
of neural dysfunction, the exact neural underpinnings of
increased RT-IIV are unclear. For example, RT-IIV has been
linked to frontal lobe activation (Bellgrove et al., 2004),
activation of the left anterior cingulate (Johnson et al., 2015),
frontal-lobe circuitry (Chuah et al., 2006), frontal-lobe white
matter hyperintensity burden (Bunce et al., 2007), widespread
white matter integrity (Fjell et al., 2011), dopamine-mediated
neurotransmission (MacDonald et al., 2006; Grant et al., 2014),
and default mode network suppression (Weissman et al., 2006;
Kelly et al., 2008). Such findings suggest that the neural
etiology of elevated RT-IIV may be multifactorial. In this
context, our observation of significant associations between
elevated RT-IIV and global gray and white matter volumes is
consistent with the proposition that RT-IIV is a marker of overall
neurological integrity. It has not yet been determined whether

ELS exposure potentiates HIV-related neural abnormalities or
whether it is associated with independent pathophysiological
mechanisms (Womersley et al., 2017). Hence, our findings
provide foundational evidence for future investigations that
seek to examine specific ELS-related and HIV-related neural
mechanisms underlying RT-IIV elevations in HIV+ High-ELS
adults. With prior reports of ELS-related abnormalities in default
mode network suppression (Philip et al., 2013), and HIV-
related frontostriatal (Melrose et al., 2008; Ipser et al., 2015),
dopaminergic (Berger et al., 1994; Kumar et al., 2009), and white
matter abnormalities (Pomara et al., 2001; Tate et al., 2011;
Robinson-Papp et al., 2017), several neural mechanisms could be
implicated.

Some limitations of this study should be noted, with
implications for future research. Although our sample size was
on par with prior behavioral studies of RT-IIV in HIV+ samples
(Levine et al., 2006; Ettenhofer et al., 2010), the size of our groups
was somewhat small for a volumetric MRI study. Nevertheless,
we were able to detect ELS-related differences in gray and white
matter volumes, as well as associations between RT-IIV and
brain volume reductions in the High-ELS sample. Replication
of our findings in larger samples, which offer greater statistical
power and the ability to further examine the effects of potential
moderating factors (e.g., age, gender), would provide additional
certainty regarding the reported observations. Similarly, studies
that compare HIV+ to HIV− adults are needed to elucidate
potential independent and combined effects of HIV infection and
high ELS on the observed outcomes. Second, this study did not
include a full neuropsychological battery, and it was thus not
possible to test whether our RT-IIV measure strongly reflects
cognitive function, as indicated by objective measures. Prior data,
which point to a strong association between global cognitive
impairment and RT-IIV in HIV+ adults (Ettenhofer et al., 2010),
support our use of RT-IIV as a cognitive measure. Moreover,
our observation of a significant association between RT-IIV and
subjective ratings of cognitive function provides further evidence
of its validity as a cognitive marker.

CONCLUSION

We report that HIV+ High-ELS adults demonstrate greater
cognitive difficulties (RT-IIV), greater neuropsychiatric
symptoms, and reduced global brain volumes relative to
those with Low-ELS. Moreover, we report that, in HIV+
High-ELS adults, ELS-related cognitive difficulties (RT-IIV)
exhibit strong associations with global brain volumes, whereas
ELS-related elevations in neuropsychiatric symptoms appear
to contribute minimally to these cognitive difficulties. Such
findings add to a rapidly expanding literature indicating that
early environmental experiences can have long-term effects on
the structure and function of the human brain (McEwen, 2008;
Clark et al., 2012, 2017; Philip et al., 2013; Spies et al., 2016;
Teicher and Samson, 2016; Thames et al., 2017). Future studies
should thus be conducted to better understand how ELS-related
pathophysiological mechanisms contribute to the development
of volumetric and other neural abnormalities in HIV+ adults.
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Such studies have the potential to provide greater insights into
possible targets for therapeutic intervention.
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