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Bipolar disorder (BD) is a severe psychiatric illness with a consistent genetic influence,
involving complex interactions between numerous genes and environmental factors.
Immediate early genes (IEGs) are activated in the brain in response to environmental
stimuli, such as stress. The potential to translate environmental stimuli into long-term
changes in brain has led to increased interest in a potential role for these genes
influencing risk for psychiatric disorders. Our recent finding using network-based
approach has shown that the regulatory unit of early growth response gene 3 (EGR3)
of IEGs family was robustly repressed in postmortem prefrontal cortex of BD patients.
As a central transcription factor, EGR3 regulates an array of target genes that mediate
critical neurobiological processes such as synaptic plasticity, memory and cognition.
Considering that EGR3 expression is induced by brain-derived neurotrophic factor
(BDNF) that has been consistently related to BD pathophysiology, we suggest a link
between BDNF and EGR3 and their potential role in BD. A growing body of data
from our group and others has shown that peripheral BDNF levels are reduced during
mood episodes and also with illness progression. In this same vein, BDNF has been
proposed as an important growth factor in the impaired cellular resilience related to BD.
Taken together with the fact that EGR3 regulates the expression of the neurotrophin
receptor p75NTR and may also indirectly induce BDNF expression, here we propose a
feed-forward gene regulatory network involving EGR3 and BDNF and its potential role
in BD.

Keywords: immediate early genes, early growth response gene 3 (EGR3), brain-derived neurotrophic factor
(BDNF), bipolar disorder, neuroplasticity, regulatory network

Bipolar disorder (BD) is a chronic and potentially severe and disabling mental illness that affects
between 1% and 3% of the population worldwide (Merikangas et al., 2011), and is characterized
by episodes of mania and depression. Studies evaluating concordance rates between monozygotic
twins indicate that 40%–70% of risk for BD is genetically determined (Kieseppa et al., 2004;
Craddock and Sklar, 2013). BD is likely influenced by numerous genes, which may individually
contribute only a small risk for the disorder but may interact at the gene-network level and respond
to environmental stimuli in a complex interaction.

In addition to the genetic contribution to BD, environment influences (Schmitt et al., 2014;
Aldinger and Schulze, 2017) risk through both stressors and protective factors, such as childhood
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trauma and level of maternal care (Champagne and Curley, 2009;
Jansen et al., 2016; Aldinger and Schulze, 2017). The impact
that environmental has on the clinical BD course (Aldinger
and Schulze, 2017) suggests a potential role for genes that are
involved in the response and adaptation to stress. This capacity of
immediate early genes (IEGs) to translate environmental stimuli
into long-term alterations in the brain makes this class of genes
of great interest to the field of psychiatry.

IMMEDIATE EARLY GENES AND
PSYCHIATRY

IEGs are a class of genes rapidly and transiently activated in
response to a wide range of environmental stimuli (Senba and
Ueyama, 1997). Many IEGs encode transcription factors, which
regulate downstream target genes that presumably mediate their
roles in neurobiological processes including synaptic plasticity
and memory formation (Gallitano-Mendel et al., 2007; Poirier
et al., 2008; Pérez-Cadahía et al., 2011). Early growth response
(EGR) proteins are a family of IEG-encoded transcription factors:
EGR1, EGR2, EGR3 and EGR4 (Beckmann and Wilce, 1997;
Pérez-Cadahía et al., 2011). EGRs could translate environmental
influence into long-term changes in the brain and thus contribute
to neuronal plasticity, which has driven to the hypothesis
that dysfunction in EGRs may be implicated in both the
genetic and environmental involvement on psychiatric disorders
susceptibility (Moises et al., 2002; Hanson and Gottesman, 2005;
Gallitano et al., 2012; Huentelman et al., 2015).

Studies investigating the potential role of EGR family
genes on risk for psychiatric disorders have focused most
on the schizophrenia; the most positive findings have
been on early growth response gene 3 (EGR3). Single
nucleotide polymorphisms (SNPs) in EGR3 are associated
with schizophrenia (Kim S. H. et al., 2010; Zhang et al., 2012;
Huentelman et al., 2015), and EGR3 mRNA expression is
decreased in the postmortem brains of schizophrenia patients
compared with controls (Mexal et al., 2005; Yamada et al.,
2007). Furthermore, a bioinformatics analysis of the network
of transcription factors and microRNAs associated with
schizophrenia indicated EGR3 as a central gene in this regulatory
network (Guo et al., 2010).

Regarding a potential role for EGRs in BD, a study focused
on association of genes related to circadian rhythms with BD
found a nominally significant association for EGR3 (Mansour
et al., 2009). A family-based association study, although limited
by small sample size, also showed a nominal and preliminary
association of EGR3 with risk for BD in children (Gallitano
et al., 2012), suggesting this gene as a target for subsequent
larger follow-up evaluation. Our recent study using a network-
based approach showed that the regulatory unit of EGR3 was
robustly reduced in both of the two independent bipolar gene
expression signatures examined from postmortem prefrontal
cortex (Pfaffenseller et al., 2016), suggesting the entire network
centered on EGR3might be dysregulated in BD.

Interestingly, EGR3-deficient mice, knockout animals
generated by targeted mutagenesis in embryonic stem
cells (Tourtellotte and Milbrandt, 1998) and thus lacking

functional EGR3 in all cells throughout development, show
both physiologic and behavioral changes that corroborate with
models in psychiatry. Such alterations involve a heightened
stress-reactivity (indicated by both an increased behavioral
response and elevated corticosterone release following handling,
a mild stressor test), hyperactivity in the locomotor activity test
(indicating a psychosis-like phenotype), disrupted habituation to
environmental stimuli and social cues and increased aggressive
behavior toward an unfamiliar animal (Gallitano-Mendel et al.,
2007, 2008). These observations suggest that EGR3 may be
involved in biological mechanisms needed to an appropriate
response to stress that possibly are dysfunctional in BD.
Psychosis-like phenotypes and hyperactivity observed in these
EGR3-deficient mice could be reversed with antipsychotic
drugs used in treatment of psychiatric disorders, providing an
additional support for these findings (Gallitano-Mendel et al.,
2008; Williams et al., 2012).

In this scenario, a recent study showed that EGR3 seems
to play an essential role in the susceptibility to stress since it
was related to dendritic atrophy in nucleus accumbens medium
spiny neurons in mice susceptible to the social defeat stress
model, and EGR3 knockdown inhibited this dendritic atrophy
(Francis et al., 2017). The authors suggest that these alterations
in dendritic structure mediated by EGR3 could be responsible for
loss in the total number of synapses and consequently reduction
in the excitatory transmission observed in these defeated mice.
This molecular mechanism mediated by EGR3 could reinforce
its role in regulating homeostasis and cellular adaptations
possibly underlying stress-induced behavior, which highlight the
relevance in studying this transcription factor in psychiatry.

EARLY GROWTH RESPONSE 3 PATHWAY

EGR genes are expressed at basal levels throughout the brain,
such as the cortex, the hippocampus and the basal ganglia
as observed in animal studies (Senba and Ueyama, 1997).
EGR3 expression is rapidly induced at high levels in response to
environmental alterations, including stressful stimuli and sleep
deprivation (Honkaniemi et al., 2000; Thompson et al., 2010;
Maple et al., 2015).

The EGR3 expression in neurons is regulated by synaptic
activity and is mediated by MAPK-ERK signaling (O’Donovan
et al., 1999; Li et al., 2007). Studies have improved the
understanding about the signaling cascade that leads to
EGR3 expression. EGR3 is induced downstream of numerous
proteins, comprising neuregulin 1 (NRG1), calcineurin (CaN),
N-methyl-D-aspartate (NMDA) receptors and neurotrophins
such as brain-derived neurotrophic factor (BDNF) and nerve
growth factor (NGF; Yamagata et al., 1994; Hippenmeyer et al.,
2002; Roberts et al., 2006; Yamada et al., 2007; Eldredge et al.,
2008).

As a transcription factor, EGR3 could, in turn, activate
numerous downstream targets that participate in processes
such as synaptic plasticity, axon and dendrites extension and
modulation of receptors. Experimental studies have identified
effects of EGR3 on NMDA receptors (NMDAR; Gallitano-
Mendel et al., 2007), type A gamma amino butyric acid
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(GABA) receptors (Roberts et al., 2006), and NGF receptors
(p75NTR, Gao et al., 2007). EGR3 also regulates Arc (activity
regulated cytoskeletal associated gene; Li et al., 2005), which
modifies synapses in response to environmental stimuli, and
genes involved in the development and branching of axons and
dendrites (Quach et al., 2013). Moreover, it may modulate genes
involved in microglia dysregulation such as triggering receptor
expressed on myeloid cells 1 (TREM-1, Weigelt et al., 2011).
Thus, requirement for EGR3 in processes of memory, learning
and neuroplasticity (Gallitano-Mendel et al., 2007; Li et al., 2007)
is presumably to be determined by these and possibly other
EGR3 target genes not yet identified (Figure 1).

BRAIN-DERIVED NEUROTROPHIC
FACTOR AND BIPOLAR DISORDER

BDNF is the most highly expressed neurotrophin in the CNS,
including brain regions associated with emotion modulation
and cognitive processing such as prefrontal cortex, amygdala
and hippocampus (Lu et al., 2005, 2014). In addition to its
expression in the brain, BDNF is also expressed in peripheral
tissues (Fujimura et al., 2002). BDNF plays a critical role in

neuronal survival and differentiation, dendritic arborization,
synaptic plasticity and also in complex process such as memory
consolidation and learning (Minichiello, 2009; Park and Poo,
2013; Lu et al., 2014). BNDF is one of the most extensively
investigated biomarkers in BD (Post, 2007; Grande et al., 2010).

Some studies have associated changes in peripheral BDNF
levels with BD state, suggesting that serum BDNF levels may
represent a potential biomarker of mood episodes. A study
by Cunha et al. (2006) reported that patients experiencing an
episode of either mania, hypomania, or depression had reduced
serum BDNF levels compared to euthymic patients, who had
BDNF levels similar to healthy subjects. Another study also
showed decreased BDNF levels in transformed lymphoblasts
from BD patients in comparison to controls (Tseng et al., 2008).
Subsequently, meta-analyses have supported that patients in
either a depressive or a manic state have lower blood levels
of BDNF than healthy individuals; and serum BDNF levels
in euthymic patients did not differ from those observed in
controls (Lin, 2009; Fernandes et al., 2011, 2014). A more
recent meta-analysis indicated that peripheral BDNF levels are
reduced in patients compared to healthy controls, regardless of
mood state (Munkholm et al., 2015). Considering central tissue,

FIGURE 1 | Representation of early growth response gene 3 (EGR3) signaling cascade in neurons, focused on brain-derived neurotrophic factor (BDNF) signaling
leading to EGR3 expression. EGR3 is activated downstream of numerous proteins, including BDNF through binding to its receptor TrkB. In turn, EGR3 protein
activates numerous downstream target genes. Examples include: type A GABA receptor (GABRA), NGFR (p75NTR) receptor, the activity regulated cytoskeletal
associated gene (Arc) and triggering receptor expressed on myeloid cells 1 (TREM-1), as well as, though perhaps indirectly, NMDA receptor (NMDAR). These genes
are each involved in critical neurobiological processes such as neuroplasticity, memory and learning and adaptation to stress. It is important to note that EGR3 may
indirectly induce BDNF expression via regulation of NMDAR, the activation of which stimulates BDNF synthesis. Thus, we propose a feed-forward regulatory gene
network involving EGR3 and BDNF that regulates neuronal gene expression in response to endogenous or environmental stimuli which, when disrupted, may lead to
bipolar disorder (BD) pathophysiology.
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postmortem studies also have importantly reported alterations in
BDNF in BD. For instance, a meta-analysis using postmortem
findings from the Stanley Neuropathology Consortium found
lower hippocampus BDNF protein levels in BD (Knable et al.,
2004). Consistent with this analysis, recent studies have shown
that BDNFmRNAwas significantly reduced in the hippocampus
of BD patients compared to healthy subjects (Thompson Ray
et al., 2011; Reinhart et al., 2015). Decreased levels of BDNF have
been also found in frontal cortex (protein andmRNA; KimH.W.
et al., 2010) and in inferior and superior temporal gyrus (mRNA)
of BD patients (Ray et al., 2014).

Other studies suggest that BDNF may be associated with
illness progression. One report showed that BD patients in later
stages of the illness show decreased BDNF levels compared
to patients in earlier stages, even during euthymic periods
(Kauer-Sant’Anna et al., 2009). Moreover, serum BDNF levels
are inversely associated with both duration of illness (Kauer-
Sant’Anna et al., 2009) and with severity of manic and depressive
symptoms (Cunha et al., 2006). Overall the majority of studies
indicated that levels of this neurotrophic factor are reduced in
bipolar patients compared to controls.

Several studies have been performed to elucidate the
mechanisms involved in the presumed reduction in BDNF
levels in BD. Some of them have studied polymorphisms in the
BDNF gene such as the polymorphism involving a methionine
substitution for a valine at codon 66 (val66met) in the promoter
region of the gene. However, the findings regarding association
between the val66met polymorphism and BD are divergent (Sklar
et al., 2002; Neves-Pereira et al., 2005), which suggests that this
particular variant does not explain the altered BNDF levels in BD
(Post, 2007).

The apparent decrease in BDNF levels seen in patients would
be expected to result in disruption of the intracellular signaling
cascades that are normally regulated by BDNF, such as PLC/PKC,
PI3K/Akt and Ras/Erk pathways, interfering with processes
regulated by this neurotrophin, such as neuronal differentiation
and survival, and synaptic plasticity. In fact, BD has been
associated with changes in factors involved in neuroplasticity
and resilience pathways, including alterations in apoptotic
factors, synaptic markers, neurotrophic and inflammatory
factors and oxidative stress markers, as well as in processes
related to circadian rhythm, neuronal development and calcium
metabolism (Kim H. W. et al., 2010; Frey et al., 2013).

Neuropathological findings in the postmortem brains
of BD patients demonstrate the types of abnormalities in
neuroplasticity one would expect to see from a deficit in
neurotrophic factors. For example, morphometric studies
show that patients have enlarged third and lateral ventricles,
decreased volume of the orbital and medial prefrontal cortices,
ventral striatum and mesotemporal cortex and increased
volume of the amygdala compared to controls (Strakowski
et al., 2005). Interestingly, such neuroanatomical changes have
been found to be more pronounced in patients with multiple
mood episodes (Strakowski et al., 2002), suggesting that these
abnormalities may increase with severity of the illness (Fornito
et al., 2007; Berk et al., 2011). An effective neuroplasticity,
considered a cellular and molecular level of adaptation, is likely

necessary for the process of resilience, which involves a whole-
organism level response to events. Thus, the abnormalities
in neuroplasticity possibly translate into reduced resilience
related to recurrent mood episodes and illness progression,
which could reflect clinically in cognitive impairments in BD
patients. In fact, meta-analyses show that most patients exhibit
neurocognitive dysfunction, and the most impaired domains
are attention, verbal learning, memory and executive functions
(Robinson et al., 2006; Bourne et al., 2013; Bortolato et al.,
2015).

These findings support the ‘‘allostatic load’’ hypothesis that
we have previously described (Kapczinski et al., 2008). This
hypothesis asserts that the clinical BD course is determined
by a combination of the individual’s genetic makeup, history
of stressful life events and degree and duration of episodes of
mental illness. These factors are connected in a feedback loop
that worsens the patient’s degree of symptoms or overall life
function, leading to a progressive illness course associated with
biological and brain changes, and cognitive and functioning
impairment—hypothesis of BD neuroprogression (Berk, 2009;
Fries et al., 2012). Since stress plays an essential role in both the
onset and progression of BD, it is noteworthy that BDNF-related
neuroplasticity may be a crucial mediator of the effects of stress
on BD. Thus, we could assume that a possible dysfunction in
neurotrophin pathwaymight influence an increased vulnerability
of BD patients to stressful conditions.

LINK BETWEEN EARLY GROWTH
RESPONSE 3 AND BRAIN-DERIVED
NEUROTROPHIC FACTOR IN BIPOLAR
DISORDER

This perspective article presents an accumulation of findings
indicating that changes in BDNF are a consistent feature of BD,
and may contribute to the pathophysiology of this mental illness.
Here we summarize the potential molecular links between BDNF
and the IEG transcription factor EGR3, two molecules that may
each play a critical role in the impaired cellular resilience related
to BD (Manji et al., 2003; Berk et al., 2011; Pfaffenseller et al.,
2016).

As we have discussed, BDNF is reported to be altered in BD
in both peripheral and central tissue, and it is possible that blood
BDNF levels correlate positively with brain BDNF levels (Klein
et al., 2011). Thus, presuming that the reduced peripheral BDNF
levels observed in BD patients accurately reflect levels in the
brain, and considering that BDNF may induce EGR3 expression
via PKC/MAPK dependent pathway (Roberts et al., 2006), the
decreased levels of BDNF may account, at least in part, for
the prefrontal cortex EGR3 repression that we identified in BD
(Pfaffenseller et al., 2016).

Alternatively, or in addition, EGR3 may indirectly induce
BDNF expression via regulation of NMDAR. In mice, EGR3 has
been shown to be required for the function of NR2B-containing
NMDARs (Gallitano-Mendel et al., 2007). A study has shown
that the majority of NMDAR protein levels (NR1 subunits) in rat
cortical neurons are regulated by the transcription factors CREB
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and EGR3 (Kim et al., 2012), and NMDAR activation stimulates
BDNF synthesis (Marini et al., 1998). It is noteworthy that
NMDARs have a critical role for memory processes involving
long-term potentiation (LTP) and long-term depression (LTD;
Bliss and Collingridge, 1993; Collingridge and Bliss, 1995), and it
has been demonstrated that BDNF as well as EGR3 participates
in LTP and LTD processes. For example, the administration
of exogenous BDNF to mice deficient for BDNF restores the
impairment in LTP (Patterson et al., 2001). Mice deficient for
EGR3 have deficits in hippocampal LTD and exhibit dysfunction
in NMDAR subclasses (NR1/NR2B; Gallitano-Mendel et al.,
2007). Thus, dysfunction in signaling pathways involving both
BDNF and EGR3 may underlie the cognitive impairment shown
by BD patients.

In addition, EGR3 also regulates the expression of NGFR
(p75NTR, Gao et al., 2007), a receptor for neurotrophins
involved in the control of axonal elongation, neuron survival
and differentiation (Dechant and Barde, 2002). Neurogenic

potential seems to be mediated by p75(NTR) and is greatly
enhanced in vitro after treatment with BDNF (Young et al., 2007),
indicating this EGR3-regulated mechanism integrate a relevant
pathway involved in neuroplasticity that likely correspond to
changes in BDNF levels in psychiatric conditions.

Taking this into account, we also suggest that
EGR3 repression seen in BD patients could be responsible
for the reduced BDNF levels associated to this illness. It is most
likely to think in a feedback network than in a cause-and-effect
relationship considering that EGR3 is responsive to BDNF and
regulates NMDAR, which transcription is also mediated by
BDNF through activation of the TrKB receptor and in turn
induce BDNF synthesis (Kim et al., 2012). Thus, we propose
a feed-forward regulatory gene network involving EGR3 and
BDNF (Figure 1) that may regulate biological mechanisms
to change neuronal expression according to endogenous or
environmental stimuli, and this process might potentially be
related to BD pathophysiology.

FIGURE 2 | Proposed link between BDNF and EGR3 and their potential role in BD. Lower BDNF levels observed in BD patients may influence the reduced
EGR3 levels seen in BD since BDNF regulates EGR3. EGR3 may also indirectly induce BDNF expression via regulation of NMDAR. Thus, we also suggest that
reduced EGR3 expression, as we have seen in BD patients in our study, could contribute to lower BDNF levels associated with this illness. Based on these findings,
we propose a feedback-loop reinforcing this dysfunctional pathway that could, in turn, impair neuroplasticity and resilience. This process may ultimately lead to
increased vulnerability to stress, and could result in alterations in several biological factors that contribute to BD, such as abnormal structural brain changes and the
associated cognitive and functional decline (a process called neuroprogression). The neural circuits additionally disrupted in this process could contribute to an
impaired neuroplasticity and resilience, increasing vulnerability to stress and mood episodes and reduced responsiveness to pharmacotherapy, thus perpetuating a
vicious cycle in illness progression.
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Altogether, the findings discussed in this article suggest a
potential regulatory pathway that possibly is disrupted in BD. For
many years, evidence has pointed to alterations in neurotrophic
factors in BD suggesting these changes could contribute
to an impaired neuroplasticity and resilience. However, the
mechanisms underlying this impairment remain unknown.
The identified network focused on EGR3 thus emerges as
a potential central player responsible for some of changes
observed in BD such as a reduced neurotrophic support. Taking
into consideration that EGR3 translates environmental events
into neural long-term alterations, the possible disturbance in
molecular pathways involving EGR3 could result in an impaired
response and adaptation to stress.

We suggest experimental approaches to test the hypothesis
regarding a potential feed-forward mechanism involving BDNF
and EGR3 and its role in BD, which might contribute to
understanding its pathophysiology. Moreover, as a central
transcription factor of a gene network that regulates crucial
neurobiological processes, EGR3 may be a promising
pharmacological target. Modulation of IEGs as EGR3 might
be beneficial since they could provide a dynamic and fast
response to neural activity and thus a sustained adaptation
through regulation of an entire regulatory gene network.

With this perspective, we propose that a reduction in
EGR3 in BD could contribute to alterations in a neurotrophin
cascade in this disorder, which includes reduced BDNF
levels. A feedback-loop reinforcing this dysfunctional

pathway could, in turn, impair neuroplasticity and resilience
(Figure 2). This process may ultimately lead to increased
vulnerability to stress, underlying the risk to develop the
symptoms and BD neuroprogression. Thus, we suggest an
interesting link between EGR3 and BDNF in BD, and this
shared biological pathway could provide potential targets
for follow-up studies to clarify mechanisms responsible
for the interaction between environment and genetic
factors that influence BD and for the development of novel
therapeutics.
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