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Structural Equation Models (SEM) is among of the most extensively applied statistical

techniques in the study of human behavior in the fields of Neuroscience and Cognitive

Neuroscience. This paper reviews the application of SEM to estimate functional and

effective connectivity models in work published since 2001. The articles analyzed were

compiled from Journal Citation Reports, PsycInfo, Pubmed, and Scopus, after searching

with the following keywords: fMRI, SEMs, and Connectivity.

Results: A 100 papers were found, of which 25 were rejected due to a lack of sufficient

data on basic aspects of the construction of SEM. The other 75 were included and

contained a total of 160 models to analyze, since most papers included more than one

model. The analysis of the explained variance (R2) of each model yields an effect of the

type of design used, the type of population studied, the type of study, the existence of

recursive effects in the model, and the number of paths defined in the model. Along

with these comments, a series of recommendations are included for the use of SEM to

estimate of functional and effective connectivity models.

Keywords: fMRI, structural equation models, functional connectivity, effective connectivity, cognitive

neuroscience

INTRODUCTION

Structural Equation Models (SEM) have been among the most extensively applied statistical
techniques in the scientific literature in the last 30 years. Since their first description (Jöreskog
and Sörbom, 1979, 1984), they have been widely used in both the social sciences and the health
sciences, and also in the study of human behavior based on the precepts of the wide domain
of Neuroscience and Cognitive Neuroscience and the latest contributions of Computational
Quantitative Neuroscience. It has been argued that the specification of a given structural model with
a theoretical basis allowed the estimated parameters to assume the effect of the impact of exogenous
variables on endogenous variables, which has more recently been referred to as neuroscience
hypothesis generation (Lange et al., 2013).We do not intend to offer a comprehensive description of
the properties and characteristics of SEMs, but the reader has an excellent base at their disposal on
Bollen and Scott-Long (1993), Brown (2006), Raykov andMarcoulides (2006), Byrne (2010), Everitt
and Hothorn (2011), or Kline (2011). Generally speaking, it is a multivariant technique intending
to estimate structural relations between latent variables generated from observable variables. Such
structural relations allow us to identify, through a system of simultaneous linear equations, whether
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one possible theoretical model can be confirmed through the
distributions observed in the variables involved in that model.
As for the papers on functional or structural connectivity with
an fMRI signal, this type of model allows us to identify the
relations and their statistical estimation among brain areas, both
in a resting state or upon a cognitive task.

All this has affected the approximations established through
SEM for the estimation of functional and effective brain
connectivity from a brain signal registered by increasing the
Bold (Blood Oxygen Level Dependent) signal under experimental
paradigms with cognitive content in fMRI (functional Magnetic
Resonance Image) situations (see the description by Price, 2012).
The use of SEM in this specific domain has been so important
that we feel the moment has come to assess the use made of
the technique for the study of brain connectivity. The earliest
relevant contributions to this subject can be found, mainly, in
the work by McIntosh, and Gonzalez-Lima (1991); McIntosh
and Gonzalez-Lima (1992), while certain guidelines appear in
McIntosh and Gonzalez-Lima (1994) for the use of SEM for
the estimation of brain connectivity. The latter paper defines
some interesting concepts. The basic conception lies in the fact
that their computation capacity allows us to identify cognitive
processes as a complex series of hierarchically organized
computational models. Evidently, this conception fits perfectly
with the statistical formulations of SEM. It is assumed, moreover,
that the processes analyzed are usually conceived as separable
and that the final cognitive process is defined by the adding
together of the partial processes. The above comments clearly
define the concept of functional connectivity, given that the
estimation of SEM is generated, in this case, without considering
the biological structure of the nervous system. Therefore, we
speak of functional connectivity to refer to statistical models
formulating stochastic structural relationships between specific
brain regions of interest (ROI’s) that show statistically significant
activity when facing certain cognitive content tasks. McIntosh
(1999) describes the following phases for estimating functional or
effective connectivity through SEM: (a) selecting regions or nodes
of the network driven by a combination of univariate analysis
of changes in signal (fMRI) intensity, multivariate analyses, and
theoretical guidance; (b) obtaining the anatomical model, that
is, clearly identifying the fact that the regions selected in the
previous stage are coherent with the functionality attributed to
the ROI selected; (c) calculating the interregional covariance or
correlations matrix from the fMRI data. These matrices can be
computed for an individual subject across tasks or across trials of
the same task; and finally (d) calculating the path coefficients and
comparison of functional models according to the characteristics
of the statistical estimation technique and the properties of the
distributions observed. The second of these phases deserves
special attention since today there is a certain balance between
several mechanisms for selecting ROIs to analyze. Currently, all
the possible effects that can be established between the ROIs
detected in previous univariate or multivariate analyses are often
specified. Occasionally, these effects have no neurofunctional
support and are justified solely by statistical effects. Accordingly,
the second phase becomes a mixture of known neurofunctional
effects and a certain exploration of effects based on previous

statistical significances. In fact, some authors have proposed
that ROI selection based only on statistical criteria can lead to
certain circular fallacies and to effect overestimation (Farràs-
Permanyer et al., 2015). A well-known example is the “double
dripping” effect, described by Kriegeskorte et al. (2009) which
occurs when orthogonal contrasts are not properly established in
the first phase of the statistical analysis that identified statistically
significant ROIs. In addition, questions associated with the ability
of correlations or covariance estimates to reveal connections
between brain regions remain unresolved in the sense that, as is
well-known, estimates of correlations are not usually taken into
account in this type of work (Marrelec et al., 2009; Vul et al.,
2009).

This initial guide to fitting SEM to the estimation of brain
connectivity has been complemented by many contributions,
especially statistical ones, which have led this topic toward
slightly more complex schemes of action (Penny et al., 2004; De
Marco et al., 2009; Kim and Horwitz, 2009; Penke and Deary,
2010; Rowe, 2010, or Schlösser et al., 2006). Likewise, some
alternatives to the general model of SEM have been developed,
as well as some occasional contributions which have generated
interesting statistical approximations to the study of connectivity.
Some of them are within the logic of SEM, like Unified Structural
Equation Models (uSEM) (Chen et al., 2011; Gates et al., 2011;
Gates and Molenaar, 2012; Moreira et al., 2016), which involves
estimating SEM parameters by means of a two-stage technique
(that propose a first step consisting in a reparameterization of
the originals structural parameters to avoid the collinearity effects
and a second step to estimate through Ordinary Least Square
the parameters free of this perturbation) and which proposes
the use of auto-regressive vectors; several choices of structure
and estimation like the Extended Unified Structural Equation
Models (euSEM) (Gates et al., 2010; Taylor et al., 2010), which
adds to uSEM the possibility to specify direct effects representing
the effect of manipulating stimuli in event-related designs, along
with the more recent scheme by Inman et al. (2012) or elements
connected with the circular complex analysis (Kriegeskorte et al.,
2010; Sato et al., 2014) which shows the most consolidated
phases in the generation of SEMs for the estimation of functional
connectivity today (Carp, 2012).

Structural Equation Models in fMRI
Complex Analysis
The SEMs applied in this field are based on the so-called type-III
models and are identified by the general expression

yt = βyt + ζt ,

where yt are the values of the ROIs selected, β the parameter
estimations, and ζt the structural errors associated with each
endogenous variable yt . Each ROI is the result of generating
a score (yt) for each brain volume. This score is calculated
through the regression equation established with the values of
the voxels which define it by means of a unidimensional principal
components analysis. In these terms, we should bear two aspects
in mind. Whatever the parameter estimation technique (usually
Maximum Likelihood ML), the statistical problem involves
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estimating the parameters of the β matrix that encompass
the effects between ROIs, and the ψ matrix’s parameters that
encompass the matrix of the variances/covariances between the
ζt structural errors, so that ψ = E(ζ ζ ′). The specific form
that β adopts derives from the aforementioned effects between
ROIs, and the form that ψ adopts summarizes the assumptions
specified according to the distributions of the structural errors.
Generally, the classical assumptions of SEM would involve the
initial assumption that E(ζ ζ ′) = E(ytζ

′) = 0 and, consequently,
the errors should be uncorrelated between themselves in relation
to the endogenous variables, except for the possibility that
the β matrix considers non-recursive effects (recursive models
imply that the connection between two ROIs can only go in
one direction, while non-recursive models facilitate reciprocal
connections between ROIs). Evidently, this enables the error
distribution to be independent of the β estimations. This
model also involves the assumption that the variables, i.e., the
values for each ROI, are observed continuous variables of a
multinormal distribution. The truth is that each value of yt
representing the fMRI of a ROI is estimated through Principal
Component Analyses (less often a peak voxel and averaging
within sphere approach is also used) according to the selection
of a specific number of voxels convoluting under a geometric
form (generally a sphere) defined around a voxel of maximum
statistical significance, univariate or multivariate, under the
statistical assumptions of the massive general linear model.
Therefore, every yt extracted could be considered a latent variable
(ηt) defined based on the actual observed values in each voxel and
estimated according to the type of design used (Block Design or
Event-Related Design) or in some cases, from a series of fMRI
data registered in a resting state paradigm.

This issue is rather controversial, and there has been
discussion about whether functional or effective connectivity is
established through Path Analysis (PA) for observable variables
and which does not allow non-recursive effects (reciprocal
influence between ROIs), or whether it is strict SEM with latent
variables (though not specified as such) and which allows non-
recursive effects. To clarify this matter, we should note that the
techniques based on PA only admit observable variables, whereas
SEM accept both observable and latent variables. Therefore, the
final scores of each ROI can be considered as latent. Thus,
complex SEM models are essential to the study of connectivity,
given that it would be sensible to include the existence of
reciprocal effects between ROIs and to estimate what Berry
(1984) called complete reciprocity models, that is, specifying all
the possible reciprocal effects between variables, or ROIs in this
case. This idea is indirectly repeated in the scheme by Inman et al.
(2012).

From the point of view of SEM, there are basically two possible
structures that can be submitted to an analysis to represent
connectivity models: non-recursive and recursive structures, in
the latter case either complete or incomplete. Figure 1 shows a
simple diagram (with only three ROIs) of both possibilities, with
an indication of the structural equations associated with each
model.

From this figure, it is inferred that the β matrix can adopt
several forms and that both the decomposition of effects and

FIGURE 1 | Different types of SEMs for the representation of functional

connectivity where every YI represents a ROI and with the specification of the

structural equations linked to every model and the specific form of the β matrix.

the resulting value of the estimations depend on it. Likewise, the
above comment on the E(ζ ζ ′)= 0 assumption yields aψ diagonal
matrix if assumed, or aψ symmetrical matrix if unassumed, given
that E(ζiζj) = E(ζjζi). Also, the β matrix can adopt a triangular
form in the recursive models or any form in the non-recursive
models, as long as the model identification problem is solved by
justifying that E(ζ ζ ′)= 0.
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These and other matters are not usually dealt with in papers
on connectivity and have been solved in different ways. In recent
years, many papers have been published in this field applying
different statistical approximations to the topic. Sometimes
they are not even mentioned, and sometimes the information
provided is only partial. The first consequence of this is an
extraordinary variety of approaches and statistical treatments,
a diversity which occasionally compromises the comparability
of results between papers and even a reasonable deduction
regarding the functional conception of connectivity. In fact,
SEMs present a series of restrictions that are linked to their own
statistical structure and that of the associated assumptions which,
in most of the fields in which they are applied, are ignored or,
at least, no evidence is provided to the contrary. For example, in
the field of Social Science and Health Science, in general, there
are no data that prove that the model’s assumption was complied
with: for instance, the distributions of the observed variables,
or the order or range conditions, especially in non-recursive
models where both conditions could be seriously compromised.
This is a situation that can be resolved by the appearance of
computer software (Amos, MPlus, or sem library of R), since it
incorporates several guarantees. However, little is said about it
in model presentations, just as little, or nothing at all, is said
of the statistical assumptions. For instance, as shown above,
assuming or not assuming that E(ζ ζ ′) = 0 leads us to a very
different consideration of the β matrix and of the possible effects
to assess. Some reviews have been published on this topic, so we
know a certain amount about the limitations of the concept of
functional or effective connectivity and its results in relation to its
neurobiological parallel. If we look at some papers (James et al.,
2009; McCormick et al., 2010; Bianchi et al., 2012; Deshpande
and Hu, 2012; Murray et al., 2012; Sawyer et al., 2012; Voineskos
et al., 2012; Yang et al., 2012; Bringmann et al., 2013) we find that
all of them account for the limits of the concept of connectivity,
of its possibilities in relation to effective connectivity, and the
derivatives obtained from using it from an applied perspective;
but little, if anything, is said about good practices in the use of
SEMs and their adaptations for the statistical estimation of brain
connectivity.

In view of all of the above, the present paper aims to
review the application of SEM for the estimation of connectivity
models in work published since 2001. By doing so, we mean
to establish the effect of several variables pertaining to studies
on connectivity with fMRI signal on the estimation of the R2

(Coefficient of Determination representing the proportion of
explained variance) each model presents. This way we intend to
break through in the systematization of some of the statistical
properties in their application and some of the characteristics
of SEMs in the field of Computational Neuroscience when
generating estimations that lead us to the consideration of
a globally-analyzed functioning brain, and when generating
models from complexity. At the moment we have no evidence of
the possible effect on R2 of variables like the type of design used,
the number of ROIs defined, the parameter estimation technique
used, or the type of sample analyzed, among others. We also aim
to offer some recommendations to future users of SEM in this
field in order to generate, in the near future, a good mechanism

for comparing the results for functional or effective connectivity
obtained in different studies.

MATERIALS AND METHODS

Search for Studies
To be included in the present meta-analysis, the articles had to
comply with the following criteria: (a) they had to be original
fMRI papers approaching a topic of brain connectivity using a
data analysis technique directly related to SEM (so we selected
all the papers whose data had been analyzed through SEM, PA,
uSEM, and euSEM; (b) each model had to be estimated in a
different group or sample, so that even if one paper presented
multiple models, each one would be estimated in different
samples; (c) they had to have been published between 2001 and
2016; (d) they had to be indexed in Journal Citation Reports,
PsycInfo, Pubmed, or Scopus; and (e) they had to explicitly offer
β matrix standardized parameter values for each model analyzed
and the initial matrix R (Correlation Matrix) or S (Covariance-
Variance Matrix) (some authors kindly provided us with this
information, since it did not appear in the original published
papers). The search for papers was conducted by means of
a Boolean algorithm using the following keywords: “fMRI,”
“Structural Equation Models,” and “Connectivity.” Studies listed
in more than one of the aforementioned sources were not
duplicated. With the general selection of the aforementioned
keywords, we found 100 papers, 25 of which were rejected
due to a lack of sufficient data on basic matters regarding the
construction of SEM such as, for example, presenting the values
of the specific parameters or not offering multiple equation
models, using uni-equation models similar to multiple regression
models. Eventually, after two independent reviews of this process,
75 papers were included (available in Data Sheet 1 of the
Supplementary Material) containing a total of 160 models to
analyze, given that most of them included more than one model
(M= 1.47; SD= 1.06), ranging between one and eightmodels per
paper]. The process of including and excluding papers is shown
in Figure 2.

Coding of the Variables
To each of the papers selected, we applied a template with
which we obtained the values of the different variables assessed
in this study by two independent researchers. As has just
been mentioned, it should be noted that the majority of
papers included more than one structural model, so the data
were generated one model at a time; therefore, the number
of models is much higher than the number of selected
articles. For each model, we registered the variables listed in
Tables 1, 2.

Calculating the R2 as Effect Size
As mentioned, in each of the structural models selected, we
identified the R2-value. In some cases the papers did not report
this value explicitly but included the values of the initial R or S
matrix (R is the input correlation matrix and S is the variance-
covariance matrix, both as possible inputs data) and the structure
and values of the β matrix; in these cases we estimated R2 from
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FIGURE 2 | Flow Chart of the bibliography search.

the available values. In other cases, the contact authors sent us the
information mentioned. Following the classical general scheme,
and using the classical LISREL notation:

Y = βY + ζ ,

where Y is the matrix of values of specific ROIs, β is the
matrix of the effects between ROIs, and ζ is the vector of errors
associated with each ROI. It should be noted that the estimations
of the βij free parameters respond to the so-called path-rule,
so that each of the coefficients of correlation between ROIs is
decomposed according to the effects established between them
in the Structural Model specified. Therefore, the fitting system
of a structural model like the one presented here responds to a
component of the Σ partitioned matrix that can be represented
as follows:

Σ = E(YY ′) = E[(βY + ζ )(βY + ζ )′],

one of the basic expressions in the fit of SEMs, so each r original
correlation is compared to the r∗ reproduced value derived from
Σ . So each residual is estimated by means of (r − r∗), which are
evaluated through a χ2-test of fit (depending on the parameter

estimation technique used). Accordingly, the residuals can be
defined by means of (R-Σ) and therefore

Residuals = (R−Σ) = R− {E[(βY + ζ )(βY + ζ )′]}.

An essential aspect to bear in mind in models of this type is the
possibility of all the structural errors being either correlated or
uncorrelated. The SEM general scheme requires that if E(ζ ζ ′)
6= 0, then the specification possibilities of the β matrix
become restricted; whereas if we assume that E(ζ ζ ′) = 0 and,
therefore, the structural errors are uncorrelated, β can adopt
several forms and assume non-recursive effects—which, in the
case of functional connectivity, is essential. On the other hand,
whatever the structure of the β matrix, it does not consider
the specification of free parameters in the principal diagonal,
so it is assumed that the βii-values are fixed. This is one of the
aspects that presents statistical differences with regard to the
effective connectivity models based on Dynamic Causal Models.
So, if we assume, as is usual in these models, that E(ζ ζ ′) = 0
and, by extension, that E(βζ ′) = 0, the above expression can be
rearranged so that

Residuals = R− E(ββ ′),
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TABLE 1 | List of categorical variables according to their characteristics and

codifications.

Variables Variable’s

consideration

Year of publication (2001–2013) Context

Journal Description

Technique used (SEM, PA, uSEM, euSEM) Methodological

SEM: Structural Equation Model

PA: Path Analysis

uSEM: Unified SEM

euSEM: Extended Unified SEM

Type of design (Box Car one group, Box car two groups, Box

car more than two groups, Simple event related, Complex

event related, Conjunction design, and Resting state

paradigm)

Methodological

Note: Except for the resting state situation, the rest of designs

must include some kind of periodical cognitive stimulus.

Resting state designs do not include any kind of stimulus

Strategy of Comparisons (Between Subjects, Between

Groups, Between Tasks, and Factorial Task, and groups)

Methodological

Type of population studied (Healthy/Normal, Clinical, Both,

and Simulation study)

Methodological

Kind of study (Data driven, Hypothesis driven, and Both) Methodological

Recursive effects (Yes or No) Methodological

Estimation technique (ML, WLS, Bootstrap, and Others, No

information)

Methodological

Multinormality analysis (Yes or No information) Methodological

Matrix analyzed (Correlation, Covariance, or No information) Methodological

Conditions studied (Well-conditioned or No information) Methodological

p-value associated to Chi Square (Inferior to 0.10 or Superior

or equal to 0.10)

Methodological

Other fit indexes reported as Comparative Fit Index, Bentler

Bonnet Fit Index, Akaike Criteria, etc. (Yes or No)

Methodological

thus obtaining the expression of the reproduced matrix Σ as
follows:

6 = E(ββ
′
).

Therefore, the estimation of R2 for each model was obtained by
calculating the proportion of variance explained by the following
simple calculation, standardizing all the values of the initial
var-covar matrix (S)

R2 = tr(6)/tr(R).

We consider this to be a robust indicator of the effect between
ROIs and therefore available for use as an effect size estimator
(Vesterinen et al., 2014). Finally, in the models that do not
include the p-value associated with the χ2 contrast of fit, this
value was reproduced based on the distribution model and the
degrees of freedom reported for each model analyzed.

Statistical Analysis
Finally, these values were analyzed following the scheme used
by Redondo et al. (2002) adapted to our main objective, with

TABLE 2 | List of quantitative variables according to their characteristics and

codifications.

Variables Variable’s

consideration

Total sample size Methodological

Clinical sample size Methodological

Healthy sample size Methodological

Number of brain areas analyzed Substantive

Number of defined paths Methodological

Chi square value Methodological

p-value of chi square Methodological

Coefficient of Determination (R2) Outcome

the exception that, in our case, we eventually opted for a
random-effect model, given the high variability of the observed
distributions of the parameters considered as effect sizes. All
the analyses were conducted with the IBM-SPSS software,
version 23.0, and with some of the R software routines—
more specifically, the Meta library (Schwarzer, 2013) and Mplus
version 7.4.

RESULTS

Several different phases of result analysis were carried out due to
the amount of variables and data evaluated. First we described all
the variables evaluated and, based on these results we selected the
ones that provided relevant data. Then, we analyzed inferentially
the effect of each variable on the values of the outcome variables
defined.

Description of the Results of Each Model
Analyzed
Tables 3, 4 show the values of observed distributions for each
variable according to the lists in Tables 1, 2 above.

As can be observed in the above tables, the SEMs studied
present some interesting characteristics in accordance with
the Carp structure (2012). If we try to define a prototypical
SEM model for the study of functional connectivity, it would
appear in a paper published between 2009 and 2012 (77
models, representing 48.1% of the total studied), published
in the journals NeuroImage or Human Brain Mapping (83
models, i.e., 51.9%), based on the type-III SEM general model
(135 models, i.e., 84.4%), extracting the ROIs after a cognitive
paradigm based on a block design (Box-Car) or on some of its
modifications (128 models, accounting for 80.0%), and which
rarely use complete factorial designs (only 30 models, 18.8%
of the total). It would be a SEM generated with real samples
(only 5% simulate data), and the model specification would
as likely come from statistical significances (66 models used a
Data-Driven strategy, i.e., 41.3%) as from hypotheses with a
neurobiological basis (63 models used that strategy, i.e., 39.4%).
The parameter estimations would have been conducted through
ML (114 models, 71.3%), and we would have no information on
whether the study complies with the condition of application
of multinormality for SEM (142 models offer no data on this
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TABLE 3 | Statistical descriptives of qualitative variables.

Variables Number of models Percentage

YEAR OF PUBLICATION

2001 2 1.25

2002 3 1.88

2003 4 2.50

2004 12 7.50

2005 5 3.13

2006 12 7.50

2007 14 8.75

2008 5 3.13

2009 22 13.75

2010 20 12.50

2011 21 13.13

2012 14 8.75

2013 7 4.38

2014 8 5.00

2015 6 3.72

2016 5 3.13

JOURNAL

NeuroImage 57 35.6

Human Brain Mapping 26 16.3

Brain 8 5.0

Journal of International

Neuropsychological Society

8 5.0

Biological Psychiatry 7 4.4

Neuropsychologia 7 4.4

Neurocase 6 3.8

Psychiatry Investigation 6 3.8

Neuroscience 5 3.0

Brain & Language 4 2.5

Cognitive Brain Research 4 2.5

The Journal of Pain 4 2.5

Brain Research 3 1.8

PLoS ONE 3 1.8

Brain and Cognition 2 1.3

Cortex 2 1.3

Experimental Neurology 2 1.3

Neurobiology of Learning and

Memory

2 1.3

Archives of General Psychiatry 1 0.6

Cerebral Cortex 1 0.6

Frontiers in Systems Neuroscience 1 0.6

The Journal of Neuroscience 1 0.6

TECHNIQUE USED**

SEM 135 84.4

Path Analysis 14 8.8

Unified SEM 2 1.3

Extended unified SEM 9 5.5

TYPE OF DESIGN

Box car one group 79 50.6

Box car two groups 43 27.6

Box car more than two groups 6 3.8

Simple event related 11 7.1

Complex event related 6 3.8

(Continued)

TABLE 3 | Continued

Variables Number of models Percentage

Conjunction design 1 0.7

Resting state 10 6.4

STRATEGY OF COMPARISONS

Between Subjects 19 11.9

Between Groups 27 16.9

Between Tasks 84 52.4

Factorial Task and groups 30 18.8

TYPE OF POPULATION STUDIED

Healthy/Normal 87 54.4

Clinical 23 14.4

Both 42 26.3

Simulation study* 8 5.0

KIND OF STUDY

Data driven 66 41.2

Hypothesis driven 63 39.4

Both 31 19.4

NON-RECURSIVE EFFECTS

Yes 76 47.5

No 84 52.5

ESTIMATION TECHNIQUE**

ML (Maximum Likelihood) 114 71.3

WLS (Weighted Least Squares) 7 4.4

Bootstrap 1 0.6

Others 1 0.6

No information 37 23.1

MULTINORMALITY ANALYSIS**

Yes 18 11.3

No information 142 88.7

MATRIX ANALYZED**

Correlation 22 13.8

Covariance 134 83.7

No information 4 2.5

CONDITIONS STUDIED**

Well-conditioned 18 11.3

No information 142 88.7

P-VALUE ASSOCIATED TO CHI SQUARE

Inferior to 0.10 37 42.0

Superior or equal to 0.10 51 58.0

DETERMINATION COEFFICIENT**

Yes 4 2.5

No information 156 97.5

OTHER FIT INDEXES REPORTED**

Yes 124 77.5

No 36 22.5

*This category was eliminated in the posterior inferential analyses due to low frequency.

**These variables were eliminated in the inferential posterior analysis due to asymmetrical

and low informative observed distributions.

aspect, i.e., 88.8%). The initial solution in the estimation process
would stem from amatrix (S) of second-order centeredmoments.
We would have no data on whether the study complies with
the conditions of application of SEM (for example, range or
order) given that 142 models offer no data on this (88.8% of
the total analyzed). Additionally, from Table 4 we could infer
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TABLE 4 | Statistical descriptive of quantitative variables.

Variables Number of models Mean Standard deviation Standard error Range

Total sample size 158 25.01 36.655 2.916 1–336

Clinical sample size 65 17.38 12.985 1.541 2–46

Healthy sample size 135 20.13 38.616 3.324 1–336

Number of brain areas analyzed 160 6.72 3.499 0.277 3–18

Number of defined paths 145 10.65 9.311 0.773 1–57

Chi square value 85 50.18 162.872 17.666 0.05–795.58

p-value of chi square 88 0.336 0.361 0.039 0–0.999

R2-value 160 0.341 0.212 0.020 0.11–0.84

that the general sample would comprise about 25 subjects (±
36.65), which implies a very wide variability in the sample
sizes used and which, in mean values, is slightly above Friston’s
recommendation (Friston, 2012)—around 16 subjects per group
analyzed, disregarding some recent clarifications on this topic
(Lindquist et al., 2013). Moreover, the specific model would
include around 6 or 7 ROIs (±3.499) and between 10 and
11 effects would have been specified (±9.311). Both results
indicate a very high variability, which implies dispersion in the
formulations and, given that we can expect many more effects
specified than the number of ROIs involved, recursive effects
would come as no surprise. As regards the fit data, we would
have the usual indexes of fit in SEM, like the Goodness of Fit
Index (GFI), or the Adjusted Goodness of Fit Index (AGFI), or
the Comparative Fit Index (CFI) or the Akaike Criteria (AIC), or
the Bayesian Criteria (BIC) amongmany others (124models offer
this type of information, 77.5%). Likewise, we would obtain some
evidence of the global fit since the p-value associated with χ2

would be>0.10 (51 models offer this fit, which means 58% of the
88 models with this information and represent 31,9% of the totals
of the analyzedmodels); although it would not be unusual to have
SEM models with p-values associated with χ2 below the usual
criterion, as this is perfectly comparable to the majority of SEM
published in other fields. It is unusual to show the percentage of
variance explained (R2) by the model (only 2.5% of the models
analyzed offer this information) and the χ2-values offered would
have a mean value of 50.18 (±162.87), which shows a very high
variability and low consistency. From the above, only four of the
total of 160models include the explicit value of R2 associated with
eachmodel; in the other 156models the value of R2 was estimated
from the procedure discussed above.

Finally, in this case, the estimates of R2 in each model can
be considered independent of the sample size used since the
sample estimates of R (S) and that of Σ do not depend on
this value. In the same way, we can assume that the individual
estimate of R2 is equal to the common weighted estimate since
the estimation procedure was applied equally in all the models,
thus guaranteeing the homogeneity of R2 in all the models
studied.

Effects of the Moderator Variables on the
R2-Value
For this section, we decided to use the estimations derived
from the fit of a General Linear Model, as is usual in classical

meta-analyses, in order to establish the differential effects
between each of the categories of the moderating variables
used, or to estimate the correlations between the distributions
of the quantitative moderating variables. In both cases, the
corresponding parameters were estimated through ANOVA for
the categorical variables and through Linear Regression for the
quantitative variables.

As is well-known, estimations of effect size in any meta-
analysis are subject to several perverse effects whichmay generate
bias in the process: in this case, the estimation of R2 in each of
the models which did not report it (i.e., 154 of the 160 studied).
Some of the usual problems are related to the different number
of variables (ROIs) involved in each model and dissimilar sample
sizes. In line with Cheung (2015), we approached these two issues
based on the conceptions of the SEMs for the study of meta-
analyses (Meta-Analysis Structural Equation Models, MASEM).

In this case, we applied the strategy described by Cheung
(2015), using SEMs to estimate the homogeneity of effect sizes (Q
index) and the percentage of variation attributable to the models
analyzed (I2 index). To estimate both indicators, we used the
following expressions:

Q = kσ̂ 2
ẽi
,

where σ̂ 2
ẽi

=
∑k

i=1

(

ỹi −
√
wi β̂F

)2

k
, which involves the

estimation of the error variance ẽi in the k models, using (k)
instead of (k − 1) for a better adjustment to the demands of
the maximum likelihood estimations (ML) and following a χ2

distribution. Along with this premise, the estimation of I2 was
conducted with the simple expression

I2 = 1− k− 1

Q

Both values showed the heterogeneity of the effect sizes (Q2 =
1032.46; df = 160; p < 0.001) and the variation can be explained
by the effects between models rather than by intra variability (I2

= 0.846). In the light of these results we estimated the effects
corresponding to each moderator variable by means of Mplus
(MASEM). Tables 5, 6 summarize the information from both
analyses with specification of the βij parameters (impact of each
variable on R2) for each variable or category, depending on the
case.
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TABLE 5 | Effects in value R2 for qualitative moderators.

Variables k βij SEβ p-value 95% confidence interval of βij η2
partial

Lower limit Upper Limit

TYPE OF DESIGN

Box car one group 56 0.824 0.084 <0.001 0.657 0.991 0.462

Box car more than one group 34 1.100 0.108 <0.001 0.885 1.314 0.482

Event related 15 0.965 0.163 <0.001 0.642 1.288 0.240

Resting state 10 0.589 0.200 0.004 0.193 0.985 0.073

COMPARISON

Subjects 17 0.594 0.153 <0.001 0.292 0.897 0.116

Groups 21 0.925 0.137 <0.001 0.653 1.197 0.283

Task 61 0.907 0.081 <0.001 0.748 1.067 0.524

Task and groups 20 1.049 0.141 <0.001 0.770 1.327 0.325

TYPE OF POPULATION STUDIED

Healthy/Normal 62 0.844 0.083 <0.001 0.680 1.009 0.488

Clinical 17 0.757 0.159 <0.001 0.442 1.072 0.174

Both 32 1.050 0.116 <0.001 0.820 1.280 0.432

KIND OF STUDY

Data driven 50 0.866 0.089 <0.001 0.689 1.043 0.448

Hypothesis driven 46 0.810 0.093 <0.001 0.626 0.995 0.395

Both 23 1.098 0.132 <0.001 0.837 1.359 0.375

RECURSIVE EFFECTS

Yes 64 0.844 0.080 <0.001 0.687 1.002 0.491

No 55 0.942 0.086 <0.001 0.772 1.112 0.508

P–VALUE ASSOCIATED TO CHI SQUARE

Inferior to 0.10 27 0.949 0.131 <0.001 0.687 1.212 0.445

Superior or equal to 0.10 40 0.961 0.108 <0.001 0.745 1.177 0.549

k, number of models for each category; β, estimation parameter for each effect; SEβ , Standard Error of the parameter; p, p-value associated to the parameter significance; η2partial , β

parameter effect size.

TABLE 6 | Effects on R2 values for quantitative moderators.

Variables k βij SEβ p r2 95% confidence interval of βij

Lower limit Upper limit

Total sample size 158 −0.002 0.002 0.405 0.006 −0.005 0.002

Clinical sample size 65 −0.010 0.008 0.226 0.028 −0.025 0.006

Healthy sample size 135 −0.002 0.002 0.410 0.007 −0.006 0.002

Number of brain areas analyzed 160 −0.006 0.016 0.710 0.001 −0.037 0.025

Number of defined paths 145 0.021 0.006 0.001 0.106 0.009 0.032

Chi square value 85 −0.001 0.000 0.050 0.061 −0.002 0.000

p-value of chi square 88 0.081 0.235 0.733 0.002 −0.388 0.549

k, number of models; β, estimation parameter; SEβ , Standard Error of the parameter; p, p-value associated to the parameter significance; r
2, Effect size.

When studying the effect of the moderating variables on
the value of R2 for each structural model analyzed, the first
point to note is the larger size of the effect generally observed
in the different values of the qualitative variables (Table 5).
Additionally, the type of design with the greatest effect is Box
Car, whether it is one group (β = 0.824; p < 0.001, η2 = 0.462)
or more than one group (β = 1.100; p < 0.001, η2 = 0.482).
The Resting State design category is also statistically significant,

although with a very low effect (β = 0.589; p= 0.004, η2 = 0.073).
The models in which the tasks are compared present the greatest
effect and their intensity is high (β = 0.907; p < 0.001, η2 =
0.524). As regards the type of population studied, in studies based
on healthy subjects that present the greatest effect (β = 0.844;
p = < 0.001, η2 = 0.488), although the effect is similar to that
found in studies based on both normal and clinical populations
(β = 1.050; p = < 0.001, η2 = 0.432). The models that do
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not account for recursive effects present the greatest effect, and
with a high-intensity effect size in this case (β = 0.942; p <
0.001, η2 = 0.508). Finally, as regards the p-value associated with
the chi-square value, the models presenting a p > 0.10 yield a
high-intensity effect size measurement (β = 0.961; p < 0.001,
η2 = 0.549).

With regard to the quantitative variables of the value of R2, the
significant effect is the number of paths established in the model
(β = 0.021; p= 0.001, r2 = 0.106). Though a low-intensity effect,
it is important to remember that the association with the R2 of the
SEM model is positive; this suggests that a complex effect could
occur according to which, with more complex models, we would
obtain some more explained variance, i.e., higher in statistical
terms, but not necessarily yielding a higher number of significant
parameters. This effect, widely described in other areas, is equally
important here with regard to the idea of complexity associated
with a possible network of functional connectivity.

CONCLUSIONS

Firstly, it is important to mention a few details about the use
of SEMs in the field of functional or effective connectivity. An
interesting piece of information is the rapid development in
studies of this type, since many functional connectivity models
have appeared in recent years in different fields and tasks.
Therefore, as a consequence of the above comment, and most
importantly, the researchers seem to have found a good statistical
tool in SEM models for the development of some concepts,
models, and answers in Computational Cognitive Neuroscience.
Nonetheless, it should be noted that 64.39% of the models
analyzed here were published between 2009 and 2016. This
suggests a greater increase in recent years. This increase coincides
with a clear general increase on brain connectivity with fMRI,
which obviously implies an increase in the use of analysis
techniques related to estimates of connectivity according with the
results of Welvaert and Rosseel (2014).

Likewise, a certain concentration exists in the media; it is
striking that 51.9% of the papers were published in the Journal
of NeuroImage and Human Brain Mapping, in accordance with
some of the precepts of Bradford’s Law of bibliometrical studies.
This major concentration of publications has a bearing on the
dissemination of results. From a more specific viewpoint, note
that the classical SEM model is the most widely used; 84.4% of
the models analyzed use the classical LISREL model. Therefore,
there is still room for the development of alternatives like euSEM,
uSEM, ESEM, or Bayesian approaches.

From a more methodological perspective, we should also
point out that the data analyzed in the models were generated
from block designs in 82.0% of the cases, with a relative presence
of event-related designs. This could be interpreted as evidence
of the difficulties of event-related designs with the type of signal
analyzed here (fMRI), which led researchers to set forth simpler,
more secure designs when registering and treating the signal.

Yet another important finding is the fact that only 5% of the
models were generated with simulated data, so the choice of data
simulation to estimate functional connectivity models is an issue
that should be explored in greater depth. We are not saying that

this is the most adequate choice when facing real data, but we
should consider it as a choice for the behavior of connectivity
models, as a statistical model. Likewise, this involves a willingness
to work with real samples, which points to an evident need for
connectivity model results that contribute to the development of
applied knowledge.

Lastly, in this rather instrumental section, note that the most
widely used estimation technique is ML (Maximum Likelihood,
used in 71.3% of the models). Few papers pay attention to the
statistical assumptions of SEMmodels (for example, 88.8% of the
models do not report on the distribution of the values of each
ROI). SEM models usually employ between 6 and 7 ROIs (M =
6.72 and SD = 3.499) in their formulation and establish between
10 and 11 (M = 10.65 and SD= 9.311) effects as free parameters,
according with descriptive of the table number 4. They are,
therefore, relatively small models in relation to the number
of variables (ROIs) incorporating a limited number of effects.
Probably, this limited conception of SEMs may compromise the
chances of generalizing the results, even if applied to real samples,
given that only models with few brain areas are analyzed—a
situation that differs markedly from the evident complexity of
real brain connectivity structures.

As we value the results obtained in this paper on the
relationship between the moderating variables and the R2-values
of the structural models, we would like to highlight some effects
for each of the groups of moderating variables.

Box-Car designs offer higher estimations in the R2 than other
types of designs (η2 = 0.462 or η 2= 482), with somewhat
higher effects than the block designs with more than one group.
The effect in R2 is less significant in the case of event-related
(η2 = 0.240) and even less in the resting state procedure
(η2 = 0.073). This result could be interpreted as suggesting
that the identification of a significant response on fMRI signal
to a stimulus is a better way of estimating more interesting
correlations from the SEM estimation parameter point of view
than the situation in which the signal only includes basal values.
Therefore, by using ML as the estimation technique, block
designs—of one group or more—are related to higher R2-values.

In the case of the statistical contrast incorporated in base
designs, it seems advisable for the analyses at the first level to
use comparison between tasks than between groups. Comparing
tasks as first level analysis generates higherR2-values (η2 = 0.524)
than the other usual comparisons in fMRI designs (between
groups, subjects or interaction task by groups).

With regard to the characteristics of the samples, it seems that,
for the R2-values, the samples of healthy subjects offer better
estimations (η2 = 0.488) than the rest, with the exception of
designs with healthy and control groups. Be that as it may, in
this case there is an evident relation to the highest values of
the parameters with designs that allow a certain tendency to use
samples with healthy subjects for the extraction of ROIs and,
in a one- or two-group design strategy, a comparison between
activations in the face of different tasks.

If we look at the model generation strategy, it seems that
data-driven models offer better estimations in R2-values (η2

= 0.448). Therefore, the data-driven resource seems to offer
better estimations, which matches what we know about circular
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structures in this type of studies (Kriegeskorte et al., 2009).
Consequently, if the appropriate measures are not taken when
defining orthogonal contrasts in the first phase of analysis, we
may have oversignificance and, therefore, an obvious circularity
in the final adjusted model.

Likewise, models with non-recursive effects seem to offer
higher estimations (η2 = 0.508) of the structural parameters
and may be slightly more desirable structures than models with
recursive effects. This may also be linked to the limited ability of
SEMs to represent very complex structures, an issue which has
been the object of several papers; the limitations are reproduced
here when applied to the estimation of functional connectivity
(Cheung, 2013).

However, as regards the models’ degree of significance a clear
effect exists on the R2-value of the structural models. The effect
size is patently greater in the models with a good fit, that is,
with degrees of significance greater than or equal to 0.10 (η2 =
0.549). In this case, the paper by Wua and Kwokb (2012) shows
very similar effects in complex models related to the multilevel
approach.

Interesting findings have also been reported for other
quantitative moderating variables. There is a mild effect
associated with the number of paths defined in model in relation
to the value of R2 (r2 = 0.106) with a positive relationship
between the number of paths defined and the total value of the
explained variance. However, this effect has a mild impact. In this
area, no other statistical effects deserve further comment.

In summary, the analyses presented here indicate that if the
aim is to establish a SEM to study functional connectivity derived
from a work with fMRI signal, the likelihood of obtaining high
structural parameters and, consequently, high R2-values can be
maximized by the use of Box-Car designs in one or more groups
rather than event-related or resting state procedures. Equally it
seems better to use first level analysis comparing tasks or mixed
designs (tasks by group) and designs with samples of healthy
subjects and including the statistically significant effects of the
first level analysis using the data-driven strategy. Moreover, it
may be more interesting to specify non-recursive models in order
to generate more complex models. This configuration, according
to our data, is associated with better χ2 fit values (p > 0.10) and
with higher values of explained variance (R2). Finally, the number
of defined paths present a low contribution to the better results in
SEMs estimation and adjust.

Evidently, this paper has some limitations that should be
noted and which derive from the scheme we apply. For
instance, we did not bear in mind the specific structures
involved in each model, so we do not yet have information
on the models’ neuroanatomical plausibility. Likewise, we did
not conduct a study of those neuroanatomical structures to
assess the reiteration of structures involved in similar models.
Nor did we bear in mind the characteristics of the cognitive
functions used in the definition of the activations, so it is
possible that specific tasks may offer more consistent fMRI
activations and may therefore be associated with the fit of more
complex, powerful models in statistical terms. This would hardly
come as a surprise since enough evidence exists of associations
of cognitive tasks, like motor tasks, with more statistically

significant fMRI activations. Likewise, a clear limitation is the
fact that we did not study all the parameters of the models
analyzed, but focused solely on the R2-values instead. The
study of all the parameters would have indicated whether
their distribution presented some systematic bias that generates
insufficient biased estimations; for example, by applying the
BLUE (Best Linear Unbiased Estimator) precepts to SEMs fitted

according to the study of ROIs with a statistically significant

activation in cognitive paradigms assessed through a fMRI
signal.

In spite of all of the above, we have found no previous papers

on these matters and, therefore, we consider that our results
and assessments may represent an initial guideline to the use

of SEMs for the estimation of functional connectivity. Below we

have set out a series of recommendations for applied researchers
intending to use SEM models for the adjustment of functional

connectivity models. Very briefly, we suggest the following:

• Pay attention to the statistical assumptions of the SEMmodels,

assessing to what extent they are complied with and to what
extent not doing so may affect the parameter estimation
process. Special attention should be paid to the observed

distribution of each ROI based on the values obtained through
PCA or other techniques. Anomalous distributions yield

aberrant estimations if ML is used with no added corrections.
• Clearly identify whether the estimations are standardized or

not; if they are not, provide the standard error estimations for
each parameter.

• Identify whether the estimation process is conducted based

on a variance-covariance matrix (S), or a correlations matrix
(R), given that the use of centered moments or centered and

standardized moments involve rather different processes.

• For the whole SEM model analyzed, offer the values of global

fit. Without them, it is impossible to conduct a correct analysis
of viability. Therefore, the values of χ2, the degrees of freedom,

the associated degree of significance, and a complete list of
indexes of fit should become good praxis in the presentation
of SEM models.

• Likewise, the use of the Coefficient of Determination (R2)

should be incorporated and normalized to determine the
model’s degree of impact with regard to the explained variation
of the ROIs included. It offers relevant information about
the importance of the adjusted model and its true impact in
statistical terms.

• Bear in mind that the value of the explained variance is not
independent of the number of ROIs or of the number of paths
defined. It seems that SEM models present some limitations
with regard to the number of ROIs and effects.

• It seems advisable to use block designs to obtain activations
in the first level of analysis. In the same type of design, the
comparison between tasks seems to offer greater estimations
than the comparison between groups.

• From the point of view of the statistical approach to functional
connectivity, the SEM established from Data-Driven strategies
may be preferable, despite the fact that Hypothesis-Driven
models present a greater validity of content and may therefore
be more realistic from a neuroanatomical viewpoint.
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• In the latter case, the study of samples of healthy subjects is
also related to higher values in the estimation process and,
therefore, it is preferable to include a group of healthy subjects
in the design to compare their fMRI activations to those of the
clinical samples.

• Bear in mind that the structures that SEM models can
represent must be simple, without a very high number of ROIs,
and that the definition of recursive and non-recursive effects
is not independent of the results we will obtain. The simplest
structures seem to offer the greatest estimations.
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