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Early-life experiences with caregivers can significantly affect offspring development in
human and non-human animals. While much of our knowledge of parent-offspring
relationships stem from mother-offspring interactions, increasing evidence suggests
interactions with the father are equally as important and can prevent social, behavioral,
and neurological impairments that may appear early in life and have enduring
consequences in adulthood. In the present study, we utilized the monogamous and
biparental California mouse (Peromyscus californicus). California mouse fathers provide
extensive offspring care and are essential for offspring survival. Non-sibling virgin
male and female mice were randomly assigned to one of two experimental groups
following the birth of their first litter: (1) biparental care: mate pairs remained with
their offspring until weaning; or (2) paternal deprivation (PD): paternal males were
permanently removed from their home cage on postnatal day (PND) 1. We assessed
neonatal mortality rates, body weight, survival of adult born cells in the dentate gyrus
of the hippocampus, and anxiety-like and passive stress-coping behaviors in male and
female young adult offspring. While all biparentally-reared mice survived to weaning, PD
resulted in a ∼35% reduction in survival of offspring. Despite this reduction in survival
to weaning, biparentally-reared and PD mice did not differ in body weight at weaning or
into young adulthood. A sex-dependent effect of PD was observed on new cell survival
in the dentate gyrus of the hippocampus, such that PD reduced cell survival in female,
but not male, mice. While PD did not alter classic measures of anxiety-like behavior
during the elevated plus maze task, exploratory behavior was reduced in PD mice. This
observation was irrespective of sex. Additionally, PD increased some passive stress-
coping behaviors (i.e., percent time spent immobile) during the forced swim task—an
effect that was also not sex-dependent. Together, these findings demonstrate that, in
a species where paternal care is not only important for offspring survival, PD can also
contribute to altered structural and functional neuroplasticity of the hippocampus. The
mechanisms contributing to the observed sex-dependent alterations in new cell survival
in the dentate gyrus should be further investigated.

Keywords: early-life environment, paternal deprivation, sex differences, cell survival, hippocampus

Frontiers in Behavioral Neuroscience | www.frontiersin.org 1 February 2018 | Volume 12 | Article 20

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://doi.org/10.3389/fnbeh.2018.00020
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbeh.2018.00020&domain=pdf&date_stamp=2018-02-13
https://www.frontiersin.org/articles/10.3389/fnbeh.2018.00020/full
https://www.frontiersin.org/articles/10.3389/fnbeh.2018.00020/full
https://www.frontiersin.org/articles/10.3389/fnbeh.2018.00020/full
https://www.frontiersin.org/articles/10.3389/fnbeh.2018.00020/full
https://www.frontiersin.org/articles/10.3389/fnbeh.2018.00020/full
https://www.frontiersin.org/articles/10.3389/fnbeh.2018.00020/full
http://loop.frontiersin.org/people/347611/overview
https://loop.frontiersin.org/people/124127/overview
https://creativecommons.org/licenses/by/4.0/
mailto:eglasper@umd.edu
https://doi.org/10.3389/fnbeh.2018.00020
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Glasper et al. Paternal Deprivation Impairs Offspring Hippocampus

INTRODUCTION

Offspring development is dependent on early bond formation
with a caregiver (Rilling and Young, 2014). Lack of bond
formation can result in impairments in behavior and
neurodevelopmental disorders which may appear early in
life (Japel et al., 1999) and persist into adulthood (Parker, 1979;
Noorikhajavi et al., 2007; Tyrka et al., 2008). While the vast
majority of our knowledge of parent-offspring relationships
stem from mother-infant interactions (reviewed in Curley
and Champagne, 2016), a few early human studies focused on
the negative effects of paternal deprivation (PD) on offspring
development (Green and Beall, 1962; Jensen et al., 1989).
Increasing evidence from non-human animal studies suggests
numerous adverse outcomes associated with PD, including
dysregulated stress responses, impaired synaptic development
in the prefrontal cortex, altered anxiety-like, social, and
drug-seeking behaviors (Helmeke et al., 2009; Pinkernelle et al.,
2009; Jia et al., 2011; Gos et al., 2014; Wang et al., 2017). Despite
these advances in our knowledge, the underlying mechanisms
of PD-related behavioral and neurobiological deficits remain
unclear.

While fathers play a significant role in offspring care in
many human societies (Kleiman and Malcolm, 1981; Hrdy,
2005), paternal, or biparental care, is rare in mammals and is
observed in less than 6% of species examined (Kleiman and
Malcolm, 1981). California mice (Peromyscus californicus) are
a biparental species that are exclusively monogamous in the
wild (Ribble, 1991), exhibit strong attraction and preference
for the bonded mate over others (Gubernick and Nordby,
1993), and demonstrate significant paternal investment. Paternal
California mice engage in many behaviors performed by the
maternal female, including licking and grooming (LG), huddling,
nest building, and pup retrieval (Dudley, 1974b; Gubernick
and Alberts, 1987; Gubernick and Nelson, 1989; Gubernick
and Nordby, 1993). This substantial investment in offspring
care reduces offspring mortality and/or aids in development
and growth (Dudley, 1974a; Gubernick and Alberts, 1987;
Gubernick et al., 1993; Gubernick and Teferi, 2000). In the
absence of the father, maternal females do not compensate for
the missing paternal male (Dudley, 1974b)—an effect observed
in other monogamous species as well (common degu, Helmeke
et al., 2009; mandarin vole, Jia et al., 2009). Furthermore, as
females of this species are highly aggressive towards conspecifics
(reviewed in Steinman and Trainor, 2017), offspring care
provided by multiple females is highly unlikely. Therefore, the
California mouse is an excellent mouse model to investigate the
consequences of PD on neurobiological outcomes.

Experiments using monogamous and biparental species
suggest PD has long-lasting effects on hippocampal
neurochemical systems (Wu et al., 2014; Tabbaa et al., 2017), as
well as the structure and function of the hippocampus (Seidel
et al., 2011; Braun et al., 2013). The hippocampus plays a key
role in modulation of emotions (reviewed in Lucassen et al.,
2014) and regulation of the stress response system (reviewed
in Herman et al., 2016). The dentate gyrus of the hippocampus
is heavily implicated in the mediation of anxiety-like behavior

(Kheirbek et al., 2013; reviewed in Wu et al., 2015). More
recently, a functional association between adult hippocampal
neurogenesis and anxiety- and depressive-like behaviors has
been demonstrated. A reduction in neurons (i.e., doublecortin
positive cells; DCX+) is associated with stress-related anxiety
and depressive behavior; a return to baseline DCX+ cell number
results in normalization of anxiety- and depressive-like behaviors
(Yun et al., 2016).

Evidence from studies using human subjects suggests that
sexual dimorphisms in anxiety exist, with women largely
more vulnerable than men (Kessler et al., 1994; McHenry
et al., 2014). One likely underlying mechanism contributing to
this sexual dimorphism in functionality of the hippocampus
may be the regulation of adult neurogenesis (reviewed in
Marques et al., 2016). Sex-dependent abnormalities in social- and
reward-related behaviors have been observed in California mice
following PD (Bambico et al., 2015) and PD increases anxiety-like
behavior in adult mandarin voles (Microtus mandarinus, Jia
et al., 2009). To what extent anxiety-like behavior and other
hippocampus-related behaviors are regulated in a sex-dependent
manner by PD in California mice is unknown. Therefore, the
purpose of this study was to examine the interactions between sex
and PD on the survival of adult born cells in the hippocampus
and hippocampus-mediated behaviors, such as anxiety and
passive-stress coping behavior, in young adult California mice.

MATERIALS AND METHODS

Animals
Virgin male and female California mice (60–90 days of age) were
obtained from the Peromyscus Genetic Stock Center (University
of South Carolina, Columbia, SC, USA) or were descendants of
mice bred in our colony. Mice were provided ad libitum access to
food and water and were housed on a 16:8 reversed light/dark
cycle (lights off at 11:00 h). Non-sibling males and females
were paired, allowed to mate, and give birth to their first litter.
Twenty-six mating pairs resulted in 43 total offspring (Table 1).
An average of 1.64 ± 0.58 offspring per litter were produced.
On postnatal day (PND) 1 (12:00 h), two experimental groups of
offspring were formed by either leaving paternal males with their
mate and offspring (biparental care) or removing paternal males
from the home cage (PD). This resulted in the following groups
of experimental offspring: biparental care (n = male: 11; female:
10) and PD (n = male: 14; female: 8). All surviving offspring
were weaned on PND 35 and housed in same-sex groups of
three (i.e., some same-sex non-siblings were housed together so
that individual housing of mice could be avoided). This study
was carried out in accordance with guidelines provided by the
National Institutes of Health for the care and use of animals.
The protocol was approved by the University of Maryland
Institutional Animal Care and Use Committee.

Experimental Design
On PND 60, all biparentally-reared and PD offspring were
administered an intraperitoneal injection of the DNA synthesis
marker bromodeoxyuridine (BrdU; 200 mg/kg; Sigma-Aldrich,
St. Louis, MO, USA; cat. no. B5002) to determine the extent
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TABLE 1 | Litter size and number of primiparous California mouse mate pairs.

Litter size Number of mated pairs

1 11
2 13
3 2

to which sex and PD alter short-term survival of adult-born
cells in the dentate gyrus of the hippocampus. On PND 65,
all biparentally-reared and PD mice were tested for anxiety-like
behavior on the elevated plus maze task (see below). On PND 67,
all biparentally-reared and PDmice were assessed on a single trial
version of the forced swim task, a behavioral task used to assess
passive stress-coping behavior (see below). On PND 68, all mice
were perfused and brain tissue was harvested in preparation for
immunohistochemical processing (see below).

Elevated Plus Maze Task
Mice were individually removed from their home cages, ∼2 h
after lights out, and placed in a holding cage for transportation
to an adjacent behavioral room. After a 10-min acclimation
period, mice were tested on the elevated plus maze under
red-light illumination. The maze stood 75 cm above the floor
with arms measuring 11.5 × 55 × 45 cm. Mice were placed
in the center of the maze, facing an open arm, and observed
for 5 min. Behavior was digitally recorded and analyzed
with EthoVisionrXT 11 behavioral tracking software (Noldus,
Leesburg, VA, USA). Recordings were taken from a top-down
view at a rate of 30 frames per second. Latency to enter the
arms, duration of time spent in the arms, and number of arm
entries were assessed as previously described (Glasper et al., 2015;
Hyer et al., 2016). Duration of time spent in the open arms was
calculated as total time spent in the open arms divided by the
total time spent in both the open and closed arms, excluding the
center, multiplied by 100 and presented as a percentage. Mice
were returned to their holding cages immediately following the
conclusion of testing and returned to the colony. Mice that froze
for >40% of the time (Chauke et al., 2012) were excluded from
the study (n = 7, across all groups).

Forced Swim Task
The forced swim task was performed as previously described
(Hyer and Glasper, 2017). Mice were transported to the
red-light illuminated behavioral room, ∼2 h after lights out, and
acclimated as described above. This task consisted of placing
mice in a Plexiglas cylinder (30 cm diameter, 43 cm deep) filled
3
4 of the way with 23–25◦C tap water for 5 min. Behavior was
digitally recorded from a side view of the cylinder at 30 frames
per second in an effort to distinguish between swimming
and immobility behaviors (Bogdanova et al., 2013). Behavior
during the task was analyzed with EthoVisionrXT 11 behavioral
tracking software (Noldus). The following behaviors were used to
assess passive stress-coping behavior: % time immobile, latency
to the first bout of immobility, and frequency of immobility
bouts. Immobility was defined as mice remaining parallel to
the surface of the water, only moving slightly to remain afloat.
Swimming was defined as mice continuously moving paws and

head. Following testing, mice were dried, warmed on a heating
pad placed under their transportation cage, and returned to their
home cage. Flipping behavior during the forced swim task greatly
increases the likelihood that California mice will ingest water
(unpublished observations); therefore, any mice that exhibited
flipping behavior during the task were quickly removed and were
excluded from all endpoints (n = 2, across all groups).

Histological Procedures
On PND 68, ∼2 h after lights out, mice were anesthetized using
a ketamine–xylazine cocktail and transcardially perfused with
4% paraformaldehyde (PFA) in 0.1 M phosphate buffer, pH 7.0.
Brains were dissected from the skull and postfixed in 4% PFA
for at least 48 h at 4◦C. Coronal sections (40 µm) were sliced
throughout the rostrocaudal extent of the dentate gyrus on a
vibrating microtome (Leica Microsystems, Chicago, IL, USA)
into a bath of chilled 0.1 M phosphate-buffered saline (PBS), pH
7.5. Sections containing the dentate gyrus were identified using
the Peromyscus brain atlas1.

Immunoperoxidase Staining for BrdU
For BrdU peroxidase staining, a 1:12 series of sections were
mounted onto glass Super Frost Plus slides (Fisher Scientific,
Pittsburgh, PA, USA), dried, and pretreated by heating in 0.1 M
citric acid, pH 6.0. Tissue was rinsed with PBS, incubated
in trypsin for 10 min, denatured in 2 M HCL : PBS for
30 min, rinsed with PBS, incubated overnight in purified mouse
anti-BrdU (1:200; BD Biosciences, San Jose, CA, USA; cat. no.
347580), incubated in biotinylated horse anti-mouse (1:200;
Vector, Burlingame, CA, USA; cat. no. BA-2000) for 60 min,
rinsed in PBS, incubated with avidin–biotin complex (Vector),
rinsed with PBS, and then reacted in 0.01% diaminobenzadine
with 0.003% H2O2. All slides were counterstained with cresyl
violet, dehydrated, cleared with Citrisolv (Fisher Scientific), and
coverslipped under Permount (Fisher Scientific).

Data Analysis
Quantitative analysis was conducted on coded slides. The
numbers of BrdU-labeled cells on every twelfth unilateral
section throughout the rostrocaudal extent of the dentate gyrus
(i.e., granule cell layer, subgranular zone, and hilus) were counted
at 100×magnification under oil immersion on a Zeiss Primo Star
light microscope (Zeiss, Thornwood, NY, USA) using a modified
version of the optical fractionator method (West et al., 1991;
Ngwenya et al., 2005). The simplified formula for the estimated
total number of labeled cells was: N Σ Q × (1/ssf), which is the
total number of labeled cells counted (N Σ Q) multiplied by the
reciprocal of the section sampling fraction (1/ssf or 1/12; Leuner
et al., 2009). Brightfield photomicrographs were taken with an
AxioImager camera attached to a Zeiss microscope with a stage
controller using neuroimaging software (Neurolucida, Williston,
VT, USA). Images were cropped and optimized by adjusting
brightness and color balance in Adobe Photoshop Creative Cloud
2014.2.2.

1BrainMaps: An interactive multiresolution brain atlas. Available online at:
http://brainmaps.org.
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Statistics
Data were analyzed using GraphPad Prism version 7.03 for
Windows (GraphPad Software, La Jolla, CA, USA)2, unless
otherwise noted. Survival to weaning was assessed via Log-rank
(Mantel-Cox) Chi square analysis. Short-term cell survival was
assessed bymultiple t-test analysis and statistical significance was
determined using the Holm-Sidak method. Two-way analysis of
variance (ANOVA) was performed to assess main effects of sex
and rearing condition on all behavioral endpoints (i.e., elevated
plus maze, forced swim test), while three-way ANOVA was
performed to assess main effects of sex, age and rearing condition
on body weight using IBMr SPSSr Statistics (Version 24).
Sidak’s multiple comparisons tests were performed following
ANOVAs, when appropriate, and the multiplicity-adjusted
p-value was reported for each comparison. Mean differences
were considered statistically significant when p ≤ 0.05. For
neuronal and behavioral analyses, final N sizes are reported
within figure captions.

RESULTS

Paternal Deprivation Decreases Neonatal
Survival in California Mice
We assessed the effects of PD on survival to weaning in
P. californicus offspring. All (100%) biparentally-reared mice
survived to weaning (PND 35; Figure 1). In contrast, PD mice
displayed a marked and statistical decline in survival, with
66.67% surviving to PND 35 (χ2

(1,N = 25) = 4.96, p = 0.03). By the
end of the dark cycle on PND 1, greater than 20% of PD offspring
perished. Between PND 1 and PND 6, an additional 15% of PD
offspring were found deceased. After PND 6, no additional PD
deaths were observed.

2www.graphpad.com

FIGURE 1 | Paternal deprivation (PD) decreases survival to weaning in
California mice. Offspring were born on postnatal day (PND) 0. On PND 1,
fathers remained with mate and offspring (biparental care) or were
permanently removed (PD). Offspring survival was assessed daily until
weaning (PND 35). All California mouse offspring reared under biparental
conditions survived to weaning (dashed lines). However, by PND 1, only
∼75% of PD offspring (dotted lines) were observed alive. By PND 6, survival of
PD offspring dropped to ∼65% and remained constant until weaning.

Paternal Deprivation Does Not Alter
Growth of Offspring
We investigated the effects of sex, rearing, and time on body
weight at numerous points during the experiment: at weaning
(PND 35), at the time of BrdU injection (PND 60), and
immediately before perfusion (PND 68; Figure 2). No interaction
between sex, rearing, and time on body weight was observed
(F(2,66) = 0.19, p = 0.83). No interactions between rearing and
time (F(2,66) = 0.10, p = 0.90), sex and time (F(2,66) = 0.13,
p = 0.88), or sex and rearing (F(2,66) = 0.77, p = 0.38) on body
weight were observed. No main effects of sex (F(1,66) = 0.90,
p = 0.35) or rearing (F(1,66) = 1.69, p = 0.20) were observed.
However, a main effect of time on body weight was observed
(F(2,66) = 16.40, p = 0.00). Compared to weaning weight, mice
weighed more at time of BrdU injection (p = 0.00) and time
of perfusion (p = 0.00). No difference in weight was observed
between time of BrdU injection and time of perfusion (p = 0.53).

Survival of Hippocampal Newborn Cells Is
Reduced in Paternally-Deprived Female,
but Not Male, Young Adult Offspring
The effects of PD on survival of adult born cells in the dentate
gyrus of the hippocampus were investigated in young adult male
and female offspring (Figure 3). Amongmales, rearing condition
did not alter number of BrdU-labeled cells in the dentate gyrus
(t(23) = 0.34, p = 0.74). Among females, PD resulted in fewer
BrdU-labeled cells in the dentate gyrus compared to biparental
care (t(23) = 2.53, p = 0.02).

Sex and Paternal Deprivation Alter
Elevated Plus Maze Behavior in Young
Adult Offspring
We examined the effects of sex and PD on anxiety-like behavior
in young adult offspring, as measured by performance on the

FIGURE 2 | Paternal deprivation (PD), in California mice, does not alter body
weight. Male and female California mice were reared by both parents
(biparental care) or by the mother alone (PD) from postnatal day (PND) 1 until
weaning. Body weight was assessed at weaning (PND 35), prior to BrdU
injection (PND 60), and prior to perfusion (PND 68). Compared to weaning
weight, all mice, regardless of rearing condition or sex, weighed more at the
time of BrdU injection and at perfusion. Symbols represent mean ± SEM.
∗, main effect of time, p ≤ 0.05.
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FIGURE 3 | Paternal deprivation (PD) reduces new cell survival in the
hippocampus of female, but not male, young adult California mouse offspring.
(A) Short-term survival of bromodeoxyuridine (BrdU)-labeled cells was
determined in California mouse young adult male and female offspring reared
by both parents (biparental care) or reared by mother alone (PD) from
postnatal day (PND) 1 to weaning PD. PD reduced the number of
BrdU-labeled cells in the dentate gyrus of female, but not male, offspring. N
sizes: biparental male, 6; biparental female, 6; PD male, 9; PD female, 6. Bars
represent mean ± SEM. ∗p ≤ 0.05. (B) Representative photomicrographs
(40× oil magnification) of BrdU-labeled cells in the dentate gyrus of the
hippocampus. Scale bar = 40 µm. Arrows point to BrdU-labeled cells.

elevated plus maze task. In % time spent on the open arms
(Figure 4A), a significant interaction between rearing and sex
was observed (F(1,19) = 5.89, p = 0.03). Among biparentally-
reared mice, females spent considerably more time on the
open arms than males (p = 0.03); however, this sex effect was
not observed in PD mice (p = 0.71). No main effect of sex
(F(1,19) = 1.95, p = 0.18) or rearing (F(1,19) = 0.03, p = 0.87) was
observed in % time on the open arms. Latency to enter the open
arms (Figure 4B) was not altered by rearing (F(1,19) = 0.000,
p = 0.98) or sex (F(1,19) = 0.16, p = 0.69) and no interaction
between rearing and sex was observed (F(1,19) = 2.22, p = 0.69).
Total arm entries (Figure 4C) were not altered by rearing
(F(1,19) = 1.69, p = 0.21) or sex (F(1,19) = 0.02, p = 0.88) and no
interaction between rearing and sex was detected (F(1,19) = 0.34,
p = 0.57). In total distance traveled (Figure 4D), a main effect
of rearing (F(1,19) = 6.40, p = 0.02), but not sex (F(1,19) = 2.53,
p = 0.13), was observed. Overall, PD decreased the total distance
traveled during the elevated plus maze task. No interaction
between rearing and sex (F(1,19) = 0.39, p = 0.54) was observed.

Paternal Deprivation and Sex Alter Passive
Stress-Coping Behavior in Young Adult
Offspring
We determined the effects of PD and sex on passive stress-
coping behavior, during the forced swim task, in young adult
male and female offspring. In % time immobile (Figure 5A),
a main effect of rearing (F(1,22) = 4.72, p = 0.04), but not
sex (F(1,22) = 1.93, p = 0.18), was observed. Overall, PD
increased % time spent immobile during the forced swim task.
No interaction between rearing and sex was observed in %
time immobile (F(1,22) = 0.00, p = 0.97). Latency to the first
bout of immobility (Figure 5B) was significantly altered by
sex (F(1,22) = 29.54, p < 0.00) but not rearing (F(1,22) = 0.05,
p = 0.83). Males, irrespective of rearing, displayed passive stress-
coping behavior (i.e., floating) faster than females. No interaction
between rearing and sex was observed (F(1,22) = 0.25, p = 0.62).
Bouts of immobility (Figure 5C) were also not altered by rearing
(F(1,22) = 2.72, p = 0.11) or sex (F(1,22) = 0.12, p = 0.73), and no
interaction between rearing and sex was observed (F(1,22) = 2.22,
p = 0.15).

DISCUSSION

In the present study, we demonstrated that PD in P. californicus,
a biparental mouse species, is associated with reduced survival
during early postnatal development, sex-dependent deficits in
hippocampal structural plasticity, reduced exploratory behavior,
and impaired stress coping in young adulthood. PD results
in ∼35% decrease in offspring survival to weaning. Of those
offspring that survive to weaning, no differences in body weight
are detected; however, a sex-dependent decrease in the number
of adult-born cells is observed in the dentate gyrus of the
hippocampus. Specifically, PD females, but not males, exhibit
reduced short-term survival of newborn cells in the dentate
gyrus. Additionally, PD decreases exploratory behavior, but not
classic anxiety-like behaviors, during the elevated plus maze task.
Notably, and for the first time shown here, PD increases some
measures of passive stress-coping behavior during the forced
swim task (i.e., % time immobile). Together, these findings
suggest that the lack of paternal care, in a biparental species,
may contribute to long-lasting effects on structural plasticity and
behavioral function of the hippocampus.

California mouse fathers spend more time interacting with
offspring during the early, compared to late, postnatal period
(Bester-Meredith et al., 1999). Here, removing the paternal
male from the home cage resulted in a significant decline in
early (i.e., PND 1) postnatal survival. As previously mentioned,
California mice are an excellent model of biparental care given
the significant paternal care provided by California mouse
fathers. Male and female California mice parents spend similar
amounts of time in the nest (Dudley, 1974a) and aside from
nursing, parental behaviors performed on PND 1 are shared
equally by both the mother and father. Specifically, California
mouse fathers and mothers spend equal amounts of time in the
nest as well as equivalent durations of time in physical contact
with the pups (Gubernick and Alberts, 1987). On the whole,
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FIGURE 4 | Classic indices of anxiety-like behavior in the elevated plus maze are not altered by paternal deprivation (PD) among young adult California mice. Male
and female California mice were reared by both parents (biparental care) or by the mother alone (PD) from postnatal day (PND) 1 until weaning. On PND 65, mice
were tested on the elevated plus maze task for 5 min. (A) Among biparentally-reared offspring, females spent considerably more time on the open arms than males.
PD did not alter time spent on the open arms. ∗p ≤ 0.05. (B,C) Neither sex, nor rearing, altered latency to enter the open arms or total arm entries. (D) Irrespective of
sex, total distance traveled within the elevated plus maze was reduced by PD. N sizes: biparental care male; 4; biparental care female, 7; PD male, 7; PD female, 5.
Bars represent mean ± SEM. #, main effect of PD.

the early parental behaviors performed by fathers are similar
to that performed by mothers, however, fathers do perform
more non-anogenital licking of pups than mothers on PND 1
(Gubernick and Alberts, 1987).

When dead pups were observed, they were either cannibalized
or found unaltered outside of the nest, an outcome previously
reported in studies of California mice (Gubernick et al., 1993).
Pup death may be mediated, in part, by the dam’s response to the
absence of her mate. It is not uncommon for maternal California
mice to cannibalize or withhold care from young following mate
disappearance (Gubernick et al., 1993). A rapid termination
of the dam’s reproductive investments following the removal
of the mate may reflect the inability to successfully rear pups
alone, an effect also observed in the monogamous, biparental
Djungarian hamster (Phodopus cambelli); all pups observed
deceased 3 days postpartum if paternal male is removed (Wynne-
Edwards, 1987; Wynne-Edwards and Lisk, 1989). In the current
study, PD offspring survived if they lived to PND 6. Interestingly,
if California mice parents decide to forgo offspring care, pups are
observed deceased 2–5 days following birth (Cantoni and Brown,
1997). It should also be noted that offspring survival is decreased
even when males are removed several days before the birth of
pups (Gubernick et al., 1993), therefore the increase in offspring
mortality is likely not a result of experimenter handling or nest
disruption.

Increased pup death may also be due to problems related
to thermoregulation and/or metabolism. Thermoregulation,
in California mice pups, is related to the presence of the
father (Dudley, 1974b); individual California mice offspring
are ectothermic prior to PND 15 (Gubernick, 1987). Given
that most of the male’s early parental care is in the form
of huddling over pups (Gubernick and Alberts, 1987), direct
male care may enhance offspring survival by providing
warmth, as previously described (Dudley, 1974a). Heat transfer
may be even more necessary under harsh environmental
conditions, such as cold temperatures and/or when foraging
for food is necessary (Gubernick et al., 1993; Wright and
Brown, 2002; Bredy et al., 2007). It is likely that under
harsh laboratory conditions, our survival rate would be lower
than what is reported in the current study. In addition to
thermoregulation, problems associated with metabolism may
contribute to offspring mortality. Following mate removal,
California mouse mothers stop lactating 5–28 days later
(Gubernick and Teferi, 2000). It is possible that PD offspring
receive less nourishment than biparentally-reared offspring,
which may ultimately contribute to increased mortality. Future
studies are necessary to determine to what extent increased
California mousemortality, following the removal of the paternal
male, is a result of the direct absence of paternal care, since
California mice dams do not overcompensate for their partners’
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FIGURE 5 | Both rearing and sex alter indices of passive stress-coping
behavior during the forced swim test in young adult California mice. Male and
female California mice were reared by both parents (biparental care) or by the
mother alone [paternal deprivation (PD)] from postnatal day (PND) 1 until
weaning. On PND 67, mice underwent a 5 min forced swim test. (A) Overall,
PD increases % time immobile. #, main effect of PD. (B) Irrespective of rearing,
males display immobility faster than females. ∗p ≤ 0.05. (C) Neither sex, nor
rearing, alter bouts of immobility. N sizes: biparental care male, 8; biparental
care female, 7; PD male, 5; PD female, 6. Bars represent mean ± SEM.

absence (Dudley, 1974b), or indirect effects of altered maternal
care. Recent evidence from our lab has demonstrated no
differences in pup retrieval between multiparous California
mouse mothers rearing pups with or without her mate (Madison
et al., 2017). Pup retrieval is only one of many maternal

behaviors, therefore a thorough analysis of parental behavior
should be performed.

A sex-dependent effect of PD on the short-term survival of
adult born cells in the dentate gyrus of the hippocampus was
observed. Specifically, PD females exhibited a marked decline
in the number of BrdU-labeled cells, compared to females
reared by both parents. No effect of PD was observed in
the short-term survival of adult born cells in males. While
the phenotype of these 8-day old cells was not assessed in
the current study, doublecortin (DCX) is expressed in the
majority (∼89%) of 1-week old BrdU-labeled cells in the
hippocampus of young adult mice (Snyder et al., 2009). DCX
is expressed in young neurons as well as neuronal precursors
and plays key roles in neuronal maturation (Brown et al.,
2003; Kerjan et al., 2009). This sex-dependent effect of PD on
short-term cell survival in the dentate gyrus of the hippocampus
aligns with sex-dependent effects of PD on neuroendocrine
regulation and brain neurochemistry observed in biparental
rodents, including the California mouse. Serum corticosterone
and adrenocorticotrophin concentrations are increased in adult
female, but not male, mandarin voles exposed to PD (Wu
et al., 2014). Since stress and elevated glucocorticoids have been
repeatedly shown to inhibit new cell production and survival
(reviewed in Mirescu and Gould, 2006), the decreased cell
survival in our PD females, but not males, may reflect baseline
differences in serum corticosterone. This was not assessed in
our current study and should be further explored. Decreased
hippocampal glucocorticoid receptor (GR) and brain-derived
neurotrophic factor (BDNF) have been shown in female, but
not male, mandarin voles (Wu et al., 2014). Additionally, an
attenuation in basal activity of low-spiking medial prefrontal
cortex pyramidal cells has been observed in female, but not male,
California mice (Bambico et al., 2015). In male, but not female,
degus (Octodon degus), PD results in early (i.e., time of weaning)
deficits in dendritic plasticity of the orbitofrontal cortex—an
effect that is no longer apparent in adulthood (Helmeke et al.,
2009). It is unknown whether similar developmental trajectories
exist in hippocampal structural plasticity inmale California mice.

It is important to note that other models of early-life stress,
(i.e., disrupted maternal care) in uniparental species, like mice
and rats, results in sex-dependent alterations to hippocampal
neuroplasticity. Twenty-four hours of maternal deprivation on
PND 3 does not alter anxiety-like behavior, cognitive function, or
adult neurogenesis in 12–17 week old female rats (Loi et al., 2017)
but does lead to accelerated maturation of synaptic plasticity in
male rats (Derks et al., 2016). At weaning (PND 21), maternal
deprivation results in increased immature neuron survival
(i.e., DCX+ cells) inmale rats and decreasedDCX+ cells in female
rats. This effect was likely not driven by enduring sex-dependent
changes in maternal behavior following maternal deprivation on
PND 3 (Oomen et al., 2009). Maternal deprivation∼1 week later
(i.e., PND 9) immunologically primes hippocampal synapses of
male, but not female, juvenile rats (Viviani et al., 2014); reduced
anxiety-like behavior and increased risk taking behaviors are
observed in females only (Mela et al., 2015). Femalesmay bemore
resilient thanmales to the effects of early-life stress (Walker et al.,
2011), as early life nest and bedding disruption models describe
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enduring negative consequences in male mice only, including
increased basal corticosterone concentrations, decreased spatial
and object recognition memory, and decreased hippocampal
adult neurogenesis (Rice et al., 2008; Naninck et al., 2015).
To what extent similar sex-dependent observations occur, as
a result of maternal deprivation, in a biparental mammalian
species has yet to be investigated. Interestingly, in the biparental
zebra finch (Taeniopygia guttata), maternal deprivation results in
hyperresponsivity to stress and altered mRNA levels of GR and
mineralocorticoid receptors in the hippocampus, cerebellum,
and hypothalamus (Banerjee et al., 2012).

To what extent the lack of direct paternal care mediates the
observed sex-dependent effects on new cell survival is unclear,
however, it is conceivable that differential distribution of parental
care may play a factor. California mouse fathers engage in more
pup licking than mothers; however, fathers spend more time
licking non-anogenital regions compared to mothers (Gubernick
and Alberts, 1987). In rats, mothers engage in more anogenital
licking of male, compared to female, offspring (Richmond
and Sachs, 1984). This attentional bias toward male offspring
could have long-term consequences on development (Moore
and Power, 1992). While this bias in anogenital licking has
not been reported in California mice, it is possible that male
offspring receive more direct care from the mother in the form
of anogenital licking, thereby providing more parental care, thus
preventing a decline in hippocampal structural plasticity. More
detailed analysis of home cage parental behavior following PD
may shed light on this possibility given that maternal deprivation
on PND 3 results in greater LG on PND 4 in rat offspring,
with males receiving more attention than females (Oomen et al.,
2009); however, both the sex difference in LG and overall increase
in LG disappears by PND 5. To what extent similar findings
are observed following PD in California mice should be further
explored.

We did not observe an overall anxious phenotype among PD
offspring. During elevated plus maze testing, classical indices of
anxiety like behavior (i.e., reduced % time in the open arms,
increased latency to enter open arms; Komada et al., 2008)
were not observed following PD. However, exploratory behavior
(i.e., total distance traveled) was reduced in both male and female
PD offspring, compared to offspring receiving biparental care.
A reduction in locomotor activity, without altered anxiety-like
behavior, has been observed during assessments of anxiety-like
behavior in PD mandarin voles (Jia et al., 2009; Tabbaa et al.,
2017). In fact, reduced locomotor activity following PD has
been observed in both rodent and non-human primate species
(Dettling et al., 2002; Cao et al., 2014). Collectively, these studies
of PD in various mammalian species suggest that decreased
exploratory behavior may be indicative of an anxious phenotype
(Kõks et al., 1997) that may complicate more traditional indices
of anxiety-like behavior on the elevated plus maze. Despite
the lack of a sex-dependent effect in anxiety-like behavior
within the PD group, contrasted with the effect observed within
the biparental care group, restraint should be taken when
interpreting the effects of PD on anxiety-like behavior when
exploration is a primary component of the behavioral task (e.g.,
elevated plus maze).

PD, independent of sex, resulted in increased total time
spent immobile during the forced swim task. This is the
first demonstration, to our knowledge, of increased passive
stress-coping behavior following PD. Chronic physical
and psychological stressors significantly alter regulation of
neuroendocrine systems and reorganize brain regions, like the
hippocampus, which are highly responsive to stress hormones
(i.e., corticosterone; reviewed in de Kloet and Molendijk, 2016).
It is plausible that PD altered neuroendocrine regulation, yet
this was not assessed in the current study. Increased basal
corticosterone has been observed throughout the postpartum
period (Wang et al., 2014) and at weaning (Wang et al., 2012)
in mandarin vole offspring following removal of the paternal
male on PND 0 (i.e., day of birth). Mice with a history of
stress, followed by exposure to the forced swim task, exhibit
upregulation of genes in the hippocampus that are involved in
chromatin modification and epigenetics (e.g., BDNF and GR).
The altered expression of some of these genes can be long-lasting
(Gray et al., 2014; Hashikawa et al., 2015) and may underlie
immobility behavior during the forced swim task (De Pablo et al.,
1989; Campus et al., 2015). Latency to immobility, or floating, is
considered a main outcome measure of the forced swim task. In
the current experiment, the time from placement in the cylinder
to the first bout of immobility was markedly faster among males
than females. This effect was independent of rearing. However,
the total number of immobility bouts did not differ as a result of
sex. Therefore, although male California mice exhibited earlier
passive stress-coping behavior than females, this sex difference
did not influence global performance in the forced swim task.

In summary, our findings highlight the consequences of
PD in a biparental rodent species, the California mouse.
Removal of the father was associated with reduced structural
plasticity among female mice and generalized deficits in
exploratory and passive-stress coping behaviors. In humans,
quality, rather than continuity, of parental care is associated
with impaired behavioral dysfunction (i.e., depression; Parker,
1979). Given that maternal California mice do not compensate
for missing paternal contributions (Dudley, 1974a; Bester-
Meredith and Marler, 2003), the quality of care received by
PD offspring may be reduced, resulting in enduring effects
on hippocampal neuroplasticity and even survival. Mechanisms
underlying sex-differences in short-term survival should be
explored. Additionally, future studies should investigate to what
extent these findings are a direct result of paternal removal
or an indirect result of altered maternal care following mate
removal.
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