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Many psychiatric disorders, despite their specific characteristics, share deficits in
the cognitive domain including executive functions, emotional control and memory.
However, memory deficits have been in many cases undervalued compared with other
characteristics. The expression of Immediate Early Genes (IEGs) such as, c-fos, Egr1
and arc are selectively and promptly upregulated in learning and memory among
neuronal subpopulations in regions associated with these processes. Changes in
expression in these genes have been observed in recognition, working and fear related
memories across the brain. Despite the enormous amount of data supporting changes
in their expression during learning and memory and the importance of those cognitive
processes in psychiatric conditions, there are very few studies analyzing the direct
implication of the IEGs in mental illnesses. In this review, we discuss the role of some
of the most relevant IEGs in relation with memory processes affected in psychiatric
conditions.
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INTRODUCTION

The diagnoses of psychiatric disorders are based on a cluster of specific symptoms. The genetic,
clinical and neuroimaging evidence suggests that they share important features including common
affected functions (Bearden and Freimer, 2006). Dysregulation of some mnemonic processes and
the mechanisms of neuroplasticity could contribute to prevalent neuropsychiatric diseases. Many
psychiatric disorders, despite their specific characteristics, share deficits in the cognitive domain
including executive functions, emotional control and memory (Pittenger, 2013). Even though
memory deficits have been in many cases undervalued compared with other characteristics, they
can be considered as an endophenotype across many psychiatric disorders (Kéri and Janka, 2004;
Gur et al., 2007; Henry et al., 2012). Of the many types, episodic and fear memories are two main
categories commonly affected in different psychiatric disorders (Dickerson and Eichenbaum, 2010).
Episodic memory deficits have been reported in schizophrenia, autism, bipolar disorder, obsessive-
compulsive disorder, panic disorder and major depression (Muller and Roberts, 2005; Exner et al.,
2009; Brezis, 2015; Czepielewski et al., 2015; Herold et al., 2015; Oertel-Knöchel et al., 2015; Ragland
et al., 2015; Vrabie et al., 2015; Meconi et al., 2016; Solomon et al., 2016; Whitton et al., 2016;
Green et al., 2017). Fear memories can be linked to anxiety and particularly to post-traumatic stress
disorder (PTSD; Parsons and Ressler, 2013; Briscione et al., 2014).
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For decades, Immediate Early Genes (IEGs) were used as an
indirect marker to measure neuronal activity and, although many
of them are routinely measured in thousands of labs around the
world, their role in many biological processes is still unknown.
The IEGs most commonly used to map neuronal activity, c-fos
and Egr1, have had their expression time-course systematically
studied (for mRNA and protein expression dynamics; Mello and
Ribeiro, 1998; Bisler et al., 2002; Zangenehpour and Chaudhuri,
2002). They encode transcription factors that influence neuronal
physiology by regulating the expression of downstream target
genes, normally referred to as late-response genes (Curran and
Morgan, 1987; Curran and Franza, 1988; Herdegen and Leah,
1998; O’Donovan et al., 1999; Tischmeyer and Grimm, 1999;
Pinaud, 2004; Pinaud et al., 2005). Both c-Fos and Egr1 interact
with an array of other transcription factors (Herdegen and
Leah, 1998; Knapska and Kaczmarek, 2004). Besides, other
IEGs encode proteins that directly influence cellular function,
as in the case of arc (reviewed in Lanahan and Worley,
1998).

The expression of, c-fos, Egr1 and arc are related in literature
to learning and memory. Changes in their expression observed
in a limited number of cells in regions associated with learning
and memory lead to widespread use as readout of plastic changes
subserving long-term memory formation and maintenance in
specific neuronal populations (Rosen et al., 1998; Guzowski et al.,
1999; Ramírez-Amaya et al., 2005; Minatohara et al., 2016). In
this review, we focus on the role of, c-Fos, Egr1 and Arc since they
have been associated to different memory processes, becoming
good candidates as markers or effectors of these processes usually
affected in psychiatric conditions.

MEMORY AND PSYCHIATRIC DISORDERS

Memory is a complex process through which the information
acquired during learning is stored. Memory processes can
be studied by their stages (acquisition, consolidation, and
retrieval), duration (short-term and long-term) and to the type
of information that it is stored (explicit and implicit), which
are reviewed somewhere else (Eysenck, 1988; Abel and Lattal,
2001; Kandel et al., 2014; Squire and Dede, 2015). We now
have significant knowledge and consensus regarding the phases
of the memory process as well as some of the key structures,
signaling pathways and genes involved in many different types
of memories. Though it is still a matter of debate ‘‘where’’
and ‘‘how’’ memories are stored, memories are ‘‘stored’’ as
spatiotemporal representations within a given neuronal network
(Davis et al., 2006). Then, a particular memory might produce an
identifiable pattern due to expression of a specific set of activity
dependent genes.

Memory consolidation is a process that is proposed to
occur at the same synapses involved in the encoding of
the information (Dudai, 2002). It includes the activation of
transcription factors, protein synthesis, and post-translational
modification that lead to plastic changes that make the memory
trace stable (Lamprecht and LeDoux, 2004; Morris, 2006;
Alberini, 2009; Ruediger et al., 2011). During retrieval, memory
reactivation can trigger two quite different processes, extinction

or reconsolidation. The reactivated memory trace becomes
labile and is susceptible to being modified or disrupted in
the process called reconsolidation. If there is a reinforcement
of the original trace during retrieval, the reconsolidation—a
protein synthesis-dependent process—re-stabilizes the original
memory trace (Lee, 2008). On the contrary, after repeated
reactivations in the absence of the appropriate reinforcement,
memory extinction is triggered, leading to the loss in memory
expression. This process is also protein-synthesis dependent
and evidence shows that a new memory trace is formed,
replacing the original one without erasing it (Quirk and Mueller,
2008). Then, it emerges that from the clinical point of view,
it is important to understand the underlying mechanisms of
these phenomena in order to develop new tools as novel
treatment in Psychiatry (Monfils et al., 2009; Schiller et al.,
2010).

In psychiatric disorders, episodic, working and fear memories
are the most commonly affected types of memories, making
them relevant to be studied in animal models (Dickerson and
Eichenbaum, 2010; Parsons and Ressler, 2013; Briscione et al.,
2014; Oertel-Knöchel et al., 2015; Meconi et al., 2016; Whitton
et al., 2016; Martinussen et al., 2005; Rasetti and Weinberger,
2011). Episodic memories encode series of events that occur
at a particular place and a specific time. Despite that episodic
memories bear a strong anthropocentric character, it is now
accepted that some characteristics of episodic memory, like
recognition, are found in different species, allowing the study
of their mechanisms and substrates in different models (Binder
et al., 2015; Morici et al., 2015).

Working memory is the ability to maintain current
representations of goal relevant knowledge. It is an executive
component that is distributed across the frontal lobe together
with sensory cortices of various modalities which interact
through attentional processes (Postle, 2006; Carruthers, 2013).
Over the years, working memory tasks were developed to allowed
the study of working memory, its processes and neural substrates
in different animal models (Carruthers, 2013; Dudchenko et al.,
2013).

Although the expression of fear in animals might not have its
exact correlate in humans, fear memories have been extensively
studied in animal models to identify the neurobiological basis
underlying memory processes (LeDoux, 2014; Izquierdo et al.,
2016). Historically, the most common tasks used to study fear
memories have been fear conditioning and inhibitory avoidance
tasks. Both behavioral approaches are associative learning
tasks, were an ‘‘unconditioned stimulus’’ (context or cue) is
linked to an aversive ‘‘conditioned stimulus’’ (shock) resulting
in a ‘‘conditioned response’’ (freezing or place avoidance).
These kinds of tasks allowed the study of the molecular
mechanisms and brain structures involved in the processing of
fear memories.

IMMEDIATE EARLY GENES IN LEARNING
AND MEMORY

IEGs represent a class of genes that respond rapidly
and transiently to a variety of cellular stimuli
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(Hughes and Dragunow, 1995; Kaczmarek and Chaudhuri,
1997; Herdegen and Leah, 1998; Pinaud et al., 2005; Terleph
and Tremere, 2006; Bahrami and Drabløs, 2016). There are
more than 100 genes classified as IEGs (Sheng and Greenberg,
1990; Minatohara et al., 2016), although only a small subgroup
was found in neurons (Sheng et al., 1995). Since the discovery
of the regulation of IEGs in the brain by neural activity, there
has been an extensive research using IEGs as neural activity
markers in studies of behavior and cognition. However, there
is some controversy regarding the physiological role that
these genes might have. Over the years, different hypotheses
were put forward. For example, some groups assigned IEGs
a role in homeostatic maintenance or replenishment, while
others found in IEG’s expression a role for the maintenance
of activity dependent plastic changes (for review Dragunow,
1996). Another hypothesis suggested that they might be
involved in mechanisms of information integration (Kaczmarek,
2000). Independently of the role that these genes have at a
cellular level, it is clear that their expression is affected by
neuronal activity and they are used as neuronal activity markers.
In particular, some studies have reported changes in IEG
expression associated with learning and memory processes
and in connection with psychiatric disorders. In the next
subsections we will discuss three of the most common IEGs
studied in relation with memory processes and psychiatric
disorders.

MOLECULAR MECHANISMS OF c-Fos

c-Fos was one of the first transcription factors whose induction
was shown to be activity-dependent (Morgan and Curran, 1988;
Sagar et al., 1988). In neurons, c-fos expression appears to be
stimulated by cAMP and Ca2+ through the activation of the
CREB/CRE complex. The c-fos gene codes for the Fos protein
that dimerizes with transcription factors of the Jun family to build
up the transcription factor AP-1 (Chiu et al., 1988; Pennypacker,
1995).

c-Fos AND MEMORY

c-fos is a clear example of an IEG whose increased expression
is routinely used as an indicator for neuronal activation. For
instance, it has been shown that c-fos expression following
behavioral training specifically correlates with learning (Maleeva
et al., 1989, 1990; Kaczmarek and Nikołajew, 1990; Tischmeyer
et al., 1990), performance (Sakai and Yamamoto, 1997; Radulovic
et al., 1998; Bertaina-Anglade et al., 2000; Vann et al., 2000a,b)
and with cellular ensembles that are activated following memory
retrieval (Maviel et al., 2004; Kubik et al., 2007; Lopez et al., 2012;
Bravo-Rivera et al., 2015), supporting its role as activity marker.

Interestingly, changes in c-Fos expression were observed
mainly during the first sessions of multiple-session training
protocols, indicating an adaptive response (Maleeva et al., 1989,
1990; Kaczmarek and Nikołajew, 1990; Nikolaev et al., 1992a,b;
Hess et al., 1995a,b, 1997; Gall et al., 1998; Lukasiuk et al., 1999;
Anokhin et al., 2000; Bertaina-Anglade et al., 2000).

Genetic manipulations of the c-fos gene were performed
during the first genetic engineering Era. One of the first
approaches aimed to analyze the function of c-Fos in memory
was done using whole-body knockout mice. With this model
they were found deficits in complex but not in simple behavioral
tasks, indicating that c-fos is not necessary for all types of
learning tasks and memories. It is important to point out that
these animals showed many developmental malformations which
might affect the interpretation of the behavioral studies (Paylor
et al., 1994).

Using the cre/loxP system Fleischmann et al. (2003)
developed a central-nervous-system-selective knock out mouse.
This model had normal locomotion and emotional related
responses but was impaired in hippocampus-dependent spatial
and associative learning tasks, such as Morris water maze
and contextual fear memory. The mutant mice displayed a
reduction of synaptic plasticity mechanisms in hippocampal
CA3-CA1 synapses. These specific deficit were consistent with
cued and spatial tasks in which an increase in hippocampal
c-Fos expression was observed (Guzowski et al., 2001a) and
also with experiments done with c-fos antisense oligonucleotide
(ASO) in rats in which the infusion of the ASO produce deficits
in spatial long-term memory (Guzowski, 2002; Kemp et al.,
2013).

Fear memory paradigms were also able to produce changes
in c-Fos expression in different structures: using an inhibitory
avoidance task (Bekinschtein et al., 2010; Katche et al., 2010;
Katche and Medina, 2017). It was shown that fear memory
persistence required c-Fos expression and that blockade of c-Fos
expression by infusion of c-fos ASO into the dorsal CA1 region
of the hippocampus or retrosplenial cortex produces deficits in
the consolidation and persistence of this type of memory (Katche
et al., 2010, 2013; Katche and Medina, 2017). Similarly, the
infusion of c-fos ASO in the prefrontal cortex affected long-term
cued fear memory (Morris and Frey, 1999).

The results described here concerning c-Fos expression and
function in learning and memory still do not answer the question
of the biological role of c-Fos within the brain. Then, is c-Fos
expression a response to the activity of neurons within a memory
circuit? Or, does it play a role in maintenance of cellular
homeostasis? An important obstacle in solving these questions is
that the role of c-Fos in synaptic plasticity is still unclear. c-Fos is
part of a complex, the AP-1, whose target genes downstream have
yet to be fully characterized. Independently of the mechanism
operating after c-Fos activation, it is clear that understanding its
role at the cellular level is more complex than for other IEGs,
such as narp, homer1a and arc, that are known to encode proteins
that have a direct effect on the synapses (Chowdhury et al., 2006;
Chang et al., 2010; Roloff et al., 2010; Lu et al., 2013). Still, it
is important to increase our knowledge of the role of c-Fos at
the cellular level to be able to address if it is really a marker
of specific neuronal engrams associated with specific memory
episodes.

More recently, the c-fos promoter was combined with optical
sensitive proteins to mark and manipulate a particular subset
of cells involved in contextual learning. With this technique,
Cowansage et al. (2014) found that c-Fos-expressing neurons in

Frontiers in Behavioral Neuroscience | www.frontiersin.org 3 April 2018 | Volume 12 | Article 79

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Gallo et al. IEGs and Psychiatric Disorders

retrosplenial cortex are involved in the acquisition of contextual
memories and that the reactivation of this particular set of
cells can control behavioral response. Using a similar approach
Liu et al. (2012) attempted to test the existence of memory
engrams with a strategy of optogenetic and temporary control
of cellular activation. Their results lead to two important
conclusions. First, they provide evidence that IEGs, combined
with optogenetics, can tag neurons that are activated during
memory encoding for later manipulation. Second that artificial
light-reactivation of these memory engrams is sufficient for
behavioral memory recall for contextual fear conditioning. These
results support the role of c-Fos in learning and memory
while, at the same time demonstrate the power that this
type of approach have to understand memory processing in
more detail. If it is combined with other genetic models, it
can become an extraordinary tool for better understanding
the functional link between IEG, memory (Semon, 1904;
Morris, 1999; Martin and Morris, 2002; Gerber et al., 2004;
Josselyn, 2010) and psychiatric disorders (Chowdhury et al.,
2006; Chang et al., 2010; Roloff et al., 2010; Lu et al.,
2013).

MOLECULAR MECHANISMS OF EGR1

Egr1, also known as Zif-268, NGFI-A, Krox 24 or ZENK
(Milbrandt, 1987; Lemaire et al., 1988), is a member of
the zinc finger family of transcription factors. Its expression
can be induced by a variety of signals that includes injury,
stress, differentiation factors, as well as extracellular signals like
peptides, neurotransmitters and growth factors (Herdegen and
Leah, 1998; O’Donovan et al., 1999; Davis et al., 2003; Clements
and Wainwright, 2010). Compared to c-fos, Egr1 has a distinct
pattern of expression in the brain (Milbrandt, 1987; Herdegen
et al., 1990; Mack et al., 1990; Waters et al., 1990) and mediates
the expression of a number of late-response genes involved
in different neuronal processes from growth control to plastic
changes (Sukhatme et al., 1988; Williams et al., 2000; Bozon et al.,
2003; Maddox et al., 2011). Egr1 has a relatively high expression
maintained by normal ongoing neuronal activity (Worley et al.,
1991; Beckmann et al., 1997; Herdegen and Leah, 1998) in the
hippocampus (Hughes et al., 1992; Cullinan et al., 1995; Okuno
et al., 1995; Desjardins et al., 1997), including the dentate gyrus
(Cole et al., 1989; Wisden et al., 1990), as well as other brain
regions (Herdegen et al., 1990, 1995; Cullinan et al., 1995; Okuno
et al., 1995).

EGR1 AND MEMORY

The first approach to study Egr1 expression and its relation
with behavior employed two-way avoidance training (Nikolaev
et al., 1992b). In this study it was shown, for the first time, an
increased level of Egr1 mRNA in the hippocampus after one
training session (Nikolaev et al., 1992a). In general, most studies
use fear conditioning paradigms. With fear conditioning, Egr1 is
rapidly induced by behavioral training in the amygdala (Rosen
et al., 1998; Kwon et al., 2012), the hippocampus (Nikolaev
et al., 1992a; Miyashita et al., 1998; Guzowski et al., 2001b) and

the retrosplenial cortex (Pothuizen et al., 2009). Nonetheless,
inconsistent results were also found: Hall et al. (2000) reported
non-specific expression of this IEG. Similarly Weitemier and
Ryabinin (2004) showed a lack of Egr1 expression in the septum,
amygdala, hippocampus and the anterior cingulate cortex when
studying fear conditioning in C57BL/6J mice.

Despite these discrepancies, it is accepted that Egr1 has
an important role in learning and memory. Deletion of Egr1
produces impairment across a broad number of behavioral
tasks related to different brain regions. Typically, Egr1 mutant
mice displayed intact short-term memory in several types of
tasks; however, long-term memory was drastically impaired
in tasks such as social transmission of food preference,
taste aversion memory, spatial memory, object recognition
memory and object-place recognition memory (Jones et al.,
2001; Bozon et al., 2003; Davis et al., 2010). Interestingly,
studies using ASOs to partially knock down Egr1 in specific
structures showed that the knockdown of Egr1 in the
hippocampus does not impair contextual fear conditioning
(Lee et al., 2004) but impairs inhibitory avoidance memory
persistence (Katche et al., 2012) as well as recognition memory
(Zalcman et al., 2015). Egr1 knockdown in the amygdala
impairs both contextual (Malkani et al., 2004) and cued-fear
memory formation (Maddox et al., 2011) suggesting that the
deficits observed in the knockout might be attributed to its
role in specific structures or circuits. Egr1 knockout mice
were also shown to be impaired in the consolidation and
reconsolidation of contextual fear memory, while heterozygous
mice showed impairment only in the reconsolidation (Besnard
et al., 2013). This difference supported the hypothesis that
memory reconsolidation is not mechanistically a repetition
of consolidation. Consistent with the phenotype observed
in knockout mice, overexpression of Egr1 improved spatial
memory, but not memory for the objects, during a recognition
memory task (Penke et al., 2014) and enhanced aversive
memories’ resistance to extinction (Baumgärtel et al., 2008).
On the other side, failure to induce Egr1 allowed spontaneous
recovery of fear memory after extinction (Herry and Mons,
2004).

Historically, a number of studies supported the view that
proposed that Egr1 expression is sensitive to information
gained after the exposure to novelty or learning associated
environments (Tischmeyer and Grimm, 1999; Bozon et al.,
2002; Guzowski, 2002; Davis et al., 2003, 2006; Knapska
and Kaczmarek, 2004). This idea came from the increments
in the expression of Egr1 mRNA or protein after different
learning paradigms. Some examples are cited above, others
are: brightness discrimination (Grimm and Tischmeyer, 1997),
visual paired associate learning in monkeys (Okuno and
Miyashita, 1996; Tokuyama et al., 2002), birds song learning
(Mello et al., 1992; Jarvis et al., 1995; Bolhuis et al., 2000),
learning and retrieval of contextual and cue fear memory
(Frankland et al., 2004; Weitemier and Ryabinin, 2004) and
spatial learning (Guzowski et al., 2001b). Mechanistically, a
role of Egr1 in learning and memory is supported partially by
its modulation of plastic changes including spine and synapse
remodeling as well as growth of new synaptic connections
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(Lamprecht and LeDoux, 2004; Miniaci et al., 2008; Lai et al.,
2012).

These studies support a role of Egr1 in processes of learning
and memory formation and they do determine a necessity of
Egr1 for these neural and cognitive functions. But what is the
specific role of Egr1 in plasticity or memory processes? It is a
highly regulated transcription factor with many identified target
genes and probably many more still unknown. Unlike c-Fos,
there is a multitude of genes related to vesicular transport and
neurotransmitter release, clathrin-dependent, or actin, which are
commonly observed as direct Egr1 targets (Koldamova et al.,
2014; Duclot and Kabbaj, 2015, 2017b), supporting its role in
synaptic plasticity and, through this mechanism, in learning
and memory. Then, alterations in the normal expression of
Egr1, or in its protein function, could affect the encoding of
information in the engram and, therefore, affect higher orders
of organization.

MOLECULAR MECHANISMS OF ARC

The activity-regulated cytoskeletal (Arc) protein also known as
Arg3.1, is one of the most characterized molecules involved in
the consolidation of different types of memories. In contrast
to c-fos or egr1, this gene is known to code for a synaptic
protein. Arc is one of the effectors of the BDNF, glutamatergic,
dopaminergic and serotonin signaling (Chowdhury et al., 2006;
Granado et al., 2008; Karabeg et al., 2013; Leal et al., 2014; Panja
and Bramham, 2014; Pastuzyn and Keefe, 2014; Managò et al.,
2016; Mastwal et al., 2016). arc expression is under regulation of
Egr1 (Li et al., 2005). It is well characterized that the arc mRNA
is transported to the dendrites (Fujimoto et al., 2004; Steward
et al., 2015) and is usually used as marker for neural activity
(Chowdhury et al., 2006; Shepherd et al., 2006; Li et al., 2015;
Ivashkina et al., 2016). In this sense, the post-synaptic dendrites
are enriched with arc mRNA in contrast to the absence at the
pre-synaptic axons (Moga et al., 2004; Dynes and Steward, 2012;
#6010; Steward et al., 2015). Arc is involved in the generation of
new synapses and the maintenance of old ones required for some
plasticity mechanisms such as long-term potentiation (LTP)
and long-term depression (LTD; Korb and Finkbeiner, 2011;
Minatohara et al., 2016). Besides, arc encodes a growth factor that
associates with F-actin (Lyford et al., 1995). These features led to
postulate that Arc is involved in experience-dependent dendritic
reconfiguration (Pinaud et al., 2001; Steward and Worley, 2001;
Pinaud, 2004).

Arc gene has specific sequences normally found in
retroviruses such as HIV (Campillos et al., 2006). Recent
evidence was found of a plausible novel molecular mechanism
by which genetic information could be transferred between
neurons. It was shown that Arc protein forms a virus-like
particle that can enclose RNA and be transferred through the
synapse (Pastuzyn et al., 2018). Interestingly it was also proven
in Drosophila (Ashley et al., 2018). Though the mechanism is
not entirely new, considering there have been studies suggesting
these pathways and their potential role in synaptic plasticity
before Budnik et al. (2016); Zappulli et al. (2016) this was
the first time that Arc was proven to form these particles and

enclose RNA. Further research is needed on this mechanism to
understand how it can be linked with synaptic plasticity.

ARC AND MEMORY

Up-regulation of arc in the Morris water maze was observed in
cortical and para-hippocampal regions during memory spatial
retention and after fear conditioning training, triggered by
context exploration (Lonergan et al., 2010; Barry et al., 2016).
Gusev and Gubin (2010) found differences in arc expression
with memory durability; select segments in the prefrontal,
retrosplenial, somatosensory and motor cortex showed similar
robust increases in arc expression in recent and remote spatial
memories. In another work, the study on the expression of
arc yielded its requirement for the consolidation of long-term
memory, but not for learning or short-term memory (Plath
et al., 2006). Kubik et al. (2012) showed that the inactivation
of dorsal CA1 was sufficient to impair the spatial performance
in the Morris water maze task and this was also followed by a
reduction of the expression of arc in the retrosplenial cortex.
The requirement of Arc expression for long-term plasticity and
memory consolidation was shown by infusing arc ASO into
the dorsal hippocampus, the lateral amygdala or the anterior
cingulate cortex (Guzowski et al., 2000; Ploski et al., 2008;
Holloway and McIntyre, 2011; Nakayama et al., 2015). Arc
also facilitates the consolidation of weak memories, and has
been reported to play a role in behavioral tagging in the
hippocampus (Moncada and Viola, 2007; Ballarini et al., 2009;
Wang et al., 2010; Moncada et al., 2011; Martínez et al.,
2012).

A genetic KO for arc expression generates deficits in the
consolidation of different types of long-term memories (spatial,
fear and episodic-like) together with changes in long-term
plasticity (Plath et al., 2006; Peebles et al., 2010; Yamada
et al., 2011). In addition, a significant correlation between arc
mRNA expression and behavioral performance was found during
spatial reversal task suggesting a role in cognitive flexibility
(Guzowski et al., 2001b). The same group, Guzowski et al. (2006)
showed that both the activity and the arc dynamic expression
of CA1 neurons depend on the recent behavioral history of
the animal: when the animals were exposed repeatedly to the
same context, arc expression in the CA1 region was decreased.
A recent study showed that the infusion of arc ASO into the
perirhinal cortex in an object-pattern-separation task affects the
consolidation of overlapping object memories (Miranda and
Bekinschtein, 2018).

In summary, of the three genes reviewed here, a large and
robust body of evidence suggests that arc and Egr1, although
to a different extent, influence the dynamics of large networks
associated with learning and memory, indicating that they have a
more specific role than c-fos.

PSYCHIATRIC DISORDERS: MEMORY
DEFICITS AND IEGs

Going from genes to neuropsychiatric disorders has proven to be
a hard task, partly because psychiatric disorders have polygenic
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origin with increasing levels of complexity. Each gene will have
an effect at a cellular level but it will also interact with other genes
with its own regulation.

Another relevant issue is the environmental factor. It is well
established that complex interactions between genes and the
environment are involved in multiple aspects of neuropsychiatric
disorders. It can determine the vulnerability to a particular
disorder and even the response to therapeutic intervention.
Then, it seems crucial to achieve a better comprehension of the
reaction of individuals to environmental stimuli in a particular
genetic context. This level of analysis exceeds the scope of this
review. Here we will approach how IEGs can intervene with
fundamental neurobiological mechanisms of behavior, bearing in
mind that in the central nervous system neuronal plasticity and
neurotransmission are among the main processes of interactions
between genes and the environment. In particular, IEGs are
critical components of these interactions for they provide the
molecular framework for a rapid and dynamic response to
neuronal activity, opening the possibility of a lasting and
sustained adaptation by regulating the expression of a wide range
of genes.

The defining characteristics of the IEGs, i.e., activation within
the range of minutes and independent expression of protein
synthesis, give us a very strong guideline that they are a necessary
mechanism of action that will, in turn, allow encoding and
storing of memories. Then, deciphering the functions of IEG
can provide relevant information on how these mechanisms fail
in pathological conditions and thus provide new insights into
the molecular mechanisms that are responsible for symptoms
associated with neuropsychiatric disorders.

IEGs IN MAJOR DEPRESSION DISORDER

Major depressive disorder (MDD) is a mood disorder with
prominent disturbances in cognitive functions such as certain
types of memory, executive function, and attention (Jaeger
et al., 2006; Mcintyre et al., 2013). MDD patients have reduced
hippocampal and prefrontal cortex volumes. These alterations
are mainly due to a clear-cut reduction in the neuropil and
neurons in both regions have less complex dendritic trees
(Saylam et al., 2006; Arnone et al., 2012). Animal models of
depression have also shown a reduction in the volume of some
regions of the prefrontal cortex and hippocampal formation
(Hains et al., 2009; Czeh et al., 2016) with decreases in the length
and complexity of dendrites and reduced number of dendritic
spines.

One IEG that participates in synaptic transmission and
dendritic plasticity is arc. Given that it has been shown that
the expression of arc in the hippocampus and prefrontal
cortex in animal models of depression change in a similar
way to the alterations found in post-mortem tissues of MDD
patients (Lee et al., 2012), it was postulated as a candidate
target for intervening to ameliorate cognitive deficits in
MDD. Interestingly, chronic stress reduces arc expression in
medial prefrontal cortex and increases it in the amygdala
(Ons et al., 2010), mirroring what is observed in MDD
patients (Lee et al., 2012). Interestingly, chronic—but not

acute—treatments with antidepressants restore arc expression in
the hippocampus and prefrontal cortex (Pei et al., 2003; Molteni
et al., 2008, 2010) supporting its involvement in psychiatric
disorders.

Another IEG associated to MDD is Egr1. Covington
et al. (2010) found a decreased expression of Egr1 in the
medial prefrontal cortex in depressed patients refractory
to treatment and it was also observed in non-medicated
subject. It should be noticed that this region has consistently
been reported to be affected in depressed patients and in
animal models of depression (Krishnan and Nestler, 2008;
Koenigs and Grafman, 2009; Duclot and Kabbaj, 2017a,b;
Lefaucheur et al., 2017). Based on these and other studies,
a direct link between Egr1 in the mPFC and the depressive
phenotype had begun to be analyzed as a possible marker
to predict the effectiveness of antidepressants (Morinobu
et al., 1995, 1997; Bjartmar et al., 2000; Duclot and Kabbaj,
2017a,b).

Repeated exposure to stressful experiences is one of the
main risk factors for the development of stress-related mood
disorders like anxiety and depression (Kessler and Wang,
2008). Depending on the nature, duration, and intensity
of the stress, changes in the expression of Egr1 may vary
across the entire central nervous system (Knapska and
Kaczmarek, 2004). In addition, Egr1 is a critical factor
in encoding the behavioral enduring effects of stress in
the hippocampus. Moreover, stress-related fear memory
is associated with an increased expression of Egr1 and
the fear related response is blocked by knocking down
Egr1 expression (Revest et al., 2005, 2010; Saunderson et al.,
2016).

In line with this clinical observations, it was found that
chronic stress provoked in rodents a decreased expression of
Egr1 in the medial prefrontal cortex (Covington et al., 2010) and
hippocampus (Xu et al., 2015), and an increase of Egr1 expression
in the lateral amygdala (Monsey et al., 2014). In addition, using
social isolation in rodents, another animal model of depression,
it was observed a marked reduction in Egr1 mRNA levels in
the hypothalamus, the hippocampus, and the medial prefrontal
cortex (Matsumoto et al., 2012; Hodges et al., 2014; Okada et al.,
2014). This can be paralleled to the general idea that stress-
related depressive disorders are associated with a down-regulated
activity in the prefrontal cortex and the hippocampus, and an
up-regulation of neuronal activity in the amygdala.

A new player in the neurobiology of depression is another
member of the FOS family, ∆FosB. In marked contrast
to what happens with the other members of the family,
this transcriptional regulator is not rapidly activated by
environmental stimuli. Instead, its activation is delayed and
accumulates to repeated stimulation (chronic stress) mainly
in nucleus accumbens neurons (Perrotti et al., 2004; Nestler,
2008). In addition, chronic administration of antidepressants,
like fluoxetine and ketamine, induce ∆FosB in nucleus
accumbens (Vialou et al., 2010; Donahue et al., 2014), a
brain region associated to reward and motivation. Nestlers
group has established that increased expression of ∆FosB
within accumbal D1-type medium spiny neurons promotes
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stress resilience, and mediates antidepressant-like responses
(Nestler, 2015). In addition, ∆FosB overexpression in nucleus
accumbens promotes several rewarding behaviors, including
sucrose drinking, consumption of high-fat food, and sexual
activity. Despite its role in nucleus accumbens associated
behaviors, since depression is a complex disorder affecting
many brain regions, it will be important to study ∆FosB
role in other brain structures in which its expression is
induced by chronic antidepressant administration (Vialou et al.,
2014).

FEAR-RELATED DISORDERS AND THE
INVOLVEMENT OF IEGs

Most anxiety disorders are associated with a strong
environmental component (fear) and a physiological defect
in response to that component. Anxiety disorders include simple
phobia, social phobia—which involves fear and avoidance of
social situations—, and panic disorder; they all share abnormal
fear responses associated with different environmental stimuli
but also differ in important and specific symptoms. For example,
PTSD is a chronic neuropsychiatric disorder that results from a
very strong traumatic event and it is characterized by intrusive
and persistence fear related memories. The etiology of PTSD
remains largely unknown but different neurobiological systems
have been identified as participants in the disorder (Parsons and
Ressler, 2013).

The first opportunity to apply treatments designed to
modify the formation and persistence of fear memories is
around the aversive experience, mainly through pharmacological
manipulations (Monfils et al., 2009; Quirk and Milad, 2010;
Quirk et al., 2010). Modulation of opioid systems has
been proven to be effective in PTSD (Holbrook et al.,
2010). However, other pharmacological manipulation yielded
mixed results (Maren and Chang, 2006; Myers et al., 2006;
Parsons and Ressler, 2013). A new strategy was developed
to attenuate fear-related memories by manipulating memory
reconsolidation and extinction processes. Immediate or delayed
extinction procedures induce a reduction in those aversive
memories that are context-dependent and short-lived (Hermans
et al., 2006; Woods and Bouton, 2008) suggesting that its
efficacy as a treatment depends on how old the memory
is (Milekic and Alberini, 2002; Suzuki et al., 2004). A
novel behavioral design that involves a mixed reconsolidation-
extinction procedure has proved to be a better strategy
(Monfils et al., 2009; Chan et al., 2010; Schiller et al.,
2010).

Few studies have analyzed the role of IEG in PTSD related
animal models, though they reported interesting results. Changes
in arc expression was observed along the septo-temporal axis
of the hippocampus of PTSD susceptible rats (Nalloor et al.,
2014), suggesting that it might exist a basal difference among
susceptible population. arc expression in the hippocampus is
also involved in the perpetuation of fear related memories
(Nakayama et al., 2015) while changes in the amygdala appeared
to be related to the response to uncontrollable stress (Machida
et al., 2018). Then, the IEGs analyzed here directly or indirectly

play a role in these processes, so that a better understanding
of the molecular mechanisms underlying memory processing,
including the role of specific IEGs, may be essential to
obtain new targets and strategies as treatments for fear-related
disorders.

IEG IN SCHIZOPHRENIA

Schizophrenia is characterized by profound cognitive deficits
that are not alleviated by currently available medications. Many
of these cognitive deficits involve dysfunction of the newly
evolved, dorsolateral prefrontal cortex. The brains of patients
with schizophrenia show atrophy in the dendrites of the
pyramidal cells, particularly from dorsolateral prefrontal cortex
(Weinberger et al., 1986; Bonilha et al., 2008; Konopaske et al.,
2014).

It has been shown that Egr1 expression is decreased in the
dorsolateral prefrontal cortex of schizophrenic patients. This
down-regulation correlates with the levels of gad1 mRNA, which
is also down-regulated in schizophrenia (Yamada et al., 2007;
Pérez-Santiago et al., 2012; Kimoto et al., 2014). Antipsychotics
administration, in contrast, up-regulates Egr1 and related IEGs
in frontal and striatal regions (de Bartolomeis et al., 2015a).

Searching for biological markers of schizophrenia in
peripheral tissues, it was found that whole blood samples of
patients suffering this disease have an increased expression of
Egr1 (Kurian et al., 2011; Cattane et al., 2015). Besides, Egr1 and
other IEGs are also associated with response to antipsychotic
drugs (MacGibbon et al., 1994; Robbins et al., 2008; Bruins Slot
et al., 2009; Wheeler et al., 2014; de Bartolomeis et al., 2015b;
Duclot and Kabbaj, 2017b).

Changes in c-fos expression have been reported in
schizophrenia related animal models. Acute treatment with
the NMDA antagonist MK-801 produced deficits in novel
object recognition, conditioned test aversion and a moderate
increase in locomotion. Interestingly, animals treated with this
drug showed increased levels of c-Fos expression in cortical
regions associated with cognitive processing (Vishnoi et al.,
2015). Subchronic, but not acute, treatment with PCP, another
NMDA antagonist, produces deficits in working memory tasks
and evokes a particular pattern of c-fos expression (Castañé
et al., 2015) suggesting that there are plastic changes related
to the behavioral output. Interestingly, c-fos expression in the
mPFC does not correlate with glutamic acid decarboxylase
67 expression as does Egr1 (Kimoto et al., 2014). CamKII is
a Serine/Threonine protein that plays a key role in neural
plasticity. α-CamkII heterozygous and knock out mice have
working memory deficits. This behavioral deficits correlate
with decrease c-Fos expression in key areas associated with
working memory like mPFC and hippocampus (Matsuo et al.,
2009). This changes in c-Fos expression appears to be task
specific since the same α-CamkII +/- mice showed normal
c-Fos expression pattern in the mPFC after fear conditioning
training (Frankland et al., 2004). An interesting and new target
is matrix metalloproteinase 9 (MMP-9), an enzyme activated
outside the cell by proteolytic cleavage that degrades extracellular
matrix. It has been implicated in synaptic plasticity and is under
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c-fos regulation (Michaluk and Kaczmarek, 2007; Michaluk
et al., 2007; Huntley, 2012). Aberrant levels of MMP-9 has
been observed in different psychiatric disorders, including
schizophrenia and importantly, blood levels of MMP-9 or
gene responsiveness to antipsychotics has been related to
this disorder (Lepeta and Kaczmarek, 2015; Vafadari et al.,
2016).

The interaction between Arc and dopamine appears to be
bidirectional. Using a genetic model in which arc was deleted
in the whole brain, Managò et al. (2016) found a dysregulation
in the dopaminergic system with reduced dopamine levels in
the cortex and increased levels in the striatum. Arc deletion
induced these changes that are characteristic of a schizophrenia-
related model. Consistent with this finding, the authors also
found deficits in multiple domains correlated with cognitive,
positive and negative associated symptoms of schizophrenia and
identified a complex interaction between Arc, dopaminergic
system and schizophrenia (Managò et al., 2016; Managò and
Papaleo, 2017).

PSYCHIATRIC RELATED DRUGS AND IEGs

IEGs have not only been associated directly with particular
psychiatric disorders but they have also been used as markers of
the specific action of different psychiatric drugs that are related.
Haloperidol, a typical antipsychotic drug induces changes in c-fos
and Egr1 expression in the striatum and nucleus accumbens
(MacGibbon et al., 1994). Olanzapine, in acute doses show
increased c-fos expression in the medial prefrontal cortex
(Robertson and Fibiger, 1996; Ohashi et al., 2000), and the locus
coeruleus (Ohashi et al., 2000; Dawe et al., 2001), while a chronic
treatment showed a downregulation of Egr1 and an upregulation
of FOS-like expression in the same structures (Verma et al.,
2006). These results, together with other studies (Nguyen et al.,
1992), suggest those antipsychotics do affect in some way IEG
expression, however, they do not do it in a concerted fashion. It
would be interesting to address if the IEGs’ expression pattern
correlates with antipsychotics’ activity.

Antidepressants’ activity has also been analyzed in relation
to their effect on IEG expression. Acute administration
of fluoxetine, imipramine, LiCl, or mirtazapine produced
changes in IEG expression in different regions. There were
changes found for c-fos in the anterior insular cortex, the
septum and the amygdala using different antidepressants. In
the case of Egr1 a consistent change was found only in
the amygdala (Slattery et al., 2005). Chronic antidepressants
can restore the up-regulation of c-fos in the frontal cortex
following an acute stress experience (Beck and Fibiger,
1995a,b). Furthermore, chronic administration of fluoxetine and
vortioxetine decreased Arc and c-Fos, but not Egr1 in the frontal
cortex, hippocampus and amygdala of rodents (Waller et al.,
2017).

Although these studies show changes in the expression
of IEGs in apparent response to different drugs, they are
correlational studies and do not address any role of these
proteins in their mechanism of action. Despite this caveat,
even these studies provide important information regarding

circuits involved in learning and memory that can be affected in
psychiatric disorders.

CONCLUSION

Although the prolific use of IEGs in neuroscience, our
understanding of their role in neurobiological processes remains
insufficient. This is due at least to the large number of
IEGs that are currently under study, but also because of
the difficulty in fully comprehending their roles and their
downstream effectors. Independently of this, IEGs are used
as markers of synaptic activity and as that, are useful. Even
more, when combined with modern techniques, like optogenetic
or chemogenetics (Reijmers et al., 2007; Garner et al., 2012;
Liu et al., 2012; Cowansage et al., 2014) IEGs can become
powerful tools to identify activity-dependent cell populations.
However, important gaps in the study of IEGs exist. As we
mentioned above we still do not know much regarding the
cellular effectors of these genes specifically in the Central
Nervous System. Likewise, their role in memory processes
requires further investigation. The lack of information regarding
this particular point is surprising, especially if we consider
that tools to address it have been around for decades (e.g.,
use of antisense or inducible genetic manipulations). A better
understanding of these points becomes particularly relevant
considering their role in psychiatric conditions. Understanding
neuropsychiatric disorders is principally challenging since their
etiology and pathophysiology are mostly unknown. Nonetheless,
by focusing on the study of endophenotypes (Bearden and
Freimer, 2006) together with the use of animal models (Krishnan
et al., 2008; Nestler and Hyman, 2010; Anderzhanova et al.,
2017), our understanding of these disorders has considerably
improved in the last decade. Analyzing the role of IEGs
in specific endophenotypes or animal models of psychiatric
disorders could shed light on both the genetic and molecular
basis of these diseases. Together with a better understanding
of their biological roles, the manipulation of these genes
in animal models could provide a robust model for the
discovery of new pharmacological targets. In this review, we
aimed to resume the literature looking at the intersection
between psychiatric disorders, IEG and memory. Interestingly,
we found that most of these studies were correlational; with
surprisingly few studies analyzing a causal role of IEGs in
psychiatric disorders. It is clear now that IEGs are much
more than simple activation markers and they deserve to be
analyzed as possible key participants in psychiatric conditions.
Genetic manipulations that allow the temporal and spatial
control of expression of these genes are powerful tools to
analyze the role that IEGs have in memory and other
cognitive domains in psychiatric animal models. We consider
that, until now, the intersection between psychiatric models,
cognition and IEG function did not receive the attention that
it deserves. The manipulation of IEG expression as a means
of intervention on the onset and progression of psychiatric
conditions could generate new targets in the development
of their treatments, targets that nowadays are completely
unnoticed.
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