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Face recognition is an important index in the formation of social cognition and
neurodevelopment in humans. Changes in face perception and memory are connected
with altered sociability, which is a symptom of numerous brain conditions including
autism spectrum disorder (ASD). Various brain regions and neuropeptides are implicated
in face processing. The neuropeptide oxytocin (OT) plays an important role in various
social behaviors, including face and emotion recognition. Nasal OT administration is a
promising new therapy that can address social cognition deficits in individuals with ASD.
New instrumental neurotechnologies enable the assessment of brain region activation
during specific social tasks and therapies, and can characterize the involvement of
genes and peptides in impaired neurodevelopment. The present review sought to
discuss some of the mechanisms of the face distinguishing process, the ability of OT to
modulate social cognition, as well as new perspectives and technologies for research
and rehabilitation of face recognition.
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INTRODUCTION

Face perception and recognition are essential elements of social interaction, and represent
critical skills acquired early in human life. Socially meaningful information regarding levels of
familiarity, attractiveness, and emotional status can be derived from facial recognition, which
then shapes behavioral patterns. Loss of the ability to recognize faces is usually associated with
impaired neurobiological mechanisms related to visual face perception and/or memory problems.
Indeed, alterations in face perception can lead to prominent changes in sociability observed in
individuals with severe brain conditions, including autism spectrum disorder (ASD), Turner
syndrome, Alzheimer’s disease, depression, and schizophrenia. Particularly, individuals with ASD
may exhibit abnormal memory for facial identity, gaze processing, and recognition of emotional
facial expressions (Golarai et al., 2006). Although these disturbances can be difficult to characterize,
parents of autistic children are able to recognize subtle deficits in face processing that occur within
the context of broad autism phenotypes (Yucel et al., 2015). As a result of the neurodegeneration
that accompanies Alzheimer’s disease, difficulties in memory retrieval and mental rotation of
faces can affect the ability of patients to recognize faces (Adduri and Marotta, 2009). Further, in
individuals with depression, the perception of negative faces can be stronger than that for positive
faces (Dai and Feng, 2012).
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Comprehensive studies have found that neuropeptides
correspond to face processing. For instance, the neuropeptide
oxytocin (OT) plays a significant role in different types of social
behaviors, including face and emotion recognition (Guastella
etal., 2008; Bartz et al., 2011). Recently, nasal OT administration
has shown therapeutic promise in addressing deficits in social
cognition that occur in individuals with psychiatric disorders
such as ASD. Some psychological mechanisms underlying
face recognition processes have been addressed in previous
publications, and thus will not considered here. This review will
focus on the ability of OT to modulate social cognition and to
ameliorate social impairment that occurs in various disorders,
with a focus on ASD.

BRAIN REGIONS INVOLVED IN FACE
RECOGNITION

The detection and recognition of faces have been found
to be distinct processes involving neural systems that are
not likely implicated in non-social object recognition (Tsao
and Livingstone, 2008). Studies conducted from the 1970s
to the 1990s revealed that face processing is linked to
different brain circuits that are involved in face discrimination,
familiar face recognition, and unfamiliar face recognition (Elgar
and Campbell, 2001). More recently, studies using Positron-
emission tomography (PET) and functional magnetic resonance
imaging (fMRI) have attributed the neurobiological basis of
face perception impairment to alterations in clusters of face-
selective neurons located in the temporal lobe (de Souza et al.,
2008) or the fusiform face area, which is part of the fusiform
(occipitotemporal) gyrus (Tsao and Livingstone, 2008). Visual
face recognition, which requires either simultaneous feature
integration or subsequent feature integration, was found to
activate the fusiform gyrus without lateralization, such that
both hemispheres are equally involved in the spatial and
temporal integration of features (James et al., 2010). However,
subsequent recent clinical and neuroimaging studies have found
that activation of the fusiform face area in the right hemisphere
is associated with holistic processing, while activation of the same
area in the left hemisphere is associated with analytic processing
(de Moraes et al., 2014). This suggests that the advantages for face
analysis in the right hemisphere would be lost in cases where an
individual is required to perform recognition of inverted faces.
Very recently, a right hemispheric dominance in face recognition
in humans was confirmed, and the face-selective response was
found to be largest in the right middle fusiform gyrus (Jonas et al.,
2016).

Almost two decades ago, neurons in the prefrontal cortex
were found to selectively respond to faces (Scalaidhe et al., 1999;
Nelson, 2001). These face-selective responses were paired with
strong interactions and emotional responses within the temporal
lobe, hippocampus, and amygdala, which enable encoding,
storage, and retrieval of both short-term and long-term memories
(Simons and Spiers, 2003). Neurons in the inferior temporal
cortex are driven by the contrast and geometrical features
of objects. In accordance with the encoding specialization of

these neurons, face-selective responses are generated through
the modulation of firing rate within a wide spectrum. Thus,
multiple different high contrast features can be identified in
the target object (Ohayon et al., 2012). Further, single neurons
have been found to selectively respond to specific individuals
(Quiroga et al., 2005). Experiments with non-human primates
have confirmed that face-selective neurons may preserve specific
activity patterns induced by face recognition (McMahon et al.,
2014). Interestingly, this has been found to correspond to up to
1 year of familiarization.

Within the medial temporal lobe, hippocampal neurons
contribute to the recollection of the stimulus, whereas the
perirhinal cortex is involved in familiarity-based recognition
(Eichenbaum et al., 2007). The occipital face area takes part in
detailed face recognition, but is not involved when the fusiform
face area is activated by simple discrimination of faces from
non-social stimuli (Atkinson and Adolphs, 2011).

Face-selective neurons have been found in the amygdala,
indicating that this region plays an important role in face
recognition (Kosaka et al., 2003). Todorov (2012) proposed
that the role of the amygdala in face perception is to motivate
the brain to pay attention to novel socially meaningful stimuli
(faces). This may explain why face recognition is often impaired
in patients with amygdala atrophy. Specifically, fMRI studies
have revealed that patients with frontotemporal degeneration
associated with the affected amygdala do not display appropriate
activation for fearful compared with neutral faces (De Winter
et al, 2016). Face-specific responses in the amygdala vary
depending on the individual, although atypical positive and
negative faces are the strongest inducers of amygdala-mediated
face perception (Todorov et al, 2013). Several studies have
ruled out the possibility that fearful face perception might be
linked to anxiety level, as no direct correlation was found
between anxiety and threatening face detection (Doty et al,
2014). In individuals with generalized social anxiety disorder,
OT simultaneously dampens amygdala reactivity and enhances
amygdala functional connectivity with the insula and middle
cingulate/dorsal anterior cingulate gyrus during the processing
of fearful faces (Gorka et al., 2015). However, in the general
population, there is evident variability in the ability to detect
fearful faces. Individuals who are able to recognize fearful faces
demonstrate more prominent amygdala activity compared with
those who are unable to discriminate fearful faces (Pessoa et al.,
2006) (Figure 1).

Ventral occipitotemporal face-preferential regions are
activated regardless of long-term face familiarity, whereas
the medial temporal lobe (including the hippocampus and
amygdala) and anterior inferior temporal cortex only respond
when information regarding familiar faces has been accumulated
(Ramon et al.,, 2015). In children, face-processing tasks do not
induce network modulation with the same level of intensity as
that observed in adults, indicating that the relevant functional
connections do not mature until about 12 years of age (Behrmann
etal., 2016).

Translating human social recognition deficits into rodent
and non-human primate behavior well-demonstrated sensitive
brain regions that responsible for the ability to recognize and
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FIGURE 1 | Cognition and memory of social interactions. Cognition and memory of social interactions are controlled by different brain regions and mediated by
various neurotransmitters (glutamate, GABA, acetylcholine, dopamine, steroids, endocannabinoids, etc.) and neuropeptides (oxytocin, arginine-vasopressin) in

distinguish between conspecifics: amygdala (Qi et al, 2018),
nucleus accumbens (Mul et al, 2018), hippocampus (Raam
et al., 2017; Lin et al, 2018), hypothalamus (Remedios et al,
2017). Cortical and subcortical circuits support efficient social
recognition (Rogers et al., 2018).

BRAIN ACTIVITY AND FACE
RECOGNITION IN HUMANS

Electrophysiological and magnetoencephalographic (MEG)
analyses have indicated that face processing might be monitored
via several types of synchronized electrical activity in the brain.
Specifically, theta (4-8 Hz) and gamma oscillations (28-48 Hz)
appear to be helpful for distinguishing the recognition of
known (familiar) from unknown faces (Basar et al., 2007). Face
perception induces gamma oscillations with a frequency higher
than 30 Hz, reflecting the balance of GABA/glutamate-controlled
inhibition/excitation in the brain. Such oscillations appear to
be larger when a face is presented in comparison with other
objects, and thus might be associated with the integration of
visual inputs (Engell and McCarthy, 2011; Gao et al, 2013).
In general, compared with object recognition, face recognition
appears to activate more synchronized neuronal assemblies
(Zion-Golumbic et al., 2008).

In young children (up to 8 years old) with ASD, gamma
oscillations recorded via EEG and MEG revealed signs of
desynchronization (Kikuchi et al., 2013a). In terms of impaired

brain functional connectivity in this population, the degree
of developmental delay was found to correspond with the
degree of excess gamma band oscillations in the frontal area,
suggesting aberrant visual perception and cognition. Preserved
visual reasoning ability was coupled with rightward lateralization
in the functionally connected parietal and temporal regions in
children with ASD (5-7 years old) (Kikuchi et al., 2013b). Face
perception-induced activation can also be monitored via event-
related potential (ERP) components, particularly, the N170,
which serves as a marker of face processing in the brain
(Feuerriegel et al., 2015).

Brain regions involved in face perception and recognition in
normal individuals might not be fully activated in those with
ASD who have morphological abnormalities in the amygdala
(Pierce et al., 2001). A recent meta-analysis of neuroimaging data
indicated that activation patterns in brain regions responsible for
social and/or face cognition in ASD patients differ from those in
typically developing individuals (Patriquin et al., 2016).

OXYTOCIN AND CONTROL OF FACE
RECOGNITION IN
(PATHO)PHYSIOLOGICAL CONDITIONS

Central release of OT is a major regulator of numerous social
behavioral processes, including social communication, social
recognition, social memory, interpersonal cooperation, and
decision-making (Jurek and Neumann, 2018).
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Rodent studies well-established that release of OT is
controlled by CD38. Being actually NAD ™ -glycohydrolase, CD38
synthesizes cyclic ADP-ribose which is a Ca? " -mobilizing second
messenger present in OT-producing neurons (Jin et al., 2007).
Therefore, researchers have postulated that impaired CD38-
mediated OT release might be caused by intracellualar NAD™
depletion (i.e., under conditions of oxidative stress or DNA
damage and hyperactivation of NAD'-consuming DNA repair
enzymes), and diminished CD38 expression or lower enzymatic
activity may lead to prominent alterations in various aspects of
mammalian social behavior (Jin et al., 2007; Higashida et al., 2012;
Lopatina et al., 2012). Low CD38 expression is associated with a
risk for ASD through impaired OT secretion (Lerer et al., 2010).
Expression of CD38 [and single nucleotide polymorphisms
(SNPs) in the CD157 gene as a paralog of CD38] is correlated
with scores on the Autism Quotient (Chong et al., 2017).
Moreover, CD38 SNP (rs3796863) (AA genotype) is associated
with elevated plasma OT concentrations and increased levels of
suicidal intentions, this is thought to be due to an increased
sensitivity to disturbed social relations (McQuaid et al., 2016).

Previous mammalian studies have shown that OT may rescue
social behaviors affected by alterations in OT-controlled signaling
systems. Long-term social recognition memory in rats involves
protein synthesis and OT-dependent long-term depression in
the medial amygdala (Gur et al., 2014). Male rats recognized
a previously encountered female adult stimulus with a region-
dependent contribution of endogenous OT (Lukas et al., 2013).
CD387/~ mice demonstrate abnormal social memory and OT
administration rescues it (Jin et al., 2007). And impaired social
preference in oxytocin deficient mice may be due to severe deficits
in social recognition (Tsuda et al., 2018).

Genetic, optogenetic, and pharmacological manipulations
proof that oxytocin receptors (OXTRs) signaling is crucial for
entrainment of odor to social cues. OT directly impacts the
piriform, the olfactory sensory cortex, to mediate social learning
and plays a role in both appetitive and aversive social learning
(Choe et al., 2015). Retrograde neuronal tracing combined with
immunocytochemistry revealed that the OT neurons in the
paraventricular nucleus project directly to the CA3 region of the
hippocampus (Lin et al., 2017) and optogenetic terminal-specific
attenuation confirmed a critical role for aCA2/CA3 outputs to
posterior CA1 region of hippocampus for discrimination of social
stimuli (Raam et al., 2017).

Dogs are social animals and have been verified to show
numerous human-analog social behaviors and essential to OT
system research. Intranasal OT enhances dogs™ ability to use
human pointing cues in an object choice task (Oliva et al., 2015;
Macchitella et al., 2017). And these effects of exogenous OT are
breed-specific. For example, Border Collies are looked more at
the owner and shifted their gaze more between the sound source
and the owner in a potentially dangerous situation and looked
longer at the experimenter’s eyes in the “Tolerance of prolonged
eye contact’ test after OT administration (Kovdcs et al., 2016).

Nowadays eye tracking method to dogs is viable. Dogs show a
greater visual preference for emotionally meaningful face areas
(e.g., the eyes as opposed to the neck and the forehead) and
a single dose of intranasal OT decreases dogs’ looking to the

human faces expressing angry emotional expression (Kis et al.,
2017).

Accumulating evidence from non-human primates studies
indicates that functional benefit in the neural face recognition
system is linked to regulation of OT release and OT action
at target cells. Direct administration of OT into amygdala
boosts social attention and promotes pro-social decisions in
rhesus macaques (Chang et al, 2015). Intranasal treatment
(inhaling aerosolized) with OT relaxed social interactions
between monkeys and injection of OT into the anterior cingulate
gyrus reproduced all of these effects (Jiang and Platt, 2018).
Recently, Madrid et al. (2017) conducted an elegant study that
found that face recognition for novel faces in young monkeys
(3-4 months old) predicted their cerebrospinal fluid OT levels
during the subsequent 5 years. A greater preference for novel
faces was correlated with higher central OT concentrations,
but not blood OT concentrations. The authors suggested that
central OT biology is related to individual face perceptual abilities
that are necessary for group living. Because this preference was
unchanged for 5 years, they also suggested that this trait is stable,
which may enable animals to live together over long periods of
time.

Human study reveals the administration of OT facilitates face
recognition via an increase in the salience of socially important
stimuli (Bate et al., 2015). Specifically, well-known human faces
are recognized more accurately after OT administration. This
appears to be due to an increase in the familiarity of the faces kept
in one’s memory. Further, OT improves the recognition of faces
with positive emotions. This is likely due to enhanced memory,
as opposed to enhanced perception. Almost all of these effects
appear to be gender-specific, although OT-induced memory
impairment has been documented in both women and men
(Herzmann et al., 2013). OT increases the ability of Korean males
to recognize positive emotion, and this effect is dose-dependent
(Shin et al., 2018). A recent study reported that in women, OT
increased the accuracy of recognition of faces displaying angry
and happy emotions and reduced the response time to negative
emotional faces, while the same dose of OT had no effect in men.
This indicates that OT may increase the efficiency of working
memory involved in face processing in women (Yue et al., 2018).

Exogenous OT greatly affects face recognition in humans.
For instance, administration of OT 40 min before face memory
encoding resulted in an improved ability to recognize a face
viewed on the previous day, while OT administration had no
effect on non-social stimuli (Rimmele et al., 2009) (Figure 2).
Interestingly, intranasal OT administration in men suppressed
the response of the right amygdala to faces with various
emotional expressions, indicating that attenuation of amygdala
activity could facilitate social behavior, regardless of whether
the social stimuli are positive or negative (Domes et al., 2007).
However, the opposite effect was observed in women: the
same dose of exogenous OT resulted in enhanced amygdala
activity in response to fearful faces. This effect was particularly
strong in the luteal phase of the menstrual cycle (Domes
et al,, 2010). Conversely, some data support the absence of
any clear association between gender and OT action in terms
of face processing. This is presumably because gender-specific
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differences in face recognition are based on OT-mediated events,
thus, women usually recognize all human faces as more positive,
but with a significant preference for children’s faces (Proverbio,
2017) (Figure 2). Recent study confirmed that females show
more accurate facial emotion recognition compared to males
and are faster in correctly recognizing facial emotions, but males
and females do not differ in the recognition of neutral faces
(Wingenbach et al., 2018).

Asperger’s syndrome, which is now classified as a type of
ASD, is linked with OT insufficiency (Di Napoli et al., 2014;
Domes et al., 2014). This disorder is characterized by alterations
in non-conscious and conscious facial emotion recognition that
have been measured using current experimental protocols (Chien
et al.,, 2016). The amygdala may be involved in mediating the
stimulating effect of exogenous OT in patients with Asperger’s
syndrome (Domes et al., 2014).

Deficits in OT secretion are believed to result in autism-
like behavioral traits (Neumann, 2008; Higashida et al., 2011).
Thus, it is not surprising that a common SNP in the OXTR
(rs237887) was found to be associated with the parameters of face
recognition memory in 198 European families with at least one
child with an ASD diagnosis (Skuse et al., 2014). However, this
study used the Warrington recognition memory test for faces,

and these findings were not replicated in an additional study with
370 participants that used alternative protocols (Verhallen et al.,
2017), specifically, the Cambridge face memory test, Mooney
face test, Glasgow face matching test, and the Composite face
test. Another SNP in the OXTR (rs7632287) was found to be
associated with the ability to recognize faces. Individuals who
carry the GA genotype exhibit enhanced amygdala activity during
face encoding, as well as enhanced memory (Westberg et al.,
2016). Even in typically developing children, SNPs in the OXTR
are associated with the parameters of face recognition. A specific
combination of SNPs (rs2254298 and rs53576) has been proposed
to most efficiently modulate social behaviors (Slane et al., 2014).
Particularly, rs2254298 contributes to amygdala volume and the
response to salient social cues in face recognition tests (Marusak
et al., 2015). Other SNPs in the OXTR dictate the peculiarities of
pro-social cooperative behaviors and the functional activity of the
amygdala during the emotional face-matching task (Haas et al.,
2013; Jurek and Neumann, 2018).

Behavioral tests and fMRI studies have indicated that
individuals with ASD often experience difficulties with face
recognition. As an example, ASD patients exhibited activation in
the right fusiform face area only and no activation of the anterior
or posterior cingulate areas during the presentation of familiar
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faces. Other studies revealed that amygdala activity was bilaterally
reduced in individuals with ASD (Tang et al., 2015). Further,
altered expression of OXTRs was reported in the right medial
temporal lobe in children with ASD (Egawa et al., 2014). It is
commonly accepted that children with ASD demonstrate deficits
in eye-gaze, facial emotion perception, and face recognition
that might be attributed to impaired function of the limbic
system. This has also been clearly documented in fMRI studies.
Particularly, reduced connectivity between the right fusiform face
area and the left amygdala has been found to correspond with
the degree of autism severity, and this has also been documented
for the connectivity between the right fusiform face area and
the right inferior frontal gyrus (Kleinhans et al., 2008). Near-
infrared spectroscopy studies have also demonstrated that self-
face recognition is also impaired in children with ASD due to
dysfunction of the right inferior frontal gyrus area (Kita et al,
2011).

Novel data regarding the mechanisms of face recognition
in the human brain have led to new opportunities for the
rehabilitation of patients with prosopagnosia (is a cognitive
disorder with impaired ability to recognize familiar faces) of
various geneses (see these excellent reviews, Bate and Bennetts,
2014; DeGutis et al., 2014). There is evidence of an association
between prosopagnosia and the common genetic variants
rs53576, rs2254298, and rs237887 in the OXTR gene (Skuse
et al., 2014; Cattaneo et al, 2016), although recent findings
contradict these reports (Verhallen et al, 2017). Methodology
is an important consideration because OT may only affect the
temporal element of face recognition, and not accuracy or eye-
gaze patterns (Hubble et al., 2017). However, exogenous OT or
its stable analogs may, for some individuals with face processing
impairment, have the therapeutic potential to enhance face
memory (Bate et al., 2014; Blandén-Gitlin et al.,, 2014; DeGutis
etal., 2014). Recent findings indicate that a single administration
of OT could increase the allocation of attention toward faces
to control levels in patients with ASD. This may be particularly
useful for individuals with social anxiety (Kanat et al., 2017).

INTERPERSONAL COMMUNICATION
AND FACE RECOGNITION

OT may suppress the ability to inhibit (i.e., ability to ignore task-
irrelevant information) the processing of sad faces in individuals
with depression (Ellenbogen et al., 2013). In this context, analyses
of face perception revealed that empathy predicted poor inter-
personal communication in individuals who were unable to
inhibit distracting personally relevant facial expressions of anger.
Thus, higher levels of empathy could result in a loss of inhibitory
control when emotional information is processed (Iacono et al.,
2015). This may explain why so-called hypersensitive social
cognition is linked with a higher risk of depression development
(Harkness et al., 2011). Since it is generally believed that low
empathy is associated with low OT levels (Demirci et al,
2016; Deuse et al., 2018), the role of OT in inter-individual
communication might be more complex than expected. Empathy
is an obligatory aspect of human pro-social behavior that may

performed as a collective action (i.e., volunteerism) and is known
to be facilitated by OT and affected by OXTR SNPs (Zak and
Barraza, 2013).

Face recognition and successful face-to-face interactions are
highly important for many types of social communications.
A recent non-human primate study reported that a higher
frequency of face-to-face interactions between neonates and their
mothers positively affected further social behaviors and social
interest in the growing infants (Dettmer et al., 2016). Empathy is
directly linked to facial perception and recognition, particularly,
to the ability to recognize facial expressions. Empathic responses
involve activation of the dorsomedial prefrontal area, and this
activation is higher in the case of negative stimuli (fearful faces)
(Balconi and Bortolotti, 2013). Indeed, empathy might be a
trigger for OT release, especially in women (Barraza and Zak,
2009).

OXYTOCIN IN CLINICAL TRIALS

A clinical trial study in which highly functioning individuals
with ASD received a single intranasal dose of OT demonstrated
that OT facilitated typical and smoother behavioral responses
to social communication with conflicting verbal and non-
verbal information (Watanabe et al., 2014). fMRI analyses have
shown that the behavioral effects of oxytocin are associated
with increased brain activity in the anterior cingulate cortex
(ACC) and dorsal medial prefrontal cortex (dmPFC), as well as
improved functional connectivity from the dmPFC to the ACC
(Watanabe et al., 2014; Aoki et al., 2015). These observations are
consistent with data from rodent studies showing that oxytocin
signaling through OXTR in the medial prefrontal cortex is
essential for cognitive flexibility (Insel, 2010; Nakajima et al.,
2014; Sabihi et al., 2014, 2017; Albin-Brooks et al., 2017).

Further, a 6-week (OT) intervention in highly functioning
individuals with ASD (were given a single dose each week)
significantly improved behavioral responses and increased
functional connectivity between the ACC and dmPFC (Watanabe
et al,, 2015). Similarly, administration of a high dose of oxytocin
during a 12-week period alleviated symptoms in male young
adults with ASD, leading to an increased tendency to visually
fixate on regions of social salience such as the eye region
of the face, as well as improved biological motion (Kosaka
et al,, 2016). A study of long-term OT administration in male
patients with ASD and comorbid intellectual disability (ID)
found that, compared with a placebo, OT significantly increased
the frequency of reciprocal social interactions in daily life during
the period of administration (Munesue et al., 2016).

Therefore, a number of clinical trials have indicated that
OT is able to increase social interaction. This is probably
because of increased social identification of faces. However,
many of these clinical trials were limited in that they had low
numbers of participants and often did not assess functional brain
activity during the period of nasal OT administration. OT may
have a variable effect depending on the clinical status of the
patient (Watanabe et al., 2015; Munesue et al., 2016), oxytocin
dosage and genetic background of the OXTR (Kosaka et al., 2016;
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administration of pharmacotherapeutic substances, classic and modern non-invasive brain stimulations, and interaction with robots. The application of more than
one technique simultaneously may bring about larger and longer-term benefits. tDCS, transcranial direct current stimulation; tRNS, transcranial random noise
stimulation; GVS, galvanic vestibular stimulation; VAR, virtual/adapted reality; BCI, brain-computer interface; OT, oxytocin.

Munesue et al., 2016), and baseline of plasma OT (Munesue et al.,
2016; Yamasue et al., 2018).

Nevertheless clinical trial outcomes together with basic
research results provide evidence that OT improves behavioral
effects, mutual gaze, face recognition, and mind reading in
healthy human individuals as well as ASD patients. So thus accept
significant implications for use of OT as a therapy for social
impairments in neurodevelopmental disorders.

FACE RECOGNITION PHENOMENON IN
THE ERA OF ADVANCED
NEUROTECHNOLOGIES

Nevertheless active investigations in the area of pharmaceutical
therapy of impaired face recognition, especially OT research,
other technologies are intensively developed in parallel. Classic
transcranial direct current stimulation (tDCS, constant current
is applied to the scalp via electrodes), transcranial random
noise stimulation (tRNS, weak random current), and galvanic
vestibular stimulation (GVS, electric stimulation of the vestibular
nerve) alone or in combination with compensatory/remedial
training have been shown to improve face recognition
performance (Krause and Cohen Kadosh, 2013; Bate and
Bennetts, 2014).

The large-scale introduction of neurotechnologies will
significantly change the environment in which the human brain

develops and functions. In this context, it should be recognized
that the mechanisms and consequences of the influence of
stimuli in the virtual environment on social behavior, as well as
the realization of emotional responses, have not been studied in
practice. Recently, interest in this issue has increased dramatically
with the development of facial recognition systems and software
suitable for the registration of unique biometric parameters
of human faces, analysis with existing facial databases, and
verification of individuals.

Additional development of neuroimaging techniques
and brain-computer interface (BCI)- or optical-imaging-
based neurofeedback could further improve the efficacy of
rehabilitation approaches to enhancing facial recognition
performance (Friedrich et al., 2014; Liu et al., 2016). The latter
could be extended to BCI-based technical solutions by using face
familiarity within stimulus presentation patterns to elicit face-
specific ERP components (i.e., N170) and by utilizing unique
brain activity elicited by well-known (familiar) faces. This could
increase the speed and fluency of communication for people
using a visual stimuli-driven BCI (Zhang et al., 2012; Kashihara,
2014; Yeom et al,, 2014; Chen et al,, 2015). Combining BCIs
with near-infrared spectroscopy systems that have been shown
to be sensitive to localized brain dysfunction in individuals with
ASD (Iwanaga et al.,, 2013) could improve signal processing and
analysis (Coyle et al., 2007). BCI systems based on the detection
of face recognition patterns could be very sensitive to facial
emotional processing, and likely also to the empathic component
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of face processing. Comprehensive investigations regarding the
fundamental mechanisms of social and emotional reactions
underlying face recognition will facilitate the development and
application of virtual reality technologies.

CONCLUSION

Despite the progress to the stage in understanding the molecular
mechanism of face recognition there is no single/simple
answer about the best rehabilitation approach to modify
face recognition and functionally associated mechanisms
in human social behavior. New rehabilitation approaches
include different strategies. The first one is an application of
various pharmacotherapeutic substances such as OT (via nasal
administration). According to the accumulated knowledge,
OT has potential and promising future as therapy for
abnormal social behavior. So, it is reasonable to speculate that
application of OT is a new neurothechnology in treatment of
impaired face recognition. On other hand, rapid development
of information technologies provides other rehabilitation
approaches like transcranial stimulation (or computer-based
methods). Direct contact between humans and robots or entities
from virtual/additive reality, as well as the wide distribution of
social networks based on computer-mediated communication
lead to new questions regarding the interchangeability of face-
to-face vs. virtual interactions, specifically within the context
of human social behavior in real and virtual environments.
Progress in humanoid robotics and brain-machine interface
(BMI) systems will likely further complicate these issues in the
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