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How neural activity is linked to behavior is a critical question in neural engineering and
cognitive neurosciences. It is crucial to predict behavior as early as possible, to plan a
machine response in real-time brain computer interactions. However, previous studies
have studied the neural readout of behavior only within a short time before the action is
performed. This leaves unclear, if the neural activity long before a decision could predict
the upcoming behavior. By recording extracellular neural activities from the visual cortex
of behaving rhesus monkeys, we show that: (1) both, local field potentials (LFPs) and
the rate of neural spikes long before (>2 s) a monkey responds to a change, foretell its
behavioral performance in a spatially selective manner; (2) LFPs, the more accessible
component of extracellular activity, are a stronger predictor of behavior; and (3) LFP
amplitude is positively correlated while spiking activity is negatively correlated with
behavioral reaction time (RT). These results suggest that field potentials could be used
to predict behavior way before it is performed, an observation that could potentially be
useful for brain computer interface applications, and that they contribute to the sensory
neural circuit’s speed in information processing.
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INTRODUCTION

How neural activities control the behavior (either choice or performance) is a crucial question
in neuroscience. Previous studies have reported a link between behavioral performance and the
neural activity in different brain areas, such as the trigeminothalamic system (Maixner et al., 1989;
Bushnell et al., 1993), the somatosensory system (Sinclair and Burton, 1991; Romo et al., 1996),
superior colliculus (Horwitz and Newsome, 2001) and visual cortex (Newsome et al., 1989; Britten
et al., 1996; Shadlen et al., 1996; Horwitz and Newsome, 2001; Cook and Maunsell, 2002; Barberini
et al., 2005; Liu and Newsome, 2005, 2006; Cohen and Newsome, 2009; Cohen and Maunsell, 2010;
Kajikawa and Schroeder, 2011; van Ede et al., 2012; Smith et al., 2015). Additionally, it has been
reported that behavioral choice is closely connected to the neural activity (Johansson and Vallbo,
1979; Newsome et al., 1989; Bushnell et al., 1993; Britten et al., 1996; Romo et al., 1996; Shadlen
et al., 1996; Horwitz and Newsome, 2001; Cook and Maunsell, 2002; Barberini et al., 2005; Liu and
Newsome, 2005, 2006).
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Newsome et al. (1989) showed that the behavioral choice
could be derived from the relative discharge activity of some
direction-selective MT neurons. Other studies have documented
that the trial-by-trial variability of an MT neuron’s response
is correlated with the monkey’s choice (Britten et al., 1996;
Barberini et al., 2005). While many studies have reported
a link between behavioral choice and the activity of single
neurons, some others suggest that perceptual coding should
be described in terms of the pooled activity of neuronal
populations (Britten et al., 1996; Liu and Newsome, 2005;
Cohen and Newsome, 2009). For instance, Cohen and Newsome
(2009) suggested, that to understand the neural mechanisms
underlying a behavioral choice, one needs to consider the
dynamics of the neural population activity in time. Besides, Liu
and Newsome (2005) showed that the behavioral choices are
correlated with the neural activity pooled across populations of
neurons.

Many such studies focused on the neural spiking activity
in order to predict the behavioral choice of subjects, however
how the local field potential (LFP) represents this component
of behavior has not been studied well. LFP is believed to
consist of local synaptic and volume conducted potentials
(Kajikawa and Schroeder, 2011), and is widely used as a measure
of neural interaction (Ray and Maunsell, 2011; Ray, 2015).
Neurophysiologists have frequently used the LFP to link the
neural activity to perception and cognition (Gail et al., 2004;
Liu and Newsome, 2006; Womelsdorf et al., 2006). Liu and
Newsome (2006) reported that an LFP’s temporal variability is
highly correlated with multiunit activity of MT neurons and
also a monkey’s perceptual choice, especially for frequencies
above 40 Hz. Furthermore, the mechanism through which
cognitive functions such as attention modulate perception and
behavioral performance is not clear. Visual attention enhances
perception for an attended stimulus and also modulates the
responses of neurons in the visual cortex (Desimone and
Duncan, 1995; Luck et al., 1997; Reynolds and Chelazzi, 2004;
van Ede et al., 2012; Esghaei et al., 2015, 2018; Xue et al.,
2016). Furthermore, there are reports that attention modulates
the link between the neural activity and perceptual capability
(Cook and Maunsell, 2002; Womelsdorf et al., 2006; Cohen
and Maunsell, 2010; van Ede et al., 2012; Mayo et al., 2015).
For instance, an instantaneous measure of attention on a few
dozen simultaneously recorded V4 neurons could predict the
fluctuation of animal’s behavioral performance (Cohen and
Maunsell, 2010; Mayo et al., 2015). Therefore, understanding
the correspondence between neural activity and behavioral
performance helps to understand how cognitive functions such
as attention may influence behavior.

Behavioral reaction time (RT) has been a widely used
measure of perceptual performance (Meyer et al., 1988;
Grondin, 2010; Medina et al., 2015). Cook and Maunsell
(2002) found that the neuronal activity in MT and ventral
intra-parietal (VIP) areas are correlated with the monkey’s
detection RT on a trial-by-trial basis. Also Bell et al. (2006)
suggested that the reduction in saccadic response time observed
following high-intensity visual stimuli is due to the reduction
of processing time along the visual pathway. Furthermore,

Lakatos et al. (2008) showed that a rhythmic presence of
stimuli entrains the delta-band neural oscillation in cortex
and consequently controls the RT according to the oscillation
phase. Womelsdorf et al. (2006) demonstrated that RT is
positively correlated with the degree of the gamma-band
synchronization of V4 neurons, just before the change onset.
While all these studies have focused on the neural activity
surrounding the behaviorally relevant visual target (a stimulus
or its change), it is not clear whether and how the neural
activity long before the visual target predicts the behavioral
performance.

Although previous studies confirmed the relationship
between the behavioral response and neural activity (either LFP
or spiking activity), they all found this link only directly before
the behaviorally relevant event. Here, we investigate if RT could
be predicted by the neural activity long before the behaviorally
relevant event is presented to the subject, and how LFP or
spiking activity might differ in their link to RT. Therefore, we
train rhesus monkeys to perform a visual detection task and
record the neural signals from their visual cortex (area MT),
while they perform the task. By separately focusing on trials with
different behavioral responses, we examine how early before
the target visual event, these neural activities could predict the
animal’s RT.

MATERIALS AND METHODS

Animal Welfare
Research with non-human primates represents a small but
indispensable component of neuroscience research. The
scientists in this study are aware and are committed to the great
responsibility they have in ensuring the best possible science with
the least possible harm to the animals (Roelfsema and Treue,
2014). All animal procedures of this study have been approved by
the responsible regional government office (Niedersaechsisches
Landesamt fuer Verbraucherschutz und Lebensmittelsicherheit
(LAVES)) under the permit numbers 33.42502/08-07.02 and
33.9.42502-04-064/07. The animals were group-housed with
other macaque monkeys in facilities of the German Primate
Center in Goettingen, Germany in accordance with all applicable
German and European regulations. The facility provides the
animals with an enriched environment (including a multitude
of toys and wooden structures; Calapai et al., 2017; Berger
et al., 2018), natural as well as artificial light, exceeding the size
requirements of the European regulations, including access to
outdoor space. Surgeries were performed aseptically under gas
anesthesia using standard techniques, including appropriate
peri-surgical analgesia and monitoring to minimize potential
suffering (Pfefferle et al., 2018).

The German Primate Center has several staff veterinarians
that regularly monitor and examine the animals and consult
on procedures. During the study the animals had unrestricted
access to food and fluid, except on the days where data were
collected or the animal was trained on the behavioral paradigm.
On these days the animals were allowed unlimited access to
fluid through their performance in the behavioral paradigm.
Here the animals received fluid rewards for every correctly
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performed trial. Throughout the study the animals’ psychological
and veterinary welfare was monitored by the veterinarians,
the animal facility staff and the lab’s scientists, all specialized
on working with non-human primates. The two animals were
healthy at the conclusion of our study and were subsequently
used in other studies.

Task and Recording
Two male macaque monkeys participated in this study. They
were trained to perform a direction change detection task,
where they maintained their gaze on a central fixation point
and reported a brief direction change in one of two random
dot patterns (RDPs; Katzner et al., 2009). The two RDPs
moved linearly towards the same direction, either in the preferred
or anti-preferred direction of the neuron recorded in cortical
visual area MT of the monkeys. To perform this task, animals
were seated in a primate chair with their head restrained at
a distance of 57 cm from a computer monitor (resolution
40 pixels per degree of visual angle, refresh rate 76 Hz). The
eye position was monitored with a high-speed video-based eye
tracker at a sampling rate of 230 Hz (ET49, Thomas Recording,
Giessen, Germany). Each trial started with depressing a lever
and maintaining eye fixation in a window of 1.25◦ radius,
centered on fixation square (0.2◦

× 0.2◦). One-hundred and
fifty milliseconds after the lever depression, a cue in the form
of a small moving RDP appeared for 500 ms, to indicate the
position of the upcoming target stimulus (the stimulus which
the animal had to report the direction change of, and which
alternated between the two locations across trials of a given
session). After the cue disappeared, two moving RDPs (moving
towards either the preferred or anti-preferred direction of the
recorded neuron) emerged at equal eccentricities in opposite
visual hemifields, one of them inside the classical receptive field
(RF) of the neuron under study. RDPs moved within a stationary
virtual aperture. A single dot subtended 0.1◦ of visual angle
and the dot density was 8 dots/deg2. The size of the stimulus
RDPs, the speed of the dots, and the direction of motion were
matched to the properties of the neuron under study. The cues
consisted of small RDPs subtending 0.75◦ of visual angle, with
a dot size of 0.075◦ and a density of 40 dots/deg2. They were
always presented at a distance of 2◦ from fixation, positioned
on a virtual line connecting the fixation point to the target
location. To make sure the animals were perfectly attending
to the cued location, the changes in the stimuli could occur
during the next 500–3550 ms succeeding their onset. Trials in
which the animal correctly reported the brief change event in
the cued location by releasing the lever within a response time
window of 100–650 ms, were rewarded by a drop of juice. The
trial was terminated instantly after any response (Figure 1A).
We divided each trial into three periods; the first 150 ms where
nothing was presented (blank period), the next 500 ms during
which the cue was presented and the succeeding 500 ms, where
the stimuli were shown (before any change occured in either of
them).

Using standard surgical techniques (Martinez-Trujillo and
Treue, 2004) a Titanium headpost was implanted onto the frontal
part of the skull along the midline to allow head stabilization

FIGURE 1 | Behavioral paradigm and division of trials based on behavioral
response times. (A) Each monkey had to foveate on a central point and touch
a lever to start the trial. After 150 ms, a cue in the form of a small moving
random dot pattern (RDP) appeared close to the fixation point cueing the
monkey which of two upcoming moving RDPs to attend to. After 500 ms, the
cue disappeared and the two moving RDPs were presented, one of them
inside and the other outside the receptive field (RF) of the neuron being
recorded. The monkey had to release the lever as soon as the target RDP
underwent a brief direction change following a random time between
500–3,550 ms. A trial consists of three time periods; blank period, when the
monkey is foveating but no cue has appeared, cue period, when the cue is
presented and stimulus period, when the two RDPs are presented but the
target stimulus has not yet undergone a change. Dashed-line circles indicate
the RF and the solid-line circles show the target position (not shown in the
experiment). (B) The trials are sorted based on the monkey’s response time
and next, partitioned into eight equal-sized subsets. The two subsets with the
highest and lowest response times are termed as slow response time (SRT)
and fast response time (FRT) classes, respectively in the remainder of the
article.

during recording sessions. Additionally, a craniotomy (20 mm
diameter) was surgically performed above the parietal lobe and
a PEEK recording chamber (Crist Instruments) was implanted.
The multi-unit activities (MUA) and LFP signals were recorded
form the monkeys’ visual area MT using a five-channel multi-
electrode recording system (Mini-Matrix, Thomas Recording)
and Plexon data acquisition system (Plexon, Inc., Dallas, TX,
USA). The electrode signal was split into LFP and spike
components by hardware filters. The LFPs were amplified and
digitized at 1 kHz, while spikes were amplified and digitized
at 40 kHz. Spikes of the MUA were determined by voltage
thresholding. For most of the recording sessions, all electrodes
were simultaneously advanced to isolate individual MT neurons
with overlapping RFs (linear electrode arrangement, with the
impedance of 2 M� and 305 µm interelectrode spacing). Cells
were characterized as MT neurons based on their directional
tuning, RF location, and position in the cortex. The locations and
sizes of individual RFs were mapped manually using a moving
bar. Direction and speed tuning were determined by presenting a
single RDP inside the joint RF, moving in 12 different directions
at each of eight different speeds (0.5–64◦/s), while the monkeys
were maintaining fixation.
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Data Analysis
To analyze the collected data, we only considered the hit
trials (trials where the animals reported the target change in
the specified response time window—see above) among totally
35 sessions. All trials’ RTs regardless of the target RDP’s
location (inside/outside the RF) were taken into account for
defining the fast/slow response time. Specifically, we pooled all
trials’ RTs together, sorted them in ascending order, divided
the resultant vector into eight groups and specified the first
and the last group as fast RT (FRT) and slow RT (SRT)
trials, respectively. It is noteworthy that our observations were
not biased by outlier data. To ensure this, we re-performed
the analyses after applying the threshold mean ± 2∗STD; we
partitioned the RTs into eight classes after removing the trials
with RTs less than 240 ms or more than 460 ms. Next,
we compared the neural activity (in the form of both LFP
and MUA) within the 1st and 8th trial classes. This analysis
showed the same results as Figures 2, 3. All analyses were
carried out using custom scripts in MATLAB (Mathworks,
Natick, MA, USA). The MUA spike trains were convolved
with a Gaussian kernel with the σ of 15 ms. In all plots,
we first normalized each trial’s neural activity (either LFP or
MUA) by the maximum absolute activity across trials of the
corresponding site.

ROC Analysis
In order to examine the neural discrimination across RT
conditions, receiver operating characteristic (ROC) analysis was
used. This approach clarifies a tradeoff between sensitivity and
specificity of classification with the true positive against false
positive rate for the different possible cut-off points of test.
The algorithm is implemented in three steps: first, fitting a
logistic regression model to the neural activity at each time

point separately in trials with the response time labels FRT
and SRT. Second, based on the resultant logistic regression
model, a probability variable (PV) was estimated. Third, by
moving the threshold value using the resultant PV, the ROC
curve was computed. These steps were performed for all of
time points of the signals and the corresponding area under
the ROC curve (AUC) for each time point was considered as
the accuracy of a binary classification corresponding to that
point.

RESULTS

Two male macaque monkeys were trained to maintain their
gaze on a central fixation point and report a brief direction
change in the cued (target) one of two moving RDP. The two
RDPs moved linearly towards the same direction (either the
preferred or anti-preferred direction of the neuron recorded in
cortical visual area MT; Figure 1A). Both monkeys successfully
reported changes in the target stimulus in more than 80% of the
trials (Supplementary Figure S1). LFP and MUA were recorded
during the task. Here we investigate if the neural responses
evoked by the cue or the RDPs are predictive of the monkey’s RT
for reporting a given target change. To this end, we investigate the
extent to which LFP andMUA can discriminate themonkey’s RT
during different times following cue onset until the behaviorally
relevant change occurs.

Relation Between Neural Activity and
Behavioral Response Time
In order to investigate the relationship between the visually
evoked neural activity and the monkey’s behavior, we focused
on those trials with extreme behavioral response times. We
sorted all hit trials based on the animal’s response times and

FIGURE 2 | Evoked local field potential/multi-unit activities (LFP/MUA) are predictive of the monkey’s behavioral response time. (A) Mean evoked LFP separated by
response time. (B) Mean evoked MUA separated by response time. Y-axes represent the normalized amplitude of LFP in panel (A) and normalized MUA in panel (B)
and X-axes show the time points aligned to cue onset. FRT trials are shown in blue and SRT trials in red. Horizontal bars indicate those time points with a significant
difference in neural activity between the two response time classes (Wilcoxon rank sum test, P < 0.00005 for LFP and P < 0.001 for MUA).
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next, partitioned them into eight equal subsets (Figure 1B).
Subsequently, the subsets with the shortest and longest response
times were considered as FRT and SRT classes, respectively (see
‘‘Materials and Methods’’ section for details).

Next, we compared the evoked neural activity (preceding the
direction change) across the two classes of trials with extreme
response times. We averaged the time resolved LFP and MUA
across trials of each class (Figure 2). The X-axes show the time
passed from cue onset and the Y-axes represent the average
neural activity across all trials of the experiment, where each
trial’s neural activity is normalized by the maximum absolute
activity across the trials of the corresponding site. Figure 2A
shows the average LFP activity aligned to the cue onset for slow
and fast trials (shown in red and blue, respectively). Comparing
the average activity across the two response time classes shows
that in trials with SRTs, LFPs have a significantly higher evoked
absolute activity in the cue and stimulus periods (Wilcoxon rank
sum test, P < 0.00005, and the two classes become significantly
different 265 ms following the cue onset. As expected for the
blank period, the LFP response in the two conditions shows
no significant difference (Wilcoxon rank sum test, the median
P-value during the period: P = 0.0716). This suggests that
the LFP activity evoked by either the cue or the stimuli is
predictive of the monkey’s response time. A similar analysis was
carried out on the MUA across the two response time classes
(Figure 2B). Similar to LFPs, the MUA evoked by the stimuli
is significantly different between the two conditions (Wilcoxon
rank sum test, P < 0.001), diverging 408 ms following the cue
(0.16 modulation), and with no significant difference across the
two conditions during the blank period (Wilcoxon rank sum test,
themedian of P-value during this period: P = 0.6061). On another
hand, unlike the LFP, MUA declined any difference in the cue
period. This is presumably because the cue is shown outside the
RF of the recorded neuron(s), however given that LFP reflects
the activity of a larger population of neighboring neurons, the
RF of a subset of these neurons might overlap with the cue’s
position.

Interestingly, the absolute evoked LFP for FRT trials is smaller
than for SRT trials (Figure 2), suggesting that larger evoked
LFPs lead to slower responses by the monkey. However, it is the
opposite for the MUA; the monkey responds fastest in trials with
the highest evoked MUA. This suggests that LFP and MUA in
sensory areas play different roles in controlling behavior.We next
asked which of evoked LFP or MUA better decodes the monkey’s
response time.

Prediction of Behavioral Response Using
the LFP and MUA Neural Responses
Next, to quantify the selectivity of the evoked neural responses
to the monkey’s response time, we used a receiver operating
characteristic (ROC) analysis. The AUC values are plotted across
time for the evoked LFP (Figure 3A) and MUA (Figure 3B),
indicating that LFP predicts the RT with up to 72% accuracy
and MUA with up to 60% (at 520 ms and 810 ms following
the cue onset, respectively). The ROC curve at these two
extreme time-points are plotted for LFP (Figure 3C) and MUA
(Figure 3D), both showing a significant prediction performance

of the response time for evoked LFP (Wilcoxon rank sum
test, P < 0.00005) and MUA (Wilcoxon rank sum test,
P < 0.001). Furthermore, LFP outperforms MUA in predicting
the response time. Supplementary Figures S2A,B illustrate
the average ROC separately for the blank, cue and stimulus
intervals.

Next, to examine how early the neural activity predicts the
response time, we divided the trials into two subsets based
on their change times. We considered the trials in which the
stimulus change occurred 1,000–2,500 ms following the stimulus
onset as ‘‘early change,’’ and trials with their target change
occurring 2,500–3,500 ms after stimulus onset as ‘‘late change.’’
Figures 4A,B show the area under the ROC curve across time
for discrimination of neural activity between fast and slow
RT trials in the early-change and late-change trial categories.
Figures 4C,D present the ROC curve for the time with the
maximum AUC. These results suggest that the neural activity
is predictive of the behavioral RT in both early and late change
trials. This reveals that regardless of when the upcoming target
change occurs, the stimulus-evoked neural activity (especially
LFP) is predictive of the monkey’s speed in detecting the change.

Position Dependence of the Reaction Time
Prediction
So far, we showed that the magnitude of the evoked neural
activity predicts the monkey’s response time in reporting an
upcoming change. Next, we determined whether this is the case
only for changes in the RF or for changes in any position.
We first separated the trials where the target change occurred
inside or outside the RF (cue pointed to vs. away from the
RF, respectively); then, divided them based on the RT (similar
to Figure 2) and third, to rule out any effect of the trial
frequency, the number of trials in the four conditions (FRT
with target change inside RF, SRT with target change inside
RF, FRT with target change outside RF, SRT with target
change outside RF) were equalized. Figure 5 shows the average
evoked LFP and MUA for each of the two conditions of target
position (inside/outside RF) in the two response time classes
(FRT vs. SRT). The top panel shows the average LFP and
MUA for trials where the target change occurred inside the
RF and the bottom panel shows the evoked neural activity
for trials where the target change appeared outside the RF. In
both types of trials where the target change occurred inside
or outside the RF, the average LFP/MUA responses evoked
by the stimuli differed significantly between the response time
conditions (Wilcoxon rank sum test, P < 0.00005 for LFP,
P < 0.001 for MUA). However this difference is clearly
larger (for both LFP and MUA) when the target change
occurred inside RF (Figures 5A,B) compared to outside RF
(Figures 5C,D).

In order to compare how distinct the response times
are between the two target change locations, we calculated the
instantaneous AUC and the ROC curves for trials where the
target change occurred either inside or outside RF (Figure 6).
Figure 6A shows the AUC across time for target-in (red) and
target-out (blue) conditions using LFP signals, where each point
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FIGURE 3 | Response time prediction accuracy. (A,B) Area under the ROC curve (AUC) values at different times of a trial aligned to cue onset using LFP (A) and
MUA (B). (C,D) Receiver operating characteristic (ROC) curve for the time point with the maximum AUC value using LFP (C) and MUA (D).

plots the AUC for a 20 ms time window. For the stimulus
period, the target-in condition shows a higher response time
discrimination compared to the target-out condition. Similarly,
MUA shows higher AUC values in the target-in compared to
the target-out condition during the stimulus period (Figure 6B).
Along the same lines, the ROC curves at the time point
with the maximum AUC (Figure 6C for LFP and Figure 6D
for MUA) are both indicative of a higher discrimination
accuracy in the target-in rather than the target-out condition
(Wilcoxon rank sum test, P < 0.05; see Supplementary Figures
S2C,D for the average ROC across the time-epochs of a trial
for target-in and target-out conditions and Supplementary
Figure S3 for the neural discrimination separated by the
target change location). These results suggest that: (1) the
stimulus period provides the strongest prediction about the
response time, compared to the preceding epochs; (2) the evoked
neural activity (either LFP or MUA) is mostly reflective of
the response time to changes inside the RF, rather than other
positions in the visual field, indicating that this evoked neural

activity is a local, rather than a global predictor of behavioral
performance.

We were concerned that the difference between the neural
activities across response time classes is due to a difference
in the distribution of sites each class comes from. This issue
is particularly important since different sites are recorded
from in different sessions (recording days), making the
corresponding trials vary in terms of the animal’s average
response time. To rule this out, we focused on those sites
which exclusively provided either FRT or SRT trials. By
comparing the trials coming from each of FRT-providing and
SRT-providing sites (Supplementary Figure S4A; excluding
those originally considered as FRT and SRT trials; to ignore
the response time associated effect), we observed no significant
difference between the neural activity of the two trial sets
(Supplementary Figure S4B). This suggests that the two sets
of sites associated to either SRT or FRT trials do not differ in
terms of their general physiological properties. Therefore, the
neural activity difference between FRT and SRT trials is not
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FIGURE 4 | Behavioral response time prediction across different times of change-occurrence. (A,B) Prediction of RT from LFP (A) and MUA (B) in trials with late
change time as well as trials with early changes. The enhanced neural activity discrimination between fast and slow behavioral response times even in late change
trials, shows that the stimulus-evoked neural activity predicts the monkey’s response to target changes at any arbitrary time. This discrimination was performed for
trials with the change between 1,000–2,500 ms as “early change” and “2,500–3,500 ms as “late change.” (C,D) Comparison of the prediction performance in early
and late change trials based on the ROC curve of the time with maximum AUC for the two change time categories. The red dashed line shows the prediction
performance in late change trials and the blue solid line shows the performance in early change trials.

induced by differences between the distribution of sites (via
their physiologically different properties) corresponding to each
trial type.

We further examined if the neural discrimination of RT
is not limited only to the 1st/8th clusters, with the other
six clusters of trials (the remaining 75% of the data) not
showing any neural activity-RT association. This concern
becomes particularly important considering that the data in
these clusters might be biased by outliers. We therefore,
considered also the clusters in between and plotted their
neural activity (both LFP and MUA) separately (Supplementary
Figure S5). The traces show a rather monotonous change
of the amplitude of neural activities between the clusters,
indicative of a functional association between the magnitude of
neural activity and RT. Consequently, stimulus-evoked neural

activity is selectively predictive of the monkey’s behavioral
speed in detecting the visual change presented inside the
neuron’s RF.

DISCUSSION

We reported here that visually evoked LFP andMUA inmacaque
MT are predictive of how fast primates report a visual change.
We found that first, both visually evoked LFP and MUA
can predict the response time of monkeys in detecting brief
visual changes on a trial-by-trial basis. Second, the prediction
performance calculated using LFP is significantly higher than
MUA. Third, visually evoked responses (for both LFP andMUA)
have enhanced information on the response time to the change
inside, rather than outside the RF of the recorded neurons.
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FIGURE 5 | Neural correlate of behavioral response time for different locations of target change. (A,B) Average evoked LFP (A) and MUA (B) for trials where the
target change occurred inside the RF. (C,D) Average evoked LFP (C) and MUA (D) for trials where the target change occurred outside the RF. SRT trials are shown
in black and FRT trials in green. Horizontal bars indicate the time epochs with a significant difference across response time classes.

Our finding of the association between evoked neural activity
and behavioral response time is consistent with previous studies
showing a direct link between population neural responses
and behavioral response for neurons in visual cortical area
MT (Britten et al., 1996; Liu and Newsome, 2005; Cohen and
Newsome, 2009). In line with our results, a previous study
based on event-related potentials (ERPs) has shown that the
amplitude of the first negative component of the ERP (N1)
has a negative correlation with RTs (Toledo et al., 2015).
Although some reports suggest that the response times to
visual or auditory stimuli are linked to the neural activity
in brain regions associated to response initiation (i.e., motor-
related potential; Yordanova et al., 2004) and motor preparation
(Antonova et al., 2016), our results suggest that variability
of the response times is highly predictable by the neural
activity in sensory areas. The correlation of RT and neural
activity could be either due to a simultaneous influence
of spatial attentional influences on both RT (Posner, 1980)
and neural activity (Katzner et al., 2009), or due to a

causal influence of evoked neural activity on the behavioral
performance.

Furthermore, the neural discrimination between fast and
slow trials is present when the target stimulus is presented
inside, rather than outside the RF (see Figure 5). This is further
consistent with previous studies addressing ERPs which show
the expectancy of a specific cued target could be handled
at three levels of sensory, attention, and motor preparation
(Wright et al., 1995). Importantly, the grown difference between
the neural activities across the two RT conditions Target-in-
FRT vs. Target-in-SRT (see Figures 5A,B) during the stimulus
period (time interval 500–1,000 ms) seem to be a consequence
of a successful combination of the three cognitive processes
outlined above. Consistently, the discrimination between the
neural activities of the two RT conditions Target-out-FRT vs.
Target-out-SRT (see Figures 5C,D) was significantly smaller
compared to those trials were the stimulus change occurred
inside RF even during the stimulus representation interval where
the sensory response is maximized. This indicates that neural
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FIGURE 6 | AUC and ROC curves for FRT/SRT classes separated by target position. (A,B) The AUC values at different times for the two classes, FRT and SRT in
target-in (red) and target-out (blue) trials using LFP (A) and MUA (B). (C,D) ROC curve of the time point with the maximum AUC plotted for target-in (red) and
target-out (blue) conditions for LFP (C) and MUA (D).

activities could predict how well a visual stimulus is processed
in a spatially localized manner. This is particularly important
in brain computer interface applications where predicting the
human response to a spatially specific visual stimulus is desired.

We found that a larger absolute evoked LFP precedes a slower
behavioral response while a smaller evoked LFP is followed
by a faster response. For the MUA we found that a larger
evoked activity precedes a faster behavioral response, while
a smaller evoked MUA is associated with a slower response.
This suggests that the evoked MUA’s amplitude can serve as a
neural readout of the sensory cortex’s capacity for processing
the upcoming stimulus and therefore representing its upcoming
change. However, for the LFP our results show the opposite
pattern; a higher amplitude of the evoked LFP predicts a less
effective processing of the upcoming change. This suggests that
the evoked LFP’s magnitude is linked to the sensory neural
network’s unresponsiveness in terms of processing changes.
Since LFP reflects mostly synaptic potentials of neurons, this

means that the stronger the synaptic potentials induced in the
local neural network, the less efficient the upcoming stimulus
change is processed, reflected also by a smaller MUA amplitude.
This is consistent with a previous analytical study, suggesting
an association between the noise level and signal amplitude of
neural inputs (Shomali et al., 2018). Our observation suggests a
different readout of the sensory areas’ sensorimotor capacity by
LFP and MUA, inline with our previous report documenting a
time difference between visually evoked LFP and MUA’s peaks
(Esghaei et al., 2017).

To conclude, our data suggest that: (1) LFP and MUA in are a
MT are predictive of the monkey’s speed in reporting a visual
change up to 2,000 ms preceding it; (2) the stimulus-evoked
neural activity’s discrimination of response speed is a local
phenomenon specific to when the target change occurs inside
the RF; (3) LFP amplitude has a negative correlation, while MUA
is positively correlated with the behavioral response speed. Our
findings may aid both brain computer interaction applications
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in predicting a human’s intention using online recordings of
neural activities, and enhance the performance of human-robot
interaction systems, by allowing robots to know the human
decision way before it is made.
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