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Parkinson’s disease (PD) is an age-related neurodegenerative condition characterized
by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta
(SNpc). A loss of proteasome function participates to the pathogenesis of PD, leading
to the development of rodent models in which a proteasome inhibitor is applied to the
nigrostriatal pathway. We recently characterized the intranigral lactacystin (LAC) mouse
model, leading to nigrostriatal degeneration, motor dysfunction and alpha-synuclein
accumulation. In the present study, we compared the effect of two commonly used
anesthetics for generating animal models of PD—i.e., ketamine (KET) and isoflurane
(ISO)—on the vulnerability of mouse dopaminergic neurons to proteasome inhibition-
induced degeneration. Both anesthetics have the potential to affect the susceptibility of
the nigrostriatal pathway for toxin-induced degeneration, and are known to modulate
dopamine (DA) homeostasis. Yet, their impact on nigrostriatal degeneration in the
proteasome inhibition model has not been evaluated. Unilateral injection with LAC in
the SNpc of mice induced motor impairment and significantly reduced the number of
dopaminergic cells to ~55%, irrespective of the anesthetic used. However, LAC-induced
striatal DA depletion was slightly affected by the choice of anesthetic, resulting in a
significant increase in DA turnover in the ISO- but not in KET-treated mice. These results
suggest that the extent of nigrostriatal dopaminergic neural loss caused by LAC is not
influenced by the choice of anesthetic, and that compared to other PD models, KET is
not neuroprotective in the LAC model.
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INTRODUCTION

The main pathological hallmark of Parkinson’s disease (PD), an age-related chronic and
progressive neurodegenerative disorder, is the loss of dopaminergic cells in the substantia
nigra pars compacta (SNpc) and the reduction in striatal dopamine (DA) content. Proteasomal
dysfunction, leading to aberrant protein turnover and build-up of misfolded or damaged
proteins, has emerged as a potential contributor to cell death in PD (Poewe et al, 2017) and
might be linked to the accumulation of both non-ubiquitinated and ubiquitinated proteins in
the SNpc and in Lewy bodies of PD patients (McNaught et al., 2001). Accordingly, administration of
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lactacystin (LAC), a selective proteasome inhibitor, leads to
dopaminergic cell death when applied to the nigrostriatal
pathway of rodents (Mackey et al., 2013; Savolainen et al,
2017). We recently reported that intranigral administration of
LAC—reflecting PD pathology where proteasome dysfunction
is limited to the SN (McNaught et al., 2003)—leads to acute
and non-progressive dopaminergic cell loss in mice (Bentea
et al, 2015). Intracerebral injections necessitate the use of
anesthetics that are known to modulate DA homeostasis
including release and metabolism (Nishimura and Sato, 1999;
Adachi et al., 2005; Kokkinou et al., 2018), and to potentially
be either neuroprotective or neurotoxic (Peltoniemi et al., 2016).
The present study aimed at comparing the susceptibility of
the nigrostriatal pathway for proteasome inhibition-induced
degeneration in mice that were anesthetized using either the
commonly used injectable anesthetic ketamine (KET) or the
volatile anesthetic isoflurane (ISO). KET is an antalgic anesthetic
and non-competitive antagonist of the NMDA receptor. ISO, like
most inhaled anesthetics, enhances GABA, receptor function
and prolongs the inhibitory postsynaptic potential. In addition to
the effects on GABA, receptors, the volatile anesthetics depress
excitatory synaptic transmission presynaptically, where their
principal action appears to be a reduction in glutamate release
(Hemmings et al., 2005).

MATERIALS AND METHODS

Animals

C57BL/6] male mice (Charles River Laboratories, France),
28-29 weeks of age at lesion, were group-housed in a 14/10 h
light/dark cycle, with free access to food and tap water.
Temperature (21-25°C) and relative humidity (30%-60%) were
maintained constant during the experiments, which were carried
out according to the Belgian animal welfare legislation (Royal
Decree of 29 May 2013) and the regulations covering animal
experimentation in the EU (European Communities Council
Directive 2010/63/EU). The experiments were carried out in
accordance to the national guidelines on animal experimentation
and approved by the Ethical Committee for Animal Experiments
of the Vrije Universiteit Brussel.

Anesthetics

Mice were divided into two treatment groups, receiving either an
i.p. injection of a mixture of KET (100 mg/kg; KET 1000 Ceva,
Ceva Sante Animale, Belgium) and xylazine (10 mg/kg; Rompun
2%, Bayer N.V., Brussels, Belgium) or 5% ISO (Iso-vet®,
1,000 mg/g ISO, Dechra Veterinary Products, Netherlands) for
2 min in an induction chamber, after which anesthesia was
maintained during the entire duration of the surgery (1 h per
animal) at 2.5%-3% ISO.

Stereotaxic Surgery

Three microgram LAC (or vehicle for the sham control group)
was stereotactically injected in the left substantia nigra (Bentea
et al., 2015) under ISO or KET anesthesia, leading to four
experimental groups: ISO LAC, ISO SHAM, KET LAC, KET
SHAM (n = 8/group). The incidence of post-operative mortality

was 1/8 for KET SHAM (12.5%), 2/8 for ISO SHAM (25%),
3/8 for KET LAC (37.5%) and 0/8 for ISO LAC (0%), resulting
in a group size of n =7 KET SHAM, n = 6 ISO SHAM, n =5 KET
LACand n=81ISO LAC.

Assessment of Motor Function

Motor function was evaluated in an accelerated rotarod test (TSE
RotaRod Advanced, TSE systems) as described before (Bentea
et al., 2015). Prior to surgery, mice were trained on the rotarod
for 2 days. Seven days after surgery, mice were tested again to
evaluate motor impairment.

Neurochemical Analysis of Total Dopamine

Content in the Striatum

Mice were sacrificed by cervical dislocation and brains were
quickly removed. From the rostral part of the brain, striata were
collected, weighed and homogenized in 400 pL antioxidant
solution (0.05 M HCI, 0.5% Na,S;0s5, 0.05% Na, EDTA),
containing 10 ng/100 L  3,4-dihydroxybenzylamine
as internal standard. Samples were analyzed for DA,
3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic
acid (HVA) as described before (Massie et al., 2011).

Quantification of Dopaminergic Cells by

Immunohistochemistry

The caudal part of the brain was post-fixed for 3 days in
freshly prepared 4% paraformaldehyde (Sigma-Aldrich, Brussels,
Belgium), sliced in 40 pm sections using a vibratome and
serially stored in 0.1 M PBS supplemented with 0.01% sodium
azide at 4°C. Six slices per brain (Fu et al, 2012), covering
the SNpc (—2.92 mm to —3.60 mm relative to Bregma),
were selected for staining, as described before (Bentea et al.,
2015; Massie et al., 2011). The number of tyrosine hydroxylase
(TH)" profiles was determined in the selected sections using
Image] software (U.S. National Institutes of Health, Bethesda,
MD, USA).

Statistical Analysis

Data were expressed as mean + standard error of the mean
(SEM). Statistical analysis was performed using GraphPad Prism
6.01 software. For analysis of multiple variables within multiple
groups of animals we applied two-way ANOVA followed by
Tukey’s post hoc test. The a-value was set at 0.05.

RESULTS

Influence of Anesthetics on Nigrostriatal

Degeneration

LAC infusion into the left SNpc significantly reduced the mean
number of dopaminergic cells compared to sham-treatment
(Fa,20) = 19.88, p < 0.001; Figures 1A-C), with no influence
of anesthetics on the outcome (F(130) = 0.002, p > 0.05) or
interaction effect (F(20) = 0.03, p > 0.05). These data are
supported by the Tukey’s post hoc tests as ISO SHAM vs. ISO
LAC: p < 0.05 and KET SHAM vs. KET LAC: p < 0.05. At the
level of the striatum, LAC induced a global loss of ipsilateral DA
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FIGURE 1 | Influence of anesthetics on nigrostriatal degeneration. Ipsilateral effects of LAC-infusion on the mean number of dopaminergic cells (TH+ cells)

per section in the Substantia nigra pars compacta (SNpc; A), striatal DA content (D) and DA turnover (E) of mice anesthetized with ISO or KET during stereotaxic
surgery. For all parameters, a significant global effect of LAC lesion was present in both anesthetized groups compared to sham-lesion. At the level of the striatum,
DA depletion was more pronounced in mice anesthetized with ISO (ISO LAC) compared to KET (KET LAC; borderline significance; D). An increased turnover of DA
was detected in mice receiving an intranigral LAC injection under ISO anesthesia compared to sham treatment (E). Sample size is indicated in the graph. Bars
represent mean = SEM. *p < 0.05; **p < 0.01; ****p < 0.0001 (global lesion effect, two-way ANOVA), o < 0.05, #p < 0.01, #*#p < 0.0001 (Tukey’s post hoc
test vs. corresponding sham-lesioned group). Representative TH photomicrographs of the SNpc in the four experimental groups (B). Rostro-caudal distribution of
the number of TH+ cells per section, showing a similar distribution of cell loss after LAC in the ISO and KET groups (C). DA, dopamine; ISO, isoflurane; KET,
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content compared to sham-treatment (F(y,21) = 93.95, p < 0.0001;
Figure 1D) with no anesthetic effect (F(11) = 0.4371, p >
0.05), but with a significant interaction factor (F(; 1) = 9.302,
p < 0.01). Post hoc analysis revealed a significant loss of DA in
the ipsilateral striatum of KET LAC vs. KET SHAM (p < 0.01),
as well as ISO LAC vs. ISO SHAM (p < 0.0001). In addition,
there was a strong trend towards a higher sensitivity (borderline
significant) for DA depletion in the ISO LAC group compared
to the KET LAC group (ISO LAC vs. KET LAC: p = 0.0674;

Tukey’s post hoc test). As a measure for DA metabolism, we
assessed DA turnover in the striatum of mice anesthetized
with either ISO or KET. The turnover was calculated as the
ratio of both metabolites (DOPAC+HVA) to DA, with a higher
ratio indicating a higher DA turnover. Ipsilateral turnover was
increased in the LAC-lesioned compared to sham-lesioned mice
(Fa,1y = 4.344, p < 0.05), with no significant anesthetic effect
(Fapin = 3.344, p > 0.05), and a strong trend towards an
interaction effect (F(1,21) = 4.001, p = 0.0586). Post hoc analysis
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revealed that this increase was driven by the ISO-treated group
(ISO SHAM vs. ISO LAC: p < 0.05; Tukey’s post hoc test;
Figure 1E).

Motor Function Is Not Influenced by the

Choice of Anesthetic

No differences were recorded during the rotarod baseline
experiments indicating equal acquisition of rotarod motor
skills in all groups (Figure 2A). One week following surgery,
LAC-injected mice displayed a global impairment in motor
coordination and balance compared to sham-treated mice
(Fa,21y = 8.388, p < 0.01), with no significant anesthetic effect
(F,21) = 0.6007, p > 0.05), or interaction effect (F(;,21) = 0.0359,
p > 0.05; Figure 2B) present.

DISCUSSION

Currently, there are no head-to-head comparisons on
how anesthetics influence proteasome inhibition-induced
neurodegeneration as a model for PD. In this study, we
examined for the first time the vulnerability of the nigrostriatal
pathway to proteasome inhibition-induced degeneration caused
by LAC in mice that were anesthetized with either KET or ISO.
Although several studies reported neuroprotective properties
of KET in vitro and in vivo in different disease states (Hudetz
and Pagel, 2010; Peltoniemi et al., 2016) as well as in toxin-
induced animal models of PD (Datla et al., 2006; Ferro et al.,
2007; Fan et al., 2017), we could not observe any difference in
LAC-induced neurodegeneration in mice receiving LAC under
ISO anesthesia compared to KET. It was shown in rats that
anesthesia with KET, compared to thiopental, protected the
SNpc against nigrostriatal lesions as well as working memory
impairment induced by the neurotoxins 6-OHDA and MPTP
(Ferro et al., 2007). In line with these results, Datla et al. (2006)
showed a severe loss of dopaminergic cells and striatal DA
content caused by injection of 6-OHDA in the left medial
forebrain in rats anesthetized with ISO but not with KET (Datla
et al., 2006). Although the neuroprotective features of KET are
clearly described in several studies, the underlying mechanism
is still under debate. Apart from its well-known NMDA
blockade, KET disturbs a wide range of intracellular neuronal

e

‘Time on rotarod baselines (s) J>
Time on rotarod (s)

Sham LAC Sham LAC

FIGURE 2 | The choice of anesthetic does not influence rotarod performance.
No baseline differences could be detected between the treatment groups (A).
LAC-injected mice showed a decrease in time spent on the rotarod compared
to sham-treated mice, regardless of the anesthetic used (B). Sample size is
indicated in the graph. Data are represented as mean + SEM, **p < 0.01
(global lesion effect, two-way ANOVA). ISO, isoflurane; KET, ketamine; LAC,
lactacystin.

processes (Sleigh et al., 2014) and inhibits the action of the
DA transporter at clinically relevant concentrations, suggesting
that this process can enhance monoaminergic transmission
(Nishimura and Sato, 1999). In addition, KET may decrease
or interfere with the inflammatory cascade as it can suppress
lipopolysaccharide-induced cytokine production (Peltoniemi
etal., 2016).

Despite the absence of neuroprotective effects of KET at
the level of the SNpc in the LAC model, our data show
a strong trend towards increased striatal DA loss in mice
receiving LAC under ISO compared to KET anesthesia. The
effects of anesthetic doses of KET (>100 mg/kg) on DA
levels in the striatum of rodents have only been tested in
a handful of studies, all reporting negative effects. However,
acute KET administration in vivo (10-50 mg/kg) is associated
with significantly increased striatal DA levels (Kokkinou et al.,
2018). The hypothesis of a KET-induced hyperdopaminergic
state is supported by Chatterjee et al. (2012), showing increased
DA levels and DA turnover in the striatum of mice after
acute and chronic treatment. Even more, the significant
elevation in DA remained present after a withdrawal period
of 10 days after the chronic treatment (Chatterjee et al,
2012).

Besides differences in sensitivity for striatal DA depletion,
we demonstrate a significant increase in DA turnover—a
parameter used as an index of dopaminergic function (Perez
et al.,, 2008)—in ISO, but not KET-treated mice after LAC. It
was shown that anesthetic concentrations of ISO can increase
the extracellular concentrations of DA and its metabolites in
the striatum of rodents both in vitro and in vivo (Opacka-
Juffry et al, 1991; Irifune et al., 1997; Adachi et al, 2005).
However, in these studies, rodents were analyzed several
minutes to a maximum of 1 h after exposure and, since our
mice were sacrificed 7 days post-lesioning, it seems unlikely
that the difference in turnover is still due to a direct effect
of the anesthetics. A possible explanation for the increased
turnover—thought to reflect a compensatory upregulation of
the residual dopaminergic neurons allowing normal function
despite significant neurodegeneration (Zigmond et al., 2002;
Perez et al., 2008; Blesa et al., 2017)—in the ISO-treated group
might be related to the DA loss of these mice. It is known that
mice with severe striatal DA loss, which were only present in
the ISO-treated group, have higher turnover levels compared
to moderate lesioned mice (Blesa et al., 2017). This indicates
that only when a certain threshold of DA depletion has been
passed, DA turnover becomes significantly elevated and could
explain why mice anesthetized with ISO (depletion passed the
threshold) have increased turnover, while mice anesthetized with
KET have the same turnover as sham-lesioned mice (depletion
did not pass the threshold). In line with our results, it was
shown that 6-OHDA-lesioned rats showed a compensatory
increase in DA turnover, even after a marked decrease in
tissue DA levels (Snyder et al, 1990). As an increased DA
turnover from spared DA terminals could help to maintain DA
homeostasis and help limit the parkinsonian symptoms, this
might explain the relative absence of deficits in motor function
in our mice with a severe DA depletion in the ISO-treated
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group compared to moderate lesioned mice in the KET-treated
group.

Altogether our data suggest that LAC-induced neuronal death
is not dependent on the anesthetic used during surgery. On
the contrary, an effect of anesthetic on striatal DA content
was present as DA depletion was slightly less pronounced in
mice anesthetized with KET compared to ISO. In conclusion,
KET does not prevent nigrostriatal degeneration induced by
proteasome inhibition. Yet, given the observed effects on DA
content and DA turnover, it is still recommended to use the same
anesthetic within one experimental set-up.
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