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When learning new environments, rats often pause at decision points and look back

and forth over their possible trajectories as if they were imagining the future outcome of

their actions, a behavior termed “Vicarious trial and error” (VTE). As the animal learns

the environmental configuration, rats change from deliberative to habitual behavior,

and VTE tends to disappear, suggesting a functional relevance in the early stages

of learning. Despite the extensive research on spatial navigation, learning and VTE

in the rat model, fewer studies have focused on humans. Here, we tested whether

head-scanning behaviors that humans typically exhibit during spatial navigation are as

predictive of spatial learning as in the rat. Subjects performed a goal-oriented virtual

navigation task in a symmetric environment. Spatial learning was assessed through the

analysis of trajectories, timings, and head orientations, under habitual and deliberative

spatial navigation conditions. As expected, we found that trajectory length and duration

decreased with the trial number, implying that subjects learned the spatial configuration of

the environment over trials. Interestingly, IdPhi (a standard metric of VTE) also decreased

with the trial number, suggesting that humans benefit from the same head-orientation

scanning behavior as rats at spatial decision-points. Moreover, IdPhi captured exclusively

at the first decision-point of each trial, was correlated with trial trajectory duration and

length. Our findings demonstrate that in VTE is a signature of the stage of spatial

learning in humans, and can be used to predict performance in navigation tasks with

high accuracy.

Keywords: navigation, spatial decision-making, hippocampus, deliberation, habitual

1. INTRODUCTION

During spatial navigation experiments, rats often stop at the maze intersections to look back and
forth toward their possible route choices. Such behavior, originally interpreted as an exploration of
possible future outcomes, was termed ’vicarious trial and error’ (VTE) (Tolman, 1939; Tolman and
Minium, 1942). It has been shown that animals exhibit more VTE behaviors during early phases of
spatial exposure (Tolman and Minium, 1942), and when discriminating between possible options
becomes more difficult (Tolman, 1939).

From a spatial navigation perspective, VTE has been linked to the firing of hippocampal
place cells. Place-cells are neurons in the hippocampal formation whose receptive-fields are tuned
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to specific locations of the explored environment (O’Keefe, 1979).
Such position-related signals have been shown to be used when
rats probe future trajectories during spatial-decision making
processes (Johnson and Redish, 2007). Specifically, during VTE
behavior occurring at navigational intersections, hippocampal
place-cells are sequentially activated in the direction of the maze
arm toward which the animal orients itself. Moreover, it has been
shown that hippocampal damage impairs evaluation of reward in
rodents during delay discounting tasks (Bett et al., 2015). Such
findings give rise to the hypothesis that VTE serves the purpose
of setting the neuronal mechanisms of spatial representation for
simulating future trajectories rather than simply potentiating the
acquisition of sensory information.

Rodent spatial learning has been described to employ two
types of navigational strategies (Schmidt et al., 2013): “place”
and “response.” “Place” strategies use environmental sensory
information to encode current and future locations and leads
to the ability to adapt to environmental sensory changes.
“Response” strategies, on the other hand, rely on the learned
sequence of motor-actions to reach a goal-location in a given
navigational context. It has been shown that the different stages of
spatial learning recruit one or the other strategy, with each using
its own distinct, associated neural mechanism (see Redish, 2016,
for a review on VTE and spatial learning). Specifically, lidocaine
inactivation of hippocampal neural populations impaired “place”
strategies and striatal caudate nucleus inactivation disrupted
“response” navigational strategies (Packard and McGaugh,
1996). The distinct recruitment of these brain regions during
spatial navigation suggests that with increased familiarity, initial
learning stages, when tasks still require the association of
spatial and sensorial information for the understanding of the
experimental contingency, progressively transition into a cue-
action coding scheme (Schmidt et al., 2013).

Situating oneself in space is dependent on one’s exploration
history and perception of environmental cues. As navigational
learning increases, attention allocated for sensory precessing
decreases and motor-outcome memories play a more prominent
role (Jensen et al., 2007; Redish, 2016).

However, the signatures of such learning/relearning and
how experience affects them remain unclear. Head-scanning
behaviors have been shown to relate to novelty detection and are
suggested to serve the purpose of sensory acquisition (Monaco
et al., 2014). Even though VTE has been mostly studied in
rodents’ spatial navigation, humans might also benefit from, and
exhibit, such behavior. At the very least, the neuronal apparatus
serving spatial representation has been found in the human
hippocampus (Ekstrom et al., 2003). Also, at the behavioral level,
human saccade–fixate–saccade sequences have been reported
during moments of decision-making in visuospatial tasks,
suggesting that humans also project onto their possible options
before taking a decision (Krajbich and Rangel, 2011; Voss et al.,
2011). Thus, one could expect that similar to rodents, specific
behavioral mechanisms take place during the various stages of
spatial learning in the human model.

To test whether humans take advantage of VTE behaviors
during spatial navigation, we devise a virtual reality navigational
task where participants are asked to perform goal-oriented

navigation. We test their ability to perform goal-oriented
navigation within a virtual environment where exposure
conditions promoted either "place" (through low-frequency
exposure to a navigational contingency) or “response” (through
high-frequency exposure instead) strategies. We hypothesize that
head-orientation during spatial decision-making is a behavioral
correlate of learning and, moreover, that it is predictive of
navigational performance.

METHODS

Experimental Design
Twenty subjects (8 female, age 27 ± 3 years old, right-
handed) were recruited from Universitat Pompeu Fabra students
community. This study was carried out in accordance with
the recommendations of Ethics Committee of the Universitat
Pompeu Fabra. The protocol was approved by the Comité
para la integridad de la investigación (CEIC). All subjects gave
written informed consent in accordance with the Declaration
of Helsinki. The experiment consisted of goal-oriented virtual
navigation trials, where subjects were asked to perform a spatial
memory task by reaching a goal-object location the quickest
possible. A squared virtual environment (20 virtual meters
(vm) on each side), made up of corridors and solid walls,
was built using the Unity3D game engine (San Francisco,
California). The layout was based on the one presented in
Schmitzer-Torbert (2007): a highly symmetrical environment
with sparse visual landmarks (Figure 1A), and multiple decision-
making points between start- and target-locations. In order
to perform virtual navigation, participants controlled a virtual
character in first-person perspective. Translation and rotation
in virtual space were controlled with a keyboard, with arrow
keys indicating the direction of both translation (front/back)
and rotation (left/right). Head orientation was controlled with
an optical mouse along the physical horizontal plane and had
a consistent mapping rate to the virtual world. Head and
body rotation were programmed with specific rates of angular

changes. Body rotation was set at 2/π
sec of key pressing, while

the head angular change was set at π
10cm of the optical mouse

translation. Therefore, performing virtual direction-scanning
behaviors was faster by simply manipulating the character’s
head rather than its body. Indeed, such manipulation served
the purpose of promoting head rotation when participants
sought to acquire environmental sensory information during
spatial decision-making. A 1 vm length virtual pole projecting
ahead of the users viewpoint was included so that participants
were aware of both the body and head orientation in the
environment. The virtual speed of navigation was kept fixed
throughout the experiment. Visual cues, composed of circular
patches of different colors, were uniformly distributed across the
virtual maze and were the only position-relevant information
available (see a screenshot of the virtual maze in Figure 1B).
Two possible starting locations, as well as two distinct target
locations, were defined. Therefore, there were four possible start-
target combinations, all of which were tested. Because rodent
VTE has been linked to spatial learning and consequently to
place/response navigational strategies, we assigned each of the
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four start-target combinations to different exposure frequencies.
Subjects were exposed to the high-frequency condition in 60% of
the trials and to the low-frequency condition in 28% of them. The
remaining two start-target combinations were interleaved with
the high- and low-frequency conditions and were not considered
for further analyses. Subjects were instructed to complete at least
50 navigational trials. Thereafter they were allowed to freely
continue the experiment. On average, participants performed
a total of 67.4trials(mean, std = 2.66). Nevertheless, we only
analyzed the first 62 trials of each participant in order to match
the same number of trials across participants.

Trial types were uniformly shuffled across the experimental
session and could not be predicted by the subjects (number of
high-frequency trials was mean = 37.4, std = 2.2, and for low-
frequency mean = 19.2, std = 0.9 ). At every trial, a visual icon
representing the target object (color and shape) was presented
and kept visible on the computer screen (Figure 1B). Each trial
started with the virtual character placed at one of the two possible
starting locations and ended when the goal-object was reached.
At the end of each trial, a blank window with a white cross
centered on the screen was displayed for 4 seconds. After that,
the white cross disappeared, indicating that participants could
now start a new trial by pressing any of the arrow keys on the
keyboard.

Navigational Measures
1.0.1. Trial Duration and Distance
The position and angular orientation of the virtual character were
recorded throughout the experiment at a sampling rate of 70 HZ.
Trial duration was considered as the elapsed time from the trial
onset till the moment the character reached the target-object. The
trial distance was computed by summing the traveled distance
given by:

distance =

n
∑

k=0

‖xyk − xyk+1‖ (1)

where, xy are the spatial coordinates of each point k in the
trajectory.

1.0.2. Route Difference
The route difference, a measure of similarity between pairs
of navigational trajectories was used to quantify learning and
automation. Each trajectory consisted of the path taken between
the starting location and target location of each trial. Therefore,
the route difference reflects the Euclidean distance between the
two given navigational trajectories. In order compute the route
difference between a trajectory pair, each trajectory was clipped to
the vector length of the shortest trajectory and interpolated along
each data-point. Thus, their difference was measured between
each aligned data point for every pair of trials. The final score was
obtained by averaging the difference between trials i and j given
by:

Route_difference =

∑n
k=0

√

(xi(k)− xj(k))2 + (yi(k)− yj(k))2

n
(2)

where, x and y are the virtual environment x-axis and y-axis
coordinates of each point k from either i or j trajectories, and n is
the total amount of positions from the interpolated trajectories.

1.0.3. IdPhi: VTE Behavior
The IdPhi measure has been used in the rodent literature to
quantify VTE behaviors at decision-points of navigational tasks
(Schmidt et al., 2013). We adapted IdPhi to our dataset in order
to quantify changes in angular orientation at decision-points
during navigation. Navigational components used in the IdPhi
analysis comprised the trajectory segments at the moment the
virtual character approached the first spatial decision-point until
it entered one of the arms of the maze. The first derivative of
the character’s head orientation was extracted to obtain changes
in angular orientation (Eθ). To avoid circular transitions, we
corrected the radian phase angles of the orientation signal when
absolute jumps between consecutive data points were greater
than π (Schmidt et al., 2013). The IdPhi measure was then
calculated by integrating the absolute values of |dPhi|, given by:

IdPhi =

∫

‖unwrap
(

Ėθ
)

‖ (3)

where θ are the virtual character’s angular orientation points
of the trajectory segment included in each analysis. To prevent

circular transitions, the angular orientation ( Ėθ) was unwrapped
by changing deltas between values to 2π complement (see
Schmidt et al., 2013 for details regarding the IdPhi measure).

1.0.4. Head-Orientation Variability
The IdPhi measure of VTE behavior extracts a single value
for a given trajectory segment, however it does not provide
a continuous measure of head-scanning. Because the VTE
behavior is characterized by head orientation alternations
between spatial options (in here, left and right alleys), we
observed oscillatory-like head movements profiles. Therefore, we
were able to quantify head-orientation variability in continuous
temporospatial dimension. In order to observe how participants
modulated their head-scanning behavior along with their
trajectories, we measured changes in head-orientation and
quantified its modulation in their spatial rate dimension for each
trajectory. We first applied a band-passed filter (1–20 Hz) onto
the head-orientation signal. The resulting orientation signal was
z-scored and its envelope was extracted via the Hilbert transform.
The orientation amplitude was normalized to its corresponding
trial maximum amplitude. The environment was segmented
into 30x30 virtual bins (bin size = 1 vm) and the orientation
amplitude score was normalized by the time spent at each of the
environment’s spatial bins. The resulting orientation variability
rate maps were then smoothed using a 2D Gaussian filter (σ =
1.2).
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FIGURE 1 | (A) Left: Virtual maze layout. S1,S2 and T1,T2 denote the possible starting and target locations, respectively. Two exmaple of starting-target

combinations with respectively optimal (blue) and erratic (red) trajectories schematics. (B) Screenshots of the environment through first-person perspective. (C)

Example of an early (Left) and a late (Right) trial trajectories from one subject.

RESULTS

1.1. Spatial Learning
All analyses and data processing were done using the scipy
(Jones et al., 2001) and numpy (Oliphant, 2006) python packages.
Spatial learning was measured through trajectory similarity
across trials of the same (high/low frequency) condition. For
illustrative purposes, two trajectories from the same participant,
one from an early trial and one from a late trial, are depicted
in Figure 1C. As expected, early trials of both conditions
tend to take longer to complete than later trials in the same
condition, suggesting that overall, participants were capable of
understanding the environment’s layout and task contingencies
(Figure 2B). After reaching a plateau (trial 6), navigational
duration was significantly different between conditions (23.1
± 3.6 s for the low-frequency condition, and 15.29 ± 1.35 s
for the high-frequency condition, t-test p < 0.01, t = 2.75
). Similarly, trajectory length reached a plateau around trial 6
and subsequent trials revealed significance between conditions
(34.01 ± 4.62 vm for the low-frequency condition, and 24.74
± 2.08 vm for the high-frequency condition, t-test p < 0.05,
t = 2.65 ). Despite these decreases in duration and length,
we expected that trajectories would become more similar as
participants learned the environmental contingencies (for an
example of consecutive high-frequency condition trials from
one subject, see Figure 2A). We have measured the route
difference between every trajectory pair from both conditions
per subject (Figure 2C). Overall, early trials exhibited a greater
route difference (low condition max = 7.18vm, high condition
max = 5.96vm) whereas later trials were found to be
more similar (low condition min = 0.47vm, high condition
min = 0.21vm). In summary, decreases in navigational paths

duration and length, accompanied by increases in trajectory
similarity suggests that participants were capable of progressively
acquiring knowledge of both the environmental configuration
as well as the experimental configuration, adapting their
spatial routes and decision-making depending on the start-goal
contingency.

1.2. VTE
We hypothesized that humans benefit from behavioral correlates
of spatial decision-making, specifically from VTE behaviors, as
has been previously shown in rodents (Tolman, 1939, 1948;
Tolman and Minium, 1942; Schmidt et al., 2013) In order to
measure whether humans do benefit from these back and forth
head-scanning behaviors, we quantified navigational variables
in both high and low-frequency conditions. Because high-
frequency conditions have, by definition, a greater probability
of occurring, we expected that trajectory length and duration
of trials with high-frequency start-target combinations would
be shorter when compared with low-frequency conditions. The
rationale was that because participants were exposed to the high
condition more often than to the low condition, associations
between environmental sensory information and goal-locations
with their respective repertoire of motor actions would be
encoded earlier in the experimental session. Surprisingly, the
plateau of duration and length was reached within a similar
number of trials for both conditions (Figure 2). Despite coherent
learning stabilization in the number of trials exposed in both
conditions, we still expected trajectory length and duration of
navigation to differ across conditions. Indeed, duration was
significantly lower (t-test, p < 0.05) for the high as opposed
to the low frequency condition (High: mean = −0.27 ±
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FIGURE 2 | (A) Example of trajectories from one participant in the high frequency condition. Numbers correspond to trial number. Red and gray dots represent the

starting and end of the trial, respectively. (B) Mean and standard error of trial duration (left) and length (right) for the first 14 trials of each condition (high/low). (C) Route

difference between every trajectory pair in each condition, averaged across subjects.

0.16std, low: mean = 0.15 ± 0.25std). Moreover, trajectory
length was significantly shorter (t-test, p < 0.05) for the
high condition (mean = −0.26 ± 0.15std) when compared to
the low condition (mean = 0.14 ± 0.29std). Taken together,
these results suggests that higher exposure to the navigational
task leads to greater route optimization as compared to fewer
exposures.

Other than trajectory duration and length, we were also
interested in head-scanning events at decision-points. As
described in the methods section, we extracted the trajectory
segments when participants were crossing through the first
decision point. IdPhi scores were split in high and low frequency
conditions (Figure 3-right subplot). Interestingly, low frequency
trajectories revealed a greater variation in head-orientation at the
first decision-point (mean = 0.39±0.28std) when compared with

the high condition (mean = −0.27 ± 0.17std) at a statistically
significant level (t-test, p < 0.01).

1.3. VTE Decreases With Learning
We have reported on three measures of spatial navigation:
trajectory duration, length, and IdPhi at the first decision
intersection. We hypothesized that IdPhi scores were predictive
of the participant’s ability to perform a goal-oriented navigational
task in a static environment. As expected, we have observed
greater trajectory duration, length and IdPhi for the low-
frequency condition when compared to the high-frequency
condition, suggesting that frequency of exposure modulates the
internal representation of the environment and/or experimental
contingencies. Head-scanning behaviors have been observed
to increase the activity of hippocampal place-cells leading to
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FIGURE 3 | Navigational measures at high and low frequency conditions. Trajectory duration, length and IdPhi were smaller for the high condition when compared to

the low frequency condition (t-test: duration p < 0.05, length p < 0.05, IdPhi p < 0.01). Gray lines represent the mean of each subject in a given condition. Condition

level description depicted by box-plots median (horizontal orange line) and lower and upper quartile values of the data (horizontal black lines).

the potentiation of their receptive-fields at a given spatial
location (Monaco et al., 2014). These results suggest one-
trial encoding of experiences mediated by place-cell activity.
Therefore, one could expect that head-scanning behaviors serve
the purpose of acquiring sensory information in moments
when hippocampal spatial representation does not properly, or
sufficiently, predict the sensory statistics of the environment.
However, whether head-scanning is an all-or-nothing type
of behavior or if it follows the progressive modulation, as
observed for trajectory duration and length, is still unclear. We
calculated averaged scores for the three navigational measures at
a trial-by-trial basis for each condition (Figure 4). As observed
in Figure 2, trajectory duration and length quickly decreased
with contingency exposure. Again, high-frequency condition
revealed greater decrease in trajectory length, duration and
IdPhi measures after reaching its plateau when compared with
low frequency trials (Figure 4, top and middle). Notably, the
IdPhi measure of head-scanning followed a similar trend as
the previous navigational measures. That is, it progressively
decreased with increasing contingency exposure and scored
lower for the high-frequency condition after reaching a plateau
compared to the low-frequency condition (Figure 4 bottom).

1.4. Head-Orientation Variability Is Specific
to Decision-Making
Given that in our task the decision taken at the first intersection
was of greater importance than at other junctions (optimizing
navigational score is heavily dependent on the decision made
at the first intersection), VTE was measured by obtaining
trajectory segments crossing the first decision point of each
trial. In addition, we measured the head-orientation variability
within the entire environment (see section Methods). Put
briefly, we computed the first derivative of each trial’s head-
orientation in polar coordinates, then applied a low-pass filter
and a Hilbert transform on the signal. The amplitude of the
head-orientation variability was normalized to the entire trial
signal. Rate maps of each trial were built upon the discretized
environment (bin = 1vm) and normalized to the occupancy

duration spent in each spatial bin. Rate maps were aligned
(rotated) so that the first-intersection position would match
across conditions and averaged head-orientation variability
across subjects were used for further analysis (Figure 5). In
sum, low-frequency conditions have a higher rate of orientation
variability at the first decision point when compared with
the high-frequency condition (Figure 5 Top). Next, we built a
library of rate maps and performed the clustering permutation
statistical test. This way, we could assess whether levels of
head-orientation at decision points were significantly higher for
the low-frequency condition (p-val threshold was set to 0.05).
As expected, a significant cluster survived permutation testing
in bins surrounding the first decision intersection (Figure 5
Bottom, dashed pink inset). Similar to our other navigational
measures, the amount of time spent at the first decision-making
intersection progressively decreased with learning (Figure 5C),
which served as a second control for the between-conditions
differences in head-orientation variability observed before.
Together, these results demonstrate that head-scanning behaviors
are functionally engaged in the spatial decision-making as
observed in the rodent literature. Moreover, the fact that the
cluster center of mass is specific to a single location of the
environment and head-orientation is not modulated throughout
the environment supports the hypothesis that VTE is part of a
deliberation process.

1.5. VTE Is Predictive of Navigational
Performance
We have observed a congruent modulation among the selected
navigational measures when comparing between conditions and
between trials. However, scoring of trajectory length and duration
differ methodologically from the IdPhi scoring in the sense that
IdPhi is obtained by a considerably short trajectory segment
at the beginning of the navigational path, whereas trajectory
length and duration summarize the entire starting point to
goal navigational path. Moreover, IdPhi scores progressively
decreased on a trial-by-trial basis, suggesting a continuous
modulation congruent with spatial learning (Figure 4). We have
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FIGURE 4 | Navigational measures along the first 14 trials of each participant at each frequency conditions. Trajectory duration (mean ± sem). Duration, length and

IdPhi strongly decreased on the first three trials of each condition. High frequency trials were maintained on negative standard deviation throughout the experiment,

while low frequency trials oscillated around zero.
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FIGURE 5 | Head-orientation and decision-making duration. (A) Participant’s rate maps were aligned (rotated 180deg) when necessary so that starting location

would match across participants and conditions. Rate maps of low (left) and high (center) frequency conditions, as well as their difference (right) are shown. Shown

rate maps represent the mean across participants. (B) Cluster-level statistical permutation test for head-orientation in the low and high conditions. Colored bins are

locations that survived multiple comparisons correction with p-value < 0.05. Note the strong cluster at the first decision-point (dashed pink line, zoomed on the right)

suggesting a greater head-orientation variance for the low frequency condition. (C) Time spent from trial onset until entrance in one of the possible maze alleys

(averaged across participants).

asked whether the amount of head-scanning behavior at the
first intersection could be predictive of subsequent navigational
performance. As the speed of navigation was programmed to
be fixed—a continuous navigation—a small variance in the
amount/duration of pauses across trials would have a strong,
confounding correlation with trajectories’ length (space) and
duration (time). In order to control for navigational continuity,
we computed the linear relationship between trajectories’ length
and duration through pairwise correlation (Pearson correlation
coefficient r = 0.96, p < 0.01). All participants’ data
was z-scored and merged for this analysis). Participant-specific
length and duration relationship is depicted in Figure 6 Top-
Right. Next, we measured the linear relationship between IdPhi
scores at the first intersection with the length and duration of
that trial. IdPhi scores revealed to be significantly correlated
for trajectory duration (Pearson correlation coefficient r =
0.502, p < 0.01) and trajectory length (Pearson correlation
coefficient r = 0.431, p < 0.01). Thus, this suggests that head-
scanning behavior at early moments of the trial is predictive of
the final trajectory performance (Figure 6middle and bottom). A
measure of group effect was performed by averaging correlation
coefficients. Regarding trajectory duration, IdPhi was predictive
in 18 out of the 20 participants (p < 0.05, mean = 0.009 ±
0.005sem ). Similarly, IdPhi correlated with trajectory length
in 17 out of the 20 subjects (p < 0.05, mean = 0.04 ±
0.02 sem ).

DISCUSSION

We have tested human spatial learning in a goal-oriented
virtual navigation task. Because the behavioral and physiological
correlates of animal spatial navigation have been extensively
studied in the rodent model, we aimed to quantifiably link
the observed rodent behaviors of specifically place/response
strategies, VTE and head-scanning behaviors with how humans
navigate in space.

Rodent spatial learning has been revealed to be punctuated
with very specific behavioral and neuronal markers at distinct
learning phases of spatial exploration. One such behavioral
marker, the VTE behavior, i.e. pausing at a maze intersection
during spatial navigation to look back and forth at the possible
options before taking a decision, has been observed for many
years (Tolman, 1939; Tolman and Minium, 1942). Presumably,
scanning the environmental configuration while in the process of
decision-making suggested that animals were gathering sensory
information in order to enrich their world model. Nevertheless, it
is known that both rodents and humans are capable of developing
neuronal spatial representations of their surroundings (O’Keefe,
1979; Ekstrom et al., 2003). Moreover, it has been shown that
hippocampal place-cells representing possible future trajectories
are sequentially activated during VTE behavior (Johnson and
Redish, 2007). Therefore, this shows that VTE events occur
even when the internal representation of space has been
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FIGURE 6 | IdPhi at first decision-point correlates with navigational aspects (Top) Relation between length and duration of each trial for all subjects (left) is highly

correlated (Spearman test r = 0.942, p = 0). Correlations for individuals are shown on the right column. (Middle) Correlation between length and IdPhi (Spearman

test r = 0.431, p < 0.001). (Bottom) Correlation between duration and IdPhi (Spearman test r = 0.5015, p < 0.001).
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learned, suggesting that VTE does not serve the sole purpose
of boosting the learning of the environmental sensory-statistics
at the neuronal level. The hippocampal neural mechanisms
for simulating spatial trajectories have been proposed both
theoretically and computationally (Bush et al., 2015; Sanders
et al., 2015). Additionally, a model of spatial representation
and trajectory simulation has been implemented in a robotic
simulation of the T-maze navigation task and suggested the
emergence of VTE behaviors at early learning phases (Santos-
Pata et al., 2016).

Conceptually, pausing at spatial decision-points can be a
signature of at least two distinct processes. On one hand,
scanning the possible routes to take allows acquiring sensory
information regarding the environmental options. This increase
in available sensory information could potentially increase the
number of hippocampal place-cells tuned to the spatial locations
of each of the maze-arms, as observed in Monaco et al. (2014),
thereby optimizing performance. On the other hand, aligning
one’s body toward possible decision options would allow the
setting of path-integration hippocampal mechanisms to simulate
future trajectories, as has been theoretically and computationally
postulated (Bush et al., 2015; Sanders et al., 2015). Regardless
of whether VTE behaviors serve to gather spatially relevant
sensory information or to modulate internal mechanisms of
spatial representation, the fact that they occur at specific spatial
learning stages is indicative of their participation in navigational
performance (Redish, 2016).

In order to assess spatial learning, we have devised a
navigation task in a highly symmetric virtual environment where
the floor, walls and ceiling texture, as well the environment
layout would not be sufficient to decode a participant’s avatar’s
position. The only reliable sensory signal indicative of position
were the visual cues made of circular patches sparsely scattered
in the environment that were kept constant throughout the
experiment. Because in each trial, participants would start at
one of two possible locations and were asked to reach one
of two possible targets, the trajectory taken to reach the goal
was specific to each of the combinations. The ability to form a
spatial representation of the environment and task contingency
was measured through spatio-temporal characteristics of the
participants spatial trajectories. We observed that participants
were capable of improving their trajectories length and duration
after a few trials of exposure to a given starting-goal combination
(Figure 2B). Similarly, we have observed that with learning,
the similarity of trajectories belonging to the same condition
tended to increase (Figures 2B,C). Surprisingly, we observed
a temporary decrease in navigational performance (i.e., an
increase in trajectory length and duration) for the low-frequency
condition at trial 8 (Figure 2B). One possibility could be that the
learning of high-frequency trials might affect low-frequency trials
performance. However, further investigation is needed to assess
this hypothesis.

Despite the navigational improvement throughout the
experiment, such spatial measures do not entirely capture the
underlying mechanisms by which participants learned the task.
On the one hand, it could be that with exposure, participants
incrementally acquired spatial knowledge and were capable of

forming a proper spatial representation of their surroundings,
therefore becoming capable of situating themselves within the
maze, understanding the environment’s layout and remembering
spatial locations associated with target objects. On the other
hand, such navigational improvements could be due to the
participants’ ability to associate a set of landmarks/cues at the
initial trial’s location with a sequential chain of navigational
actions leading to the target-object.

An alternative hypothesis would be that participants recruit
distinct navigational strategies (place/response) accordingly with
the trial condition that they are requested to perform. Similar
to the alternation of navigational strategies strategies observed
in rodents (Schmidt et al., 2013), the levels of IdPhi scoring
in our experiment were significantly higher for the low-
frequency condition when compared to the high-frequency
condition. Therefore, it not only suggests that participants
adapt their strategies to the experimental contingency but also
proposes that participants do not relied on a memory of
action sequences in the low-frequency condition. Our results are
congruent with the assumption that humans take advantage of
head-orientation during spatial-decision making, a component
observed in both VTE and head-scanning behaviors (Tolman
and Minium, 1942; Monaco et al., 2014). In previous studies,
the head-orientation variability at given location served to
identify the cognitive processes underlying spatial decision-
making and spatial representation. In Tolman and Minium
(1942), head-orientation variability served to identify VTE
behaviors, whereas in Monaco et al. (2014), it served to identify
head-scanning behaviors. However, head-orientation variability
is a continuous measure rather than simply a binary marker
for behavioral events. We hypothesized that head-orientation
variability would be modulated with learning, as observed
for other spatial measures (trajectory length, duration and
similarity). As expected, IdPhi scores progressively decrease
with increasing trial number, suggesting that head-orientation
variability is modulated by spatial learning (Figure 4).

Evidence for the relationship between VTE behavior and
spatial learning have been previously shown (Tolman and
Minium, 1942; Redish, 2016). In a review of the VTE
behavior in rodents, David Redish showed indications that
VTE occurs mostly in early stages of spatial learning (Redish,
2016). Interestingly, quantification of VTE is measured at
specific spatial decision points of the environment, whereas
navigational performance is based on spatial features over the
entire navigational path. Because IdPhi was measured, in our
experimental setup, at the very first decision-making intersection,
we aimed to understand whether such measure was prognostic of
the participants performance of each trajectory. We observed a
high correlation between IdPhi at the first intersection and the
length and duration of the corresponding trajectory, suggesting
that, indeed, occurrence of head-scanning is a predictor of spatial
learning.

We sought to understand whether humans, like rodents,
benefit from the variability of head-orientation during spatial
decision-making, and how it is further related with spatial
learning. Furthermore, we devised a virtual environment and
experimental protocol where place and response strategies could
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be used to solve navigation. Our results suggest that humans are
capable of adapting their navigational strategy depending on their
understanding of the task contingency. Furthermore, we have
shown that learning is tightly related with the amount of head-
orientation variability, suggesting the functional role of VTE
and head-scanning in spatial-representation and navigational
knowledge. Together, our results highlight the transferability of
results found in the rodent model to the human model when it
comes to the behavioral aspects of navigation.

Despite our attempt to quantify human VTE as observed
in rodents, it is important to note that such head-related
behavior has been studied in unconstrained experimental tasks,
such as those of alternate tasks. In our set up, however, head
orientation was obtained from the virtual character, not the
subjects themselves. Due to these limitations, we used a virtual
pole indicating the orientation of the virtual character’s body,
which implicitly decreases the ecological validity of our setup. In
order to improve the ecological validity of our setups, future work
should address these limitations. One possibility would be to test

participants in freelymoving environments with the use of virtual
reality headsets.
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