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The search for neural correlates of operant and observational learning requires a

combination of two (experimental) conditions that are very difficult to combine: stable

recording from high order neurons and free movement of the animal in a rather natural

environment. We developed a virtual environment (VE) that simulates a simplified 3D

world for honeybees walking stationary on an air-supported spherical treadmill. We show

that honeybees perceive the stimuli in the VE as meaningful by transferring learned

information from free flight to the virtual world. In search for neural correlates of learning

in the VE, mushroom body extrinsic neurons were recorded over days during learning.

We found changes in the neural activity specific to the rewarded and unrewarded visual

stimuli. Our results suggest an involvement of the mushroom body extrinsic neurons in

operant learning in the honeybee (Apis mellifera).

Keywords: virtual enviroment (VE), learning and memory, mushroom body, honey bee, feedback neurons, GABA,

operant learning, mushroom body extrinsic neurons

INTRODUCTION

In the past, two different approaches have been followed to search for neural correlates of operant
learning and navigation: Monitoring neural activity of animals (usually rats) while navigating in a
rather small space (O’keefe andNadel, 1978;McNaughton et al., 2006; Puryear et al., 2010; Ball et al.,
2014), and animals navigating in a virtual environment [VE, (Mallot et al., 1998)]. The latter has
the advantage that the simulated environment can be large and fully manipulated. Its disadvantages
relate to compromised sensory feedback provided by the moving visual world and the stationary
conditions of the animal. Nevertheless, animals and humans can learn and navigate in a virtual
reality set-up that produces the relevant visual feedback to the intended movements (Gillner and
Mallot, 1998; Holscher et al., 2005, design guidelines for VEs can be found at: http://cogprints.org/
3297/). Such devices have been developed and combined with neural recordings of EEG, local field
potentials and single neurons for humans (Gillner andMallot, 1998; Araújo et al., 2002; Baumeister
et al., 2010; Doeller et al., 2010) as well as for animals (Mizunami et al., 1998; Harvey et al., 2009,
2012; Dombeck et al., 2010; Takalo et al., 2012; Aronov and Tank, 2014).

Insects are particularly suitable for behavioral-neural analyses. Despite having small brains
they perform complex tasks in their respective environments (Menzel, 2012) including multiple
forms of learning like classical, operant and observational learning under natural conditions. These
forms of learning have been studied extensively on a behavioral level (Srinivasan, 2010; Giurfa and
Menzel, 2013). Laboratory learning tests have been developed to keep the stimulus conditions close
to those under natural conditions. In cockroaches, neurons were successfully recorded in freely
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moving animals (Mizunami et al., 1998; Bender et al., 2010).
Drosophila flying in a simple VE has helped to elucidate a range
of visual performances and visual learning at multiple levels
of analysis (Heisenberg and Wolf, 1979; Wolf and Heisenberg,
1984; Peng et al., 2007). However, combining flight behavior in
a VE with neural recordings has turned out to be rather difficult
in Drosophila leading to correlations between turning behavior
and local field potentials (van Swinderen and Greenspan, 2003)
and to correlates of the fly’s heading direction (Kim et al.,
2017). Walking Drosophila are suitable for studying neural
correlates of seemingly more complex behaviors like operant and
observational learning (Fiala, 2007) and landmark orientation
(Seelig and Jayaraman, 2015; Turner-Evans et al., 2017). These
experiments allow researchers to combine the potential of
molecular genetic tools with behavioral tests.

Honeybees are capable of a variety of complex learning tasks
that go beyond classical and operant conditioning including
non-elemental learning (Giurfa, 2003). So far, the search for
neural correlates of learning, memory formation and memory
retrieval in honeybees was limited to olfactory conditioning of
restrained animals (Okada et al., 2007; Denker et al., 2010;
Strube-Bloss et al., 2011; Menzel, 2014; Filla and Menzel, 2015).
Past experiments have shown that honeybees can be trained to
discriminate colors in a virtual environment (Buatois et al., 2017,
2018; Rusch et al., 2017; Schultheiss et al., 2017). Here we set
out to train bees to visual stimuli in a virtual reality environment
while recording simultaneously from higher order brain centers.
In the future, this might enable us to record neural correlates of
complex learning tasks in the virtual environment.

We developed a VE that consists of an air-supported
spherical treadmill allowing the stationary walking honeybee
(Apis mellifera) in closed-loop to control a visual environment
projected onto a cone-shaped screen from above. This set-
up gives us the opportunity to combine stable extracellular
recordings over many hours with rather free moving animals.
The honeybee can actively select a visual stimulus while we
record from what are most likely A3 mushroom body extrinsic
neurons that are known to change their response properties
during classical olfactory conditioning (Haehnel and Menzel,
2010; Filla and Menzel, 2015). These neurons receive input from
Kenyon cells, the intrinsic neurons of the mushroom body. They
are sensitive to combinations of multiple sensory modalities
including visual stimuli (Homberg and Erber, 1979; Schildberger,
1981; Grünewald, 1999).

Here, we also show that honeybees that were trained in free
flight transfer the learned information to the VE.

After training in the VE, we found significant changes in
neural activity to the rewarded and unrewarded colors in the VE.

EXPERIMENTAL PROCEDURES

Spherical Treadmill, Geometry of the
Virtual Environment and Overall Set-Up
The virtual environment (VE) was an advanced version of the
VE described in deCamp (2013). The treadmill consisted of a
Styrofoam sphere (10 cm diameter) placed in a half-spherical

plastic cup with several symmetrically located holes through
which a laminar airflow passed and let the sphere float on air.

The projector (Epson EMP-TW 700, Suwa, Japan, digital
scanning frequency: pixel clock: 13.5–81 MHz, horizontal sweep:
15–60 kHz, vertical sweep: 50–85Hz) was positioned above a
Faraday cage and illuminated the inner surface of a cone-shaped
screen (height 60 cm, bottom diameter 7 cm, top diameter 75 cm)
via a large surface mirror and a Perspex window (Figure 2). The
inner surface of the cone consisted of white paper. The shape
of the patterns projected onto this screen were adjusted so that
they appeared undistorted to the bee. During an experiment, the
Faraday cage was closed. A web camera (c920, Logitech, Morges
Gesellschaft, Switzerland) positioned above it imaged the head
of the animal via a 500 mirror objective allowing observation of
the animal during the experiment. The light from the projector,
which fell directly on the upper view of the animal, was blocked
by a screen.

Control of the Virtual Environment and
Experimental Procedure
The virtual environment and the recognition of the bee’s
movement was under the control of the custom program
BeeWorld. It was implemented in Java by using OpenGL-
Bindings for Java (LWJGL). Two optical high precision computer
mice (Imperator, Razer Europe GmbH, Hamburg, Germany;
G500, Logitech Europe S.A.) detected the movement of the
sphere, initiated by the walking bee. The mice were accurately
positioned under 90◦ at the equator of the Styrofoam sphere and
precisely aligned to the optimal distance with x/y micro drives.
The readings of the optical mice were precisely calibrated by
rotating the sphere around the vertical axes. Thus, it was possible
to convert ticks produced by the mice to forward movement,
horizontal movement and rotatory movement of the bee in inch.
Rotatory movement was obtained by calculating the mean of the
movement along the x-axes of both mice. This redundancy is
making the signal more reliable. The translational component of
the movement results from the differences between the ticks of
the y-axes of both mice. Both y-signals were multiplied with their
position vectors and summed up. The resulting vector gives the
translational components of the movement (Figure 2C):

Translation = x1 ∗

(

−0.707
−0.707

)

+ x2 ∗

(

0.707
−0.707

)

To obtain the new position of the bee after a move, the
translational vector was added in the direction the bee was
virtually orientated:

T.x ∗ cos (O) + T.y ∗ sin (O) = x
T.y ∗ cos (O) + T.x ∗ sin (O) = y

T is the translation vector. O is the orientation.
The data from the mice was read at a frequency of 500Hz by

the computer. The bee was able to control the virtual scenery
by rotatory and translatory movements of the sphere. Multiple
scenarios were designed and stored as xml files. These files were

Frontiers in Behavioral Neuroscience | www.frontiersin.org 2 January 2019 | Volume 12 | Article 279

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Zwaka et al. A Virtual Environment for Honeybees

loaded by the custom program BeeWorld. They contained the
positions, widths, and colors (RGB) of a variable number of
vertically oriented stripes or other structures. In order to improve
the feedback to the bee about the rotatory components, every
scenario had a checkerboard pattern projected onto the ground
immediately in front of the bee, and gray stripes of different
height at the background simulating a far-distant skyline. The
rotation and translation of the checkerboard pattern was coupled
one-to-one to the intended movement of the animal and the
rotation of the skyline was set to a lower angular velocity
simulating further distance by motion parallax. The angular
velocities of these patterns as well as that of all objects in between
could be separately adjusted.

The field of view in OpenGL was limited to 179◦, the scenarios
projected onto the screen, however, simulated a 360◦ view. To
solve this, four 90◦ views were combined and transformed to
fit the cone-shaped screen. In addition to the 360◦ view, the
checkerboard pattern was projected in the middle of the screen.
Movement and rotation speed of our 360◦ skyline and the
checkerboard ground pattern was set relative to the rotation
speed of the stripes in the scenarios. The depth components
between virtual objects seemingly in the background and virtual
objects closer to the animal were simulated by occlusion, size of
the objects, and motion parallax that changed with movement of
the animal.

Data from walking traces were synchronized with the data
from spike recordings as collected with an analog/digital
converter (micro3, CED, Cambridge Electronic Design,
Cambridge, UK, 20KHz sampling frequency per channel).
A photodiode directed at the projector detected a short light
signal under the control of the BeeWorld program and fed
it into the ADC input of the analog/digital converter for
synchronization. The scenario used in all experiments here
consisted of one blue and one yellow vertically oriented stripe
with an angular width of 30◦, the horizontal checkerboard
pattern immediately in front of the bee and the gray skyline
pattern in the background. The angular rotation of the
checkerboard pattern was equal to the angular movement of the
sphere simulating a respective movement of the floor directly
below and in front of the bee. The angular rotation of the
stripe pattern was set to 75% of the checkerboard pattern, and
a skyline pattern projected onto the screen together with the
stripe pattern moved with 50% of the checkerboard pattern.
Thus, these three patterns simulated different distances to the
honeybee.

T-Maze Experimental Design
Free-flying bees were trained in a T-maze (70 cm long until T-
junction, about 5 cm in width, 4 cm high with a 55 cm long
head side, see Figure 3) with one color (either blue or yellow)
rewarded with 30% sucrose and another color punished with a
0.5M potassium chloride solution. To attract foragers, a feeding
station offering 1–10% sucrose solution was placed near the
experimental set-up. During the first foraging flights, animals
were actively induced into the entrance of the T-maze with a help
of a sucrose-containing syringe. Individual foragers weremarked,
and all T-maze approaches were noted. Only one bee was tested

at a time. Bees could fly into the T-maze but had to walk until
a point of decision and decide for one side. In the beginning,
sucrose droplets in the entrance of the maze showed the direction
to the point of decision. The experimental set-up consisted of a
plastic T-maze covered with UV-transparent Plexiglas to ensure
daylight conditions within the maze. Little doors inside the maze
ensured that the bee had to walk in one direction after the point
of decision and could not turn back in order to perceive the colors
again. The animals were trained over 25 trials.

Afterwards, they flew back to their hives or—in case of a
wrong decision—could enter again. To avoid side preferences,
we switched the sides of reward and punishment. Subsequently
the animals were transferred to the virtual environment and
tested in a scenario similar to the T-maze situation without
reward.

Animals
Worker honeybees (Apis mellifera carnica) were caught at
the hive entrance during summertime. In winter, sugar water
foraging animals flying in an indoor flight room were collected at
the feeding sites. The bees were immobilized by cooling, mounted
in Plexiglas tubes, and kept in a high humidity chamber. During
the night, bees were held on Styrofoam spheres and were able to
move freely on the spheres. All animals were fed to saturation
after capture and on each subsequent day at 4 p.m. with 16 µl of
30% sucrose solution.

Treadmill Training
During the night, bees were on Styrofoam spheres held in an
apparatus to measure walking activity that only allowed the
animal to walk forward and backward. The animals were able
to move on the spheres held by balances, which kept the animal
on the spherical treadmill with its own weight. This balance
allowed the animal to also change the distance to the surface of
the treadmill during walking. Walking activity was detected by
means of walking distance. The walking distance was measured
with light barriers that assessed the light shining through a wheel
connected to the moving sphere with differently colored (black,
gray, or transparent) subdivision. The percentage of measured
light gave information about the turning direction and speed
when measured over time. A connected Arduino microprocessor
sent counted subdivision crosses per time to a computer that
analyzed the data. Animals that performed well were later
transferred to the VE.

Virtual Environment Experimental Design
To study conditioning in the VE we allowed the animal to
walk freely through the VE. Two different training paradigms
were used in the VE. Either a color was rewarded (color-
only) or a color was rewarded in combination with an odor
(color-odor).

The animal was rewarded with 30% sucrose solution in the
acquisition phase in both paradigms after arriving at a previously
determined color. The colored stripe had to have a particular size
and location in front of the animal to be rewarded (rewarding
site). When the animal walked toward one stripe, the stripe
turned in front of it depending on the rotatory movement of
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FIGURE 1 | Unit activity extracted from raw data and inter-spike interval analysis. (A) Differential extracellular recording with a 3 times standard deviation (3*SD) level

for spike sorting. Only activity crossing the levels was considered in spike detection. (B) Example of two single unit waveforms (500 events) with their corresponding

principal component analysis. Axes give first 3 principal components (C). (D) Example of a filtered extracellular recording channel (lower panel) with detected units

from (B) (upper panel). (E) Example of a single unit inter-spike interval distribution for 600ms after stimulus onset with relative spike count and inter-spike interval in

milliseconds (ms). Median (Mdn) depicted in red is used to compare ISI before and after acquisition of single units with a Wilcoxon signed-rank test (see Figure 9). ISI,

inter-spike interval; SD, standard deviation.

the spherical treadmill. When it kept walking toward the stripe
(translatory movement of the sphere), it got bigger, simulating
the object getting closer, and when it reached it, it covered 180◦

of the screen. Arriving at one color (10 cm walking distance)
was counted as a decision. A custom-built rewarding device
automatically turned toward the animal. This device consisted of
a metal arm with an angle bracket at the end, holding a droplet
of sucrose solution. Via Spike2 a digital command was sent to an
analog-digital converter that sent a five-volt signal to a rotating
motor (XFLY 400, Motraxx, Burgthann, Germany) that turned
the arm toward the animal, so that it could reach the droplet.
The honeybee could lick the sucrose solution for 10 s, either

in combination with an odor or without. Afterwards the arm
turned back automatically. Only in the color-odor paradigm, was
the odor presented during the rewarded color for 4 s followed
by a sucrose reward for 10 s with an overlap of 1 s. The odor
was switched on when the animal reached the rewarding site.
Spike2 controlled the odor stimulation, marked the time and sent
a digital command, which triggered a relay board that in turn
controlled the valves for odor stimulation. The odor pulse lasted
for 4 s. In both designs, the color was switched off simultaneously
with the ending of the reward. The reward lasted for 10 s. When
the animal walked toward the unrewarded color (C–) nothing
happened, and it could continue walking in the VE until it
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FIGURE 2 | Virtual environment experimental set-up and circadian walking activity. (A) A honeybee was placed in the center of the VE set-up and ran on a Styrofoam

sphere floating on air (1). An LCD projector (2) projected a scenario consisting of two colored stripes (blue and yellow), and a skyline via a mirror (3) onto the inner

surface of cone-shaped screen (4). Two optical mice (5, M1 and M2) recorded the movement of the sphere when the bee walked. The scenario in the VE moved

accordingly (closed-loop). The gray skyline in the background moved with different parallaxes than the colored stripes to mimic far-distant objects. A checkerboard

projected directly on the sphere in front of the animal moved with the bee’s walking speed providing direct visual-motor feedback. The scenario at the starting point of

every operant learning trial is shown here. Two colored stripes were present. We call this stimulus color choice (CC). When the animal walked toward one stripe, the

stripe moved in front of it. When it kept walking toward the stripe, it got bigger, simulating the object getting closer. Upon reaching it, it covered 180◦ of the screen. A

rewarding device (6) turned toward the animal. It consisted of a metal arm on a motor (M) with an angle bracket at the end, holding a droplet of sucrose solution. (B)

Circadian walking activity of 16 bees that were hold on similar spheres as in the VE for 40 h. Walking distance in cm per 1 h is plotted against daytime. Walking

distances differed significantly between the hours [ANOVA, F (39,600) = 2.3, p < 0.0001]. Bars indicate standard deviation (SD). (C) Sketch of translatory input to

computer mice (M1, M2) for different walking directions of the bee (green arrow). Depicted are the two mice in yellow and blue and their respective input in yellow and

blue. Input of each mouse is used to calculate vectors (yellow and blue arrow) for reconstruction of the bee’s walking trajectory (green arrow). VE, virtual environment.

Asterisks indiacte statistical significance.

reached the rewarded color (C+). If the animals stopped walking
for more than 20min during the experiment, we switched to

a different acquisition trial presenting the CS+ color, the odor

and the US. All animals received at least eight acquisition trials

including one to eight trials actively walking. The inter-trial

interval was 10min. For every animal, at least five trials were

successful rewarded trials. Thus, we used the minimum of five
trials for comparison between animals.

In a pre-test before the acquisition started, the naïve responses

toward the stimuli were tested three times. Five stimuli were
presented independently (see also Figure 5) in a pseudo-random

fashion with an inter-trial interval of 1min independent of the

animal’s movement.

The following terminology was used for the various training
and test conditions:

• CC: We presented a stimulus for 14 s consisting of a blue and
a yellow colored stripe. The stimulus was equal to the scenario
that was presented at the starting point in every acquisition
trial. This was the moment when the bee could walk toward
one or the other color. Therefore, we will call this stimulus CC
for color choice.

• C+: In this situation we showed the rewarded color (C+)
alone for 14 s to the animal. In the test situation no reward
was presented.

• C–: Here we presented the unrewarded color
(C–) alone to the honeybee for 14 s. If the animal
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FIGURE 3 | Honeybees transferred learned information from free flight experiments to the virtual environment. (A) T-maze experimental set-up for free-flying

honeybees. The T-maze consisted of a 70 cm long tunnel, 5 cm in width and 4 cm high with a 55 cm long head side. At the end of the legs, one of the colors (yellow or

blue) was rewarded with sucrose whereas the other was punished with potassium chloride solution. Bees flew toward the entrance of the T-maze, walked until the

point of decision and decided for one side. Afterwards they flew back to their hive or in case of a wrong decision could enter again. Sides were switched in a

pseudo-random fashion to avoid side preferences. After acquisition they were transferred to the VE and were tested in a scenario similar to the T-maze without reward

(see also Figure 2A). (B) Left side: Acquisition curve of correct choices (N = 6 animals) in the T-maze with five trials depicted together from trial 1 to 25. 50% of

correct choice equals chance. Right side: extinction curve of choices in the VE with the first five tests in the VE. In the VE, the same bees as in A (N = 6 animals) were

faced with a similar situation to the T-maze and could choose one or the other color by walking toward it. Arriving at one color (10 cm distance) was counted as a

decision. Afterwards the scenario was set back to CC and they could choose again. No reward was presented during the test. Sides were changed to avoid side

preference dependent choices. In the first trial, all bees chose the previously rewarded color over the unrewarded. The first test trial differed significantly from chance

(binomial test p = 0.015). (C): Walking trajectories in the VE during representative test situations in a bee trained to yellow in the T-maze. Reaching the rewarded color

was counted as correct choice in (B). After 30 s, the colors switched sides. (D) Percentage of correct and incorrect choices in the VE with trained colors (yellow or

blue) after acquisition in the T-maze pooled for all bees (N = 6 animals, n = 150 choices). Significantly more choices were delivered to the previous C+ over the C–

(binomial test p = 0.0001). (E) Walking trajectories of a bee trained in the T-maze in a VE scenario without colored stripes but with skyline and checkerboard.

Comparison of percentage choices for left and right in the VE shows no significant side differences (N = 6, n = 114 choices, Two one-sided t-test, p = 0.03). (F)

Walking trajectories of naïve bees in a scenario with colored stripes, skyline, and checkerboard. No preferences for one of the colors was found (Two one-sided t-test,

p = 0.018, N = 12 animals, n = 12 choices). VE, virtual environment. Asterisks indiacte statistical significance.

approached this color it experienced “no reward.”
This happened both during acquisition and during the
test.

• US: Additionally, we presented the sucrose reward alone (US)
three times for 10 s to the animal.

• O: We presented the odor alone (O) three times in the pre-test
for 4 s.

During training, the odor was only present when the animal
approached the rewarded color. The odor was paired with the
sucrose reward for 1 s.

In a memory test on the day after the acquisition (post-test),
all color stimuli (CC, C+, and C–), the reward alone (US) and
the odor alone (O) were presented to the honeybee again. This
remained the only test situation in the experiment.
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FIGURE 4 | A3 mushroom body extrinsic neurons marked with dye at the tip of the recording electrode. (A) Projection view of a mass-fill of A3 dorsal neurons after

electrode injection with Microruby on the tip of the electrode. Tracts of the dorsal somata cluster and the horizontal layers in the vertical lobe (VL) are visible. Axons

project toward the calyx in the protocerebral calycal tract (PCT, black arrow) revealing A3 neurons. (B) Projection view of a different mass-fill of A3 neurons after

electrode injection with Microruby on the tip of the electrode. Again, tracts of A3 dorsal (d) neurons are visible together with a horizontal layer in the VL. (C) Projection

view of a mass fill of A3d neurons with arborizations in the VL. (D) Schematic drawing of two different innervation types of A3 feedback neurons. In black A3 neuron

connecting lip and corresponding layer in the VL, in gray A3 connecting collar and corresponding layer in the VL. A3 neurons were also found to connect the basal

ring and the corresponding basal ring layer in the VL. All types connect to the medial lobe. Another class-A3 lobe connecting neurons—do not innervate the calyx (not

shown) (Zwaka et al., 2018). The red arrow points to the recording site. AL, antennal lobes; br, basal ring; CB, central body; co, collar; d, dorsal; P, protocerebrum; l,

lateral; lCa, lateral calyx; MB, mushroom bodies; mCa, medial calyx; PCT, proto cerebral calycal tract; SEZ, subesophageal zone; S, Soma; VL, vertical lobe.

Learning Performance in the VE During
Extracellular Recording
The behavioral response evaluated as a measure of learning was
the approach to the rewarded color or color/odor combination.
The time until the animalreached the rewarded color was the
measure of the learning effect (Figure 6A). As not all animals
received five operant acquisition trials, we excluded one animal
from the analysis.

Electrophysiology
Extracellular Recording
For extracellular recordings, custom-made tetrodes consisting
of four polyurethane-insulated copper wires were used
(15µm diameter, Elektrisola, Germany). The wires were
twisted and glued together with superglue or by short
exposure to 210◦C. The tips were cut and electroplated,
reducing the impedance to 80–150 k� (Ferguson et al.,
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FIGURE 5 | Experimental paradigms and neural correlates of A3 neurons of stimuli during learning in the virtual environment. (A) Experimental design for operant

learning in the VE. On the first day in a pre-test, we presented a scenario with two colored stripes (CC) and two scenarios with only one color (C+, C–), each three

times in a pseudo-random fashion for 14 s with an inter trial interval of 1min. Additionally, we presented the sucrose reward (US) three times alone. In experiments with

odor presentation in the VE, we additionally tested an odor three times for 4 s in the pre-test. During acquisition, the animal could walk freely in the VE with two stripes

(CC) one of which (C+) was rewarded and one was unrewarded (C–). After reaching C+, in the color-only paradigm the US was presented to the animal for 10 s.

Afterwards, the C+ was switched off simultaneously with the US. In the color-odor paradigm, a 4 s lasting odor and subsequently the US was presented after reaching

C+. In the post-test situation on the day after the acquisition, CC, C+, C–, the US, and the odor were presented to the honeybee again. (B) Peri-stimulus time

histogram over five acquisition trials of single unit activity in the upper panel and mean trial activity in the middle panel. Activity exceeding a three-standard deviation

plus mean threshold (m+3*SD) or falling below m-3*SD threshold was noted as a response to the stimulus. The sum of the responses was divided by the duration of

the stimulus and noted as a significant response in Hz (lower panel). Here, a significant increase in response to the US has been detected. CC, rewarded and

unrewarded colored stripes; C+, rewarded color; C–, unrewarded color; O, conditioned stimulus (odor); US, unconditioned stimulus (reward); VE, virtual environment.

2009) (Redish Lab, University of Minnesota) using
the electroplating device NanoZ (Neuralynx, Bozeman,
Montana).

Preparation of the Animals
A small piece of copier transparency film was fixed with
dental wax on the thorax as a holder for the stationary
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FIGURE 6 | Walking behavior in the virtual environment during learning with simultaneously recorded single unit activity of a mushroom body extrinsic neuron. (A) The

time until the animal reached the reward decreased during the five acquisition trials although not statistically significantly [rmANOVA, N = 3, F (4,8) = 0.61, p = 0.66].

(B) Here the animal walked toward the blue stripe and was rewarded when it reached the rewarding site. The neuronal activity of one responding unit is plotted in false

color on top of the walking trajectory. The duration of one colored bin equals 500ms. The warmer the color, the higher the activity of the unit (see false color scale in

C). In two approaches, the activity changed when the animal walked toward the blue stripe shortly before it was rewarded. (C) Example for one single unit activity in

Hz plotted on the walking trajectory in a scenario without colored stripes. Single unit activity varied over the course of the walk without any indication of site or place

preference. Arrows indicate unit activity at points of high activity. A gray cross marks beginning of walking trace; Vertical bars indicate standard deviation; Hz, Hertz.

running animal on the treadmill. Dissection started by
opening the head capsule. Bee Ringer [NaCl (130mM), KCl
(6mM), MgCl2 (4mM), CaCl2 (5mM), glucose (25mM),
sucrose (170mM, pH 6.7)] was applied to the brain when
necessary to avoid drying of the brain surface. The tip of
the electrode was dipped in a 5% tetramethylrodamine-biotin
solution (TMR, Microruby, MoBiTec, Göttingen, Germany) in
0.2 and 1M potassium acetate. After recording, the recording
site was verified in the dissected brain. Only animals with
recordings from the desired recording site were admitted to the
analysis.

The tip of the electrode was mounted on an external
micromanipulator as described in Duer et al. (2015). The
electrodes were inserted at the rim of the vertical lobe at a depth
of 40–100µm, where A3 neurons bifurcate and enter the vertical
lobe. A silver-wire reference was coiled with the electrode, bent
as a hook, and placed gently on the brain surface. After placing
the electrodes in the selected brain area (ventral aspect of the
mushroom body) under visual control, the electrode was fixed
with non-toxic two-component silicon (kwik-sil, WPI, Sarasota)
in the brain. After hardening of the kwik-sil, the electrode was
released from the micromanipulator and the bee was transferred
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to the virtual environment set-up and carefully adjusted on the
floating sphere. The electrode holder consisted of a small balance
that kept the animal on the treadmill with its own weight. This
balance also allowed the animal to change the distance to the
surface of the treadmill during walking. The direct light from the
LCD projector was shaded to prevent direct illumination of the
dorsal regions of the compound eye and the ocelli. Amanipulator
made it possible to precisely center the animal on the spherical
treadmill.

Analysis
Only animals that completed the whole experiment including
pre-test and acquisition on the first day and a memory post-test
on the second day were analyzed.

Single unit activity in extracellular recordings is not equivalent
to neuronal activity as for example from single cells in
intracellular recordings. In such an analysis, false-positive spikes
might be detected, as there is always a potential risk of
misclassification. False-positive errors are events that are wrongly
classified and belong for example to a different cell. Contrarily
false-negative errors are events that are misclassified as noise.
Thus not all spikes from one cell are in one group (Harris
et al., 2000; Joshua et al., 2007). However, automatic or semi-
automatic spike sorting algorithms as used in this study reduce
these errors close to an optimum between 0 and 8% (Harris et al.,
2000).

The data acquisition-and-analysis software Spike2 was used
for the semi-automated template-matching spike sorting. All
channels were recorded at a sampling rate of 20,000Hz and
low-pass filtered. One channel was differentially recorded from
two electrodes, and two channels were single-ended electrodes.
Before analysis, the data was filtered with a band-pass FIR-
filter (350–2,500Hz). The channel with the best signal-to-
noise ratio was used for further analysis. Subsequently, the
mean activity and standard deviation (SD) were calculated
and used as a threshold for computing templates. Only events
that either exceeded three SD or dropped below three SD
were used for template matching (Figure 1A). In addition to
this restrain, after sorting, all results were visually controlled
for sorting quality and additionally checked by the first
three components of each unit using a principal component
analysis (PCA) provided by Spike2 (Figures 1B,C, Figure S1).
Sorting results were improved using the K-means clustering
approach provided by Spike2. Units that were present at the
beginning of the experiment but decreased drastically until
vanishing in the following 16 h were excluded from further
analysis.

To identify rate changes to a stimulus in single unit activity we
constructed peri-stimulus time histograms from all trials using
a bin size of 50ms. Afterwards we calculated the mean and the
standard deviation (SD) from 20 s before stimulus onset. Rate
changes that either exceeded the mean plus three times SD or
dropped below the mean minus three times SD were considered
an effect (Strube-Bloss et al., 2011).

In addition to changes in unit activity to the stimulus,
we compared activity of single units in pre-tests, training,
and 16 h tests. Thus, we analyzed changes in spike firing

rates (SFR) from pre-test to acquisition and from pre-test to
test toward the tested stimuli (Figures 9A,B). We calculated
the 1SFR using the activity extracted from the analysis for
single unit changes toward the stimulus (compare Figure 5)
exceeding the 3∗SD threshold in the PSTHs. The spike
activity was normalized by taking the ratio between stimuli
response in pre-test and training or pre-test and test. Thus,
we defined 1SFR as the change in spike firing rate from
e.g., pre-test to test toward a stimulus divided by total
response:

1SFR =
SFRtest − SFRpre

SFRtest + SFRpre

A positive 1SFR means an increase in neuronal firing, a negative
1SFR means decreased neuronal firing, and 1SFR of 0 means
no change in neuronal firing due to the stimulus (Hussaini and
Menzel, 2013). 1SFR was calculated for every single unit. 1SFRs
of all units were analyzed together. We performed a Wilcoxon
signed-rank test against a hypothetical change of zero.

To detect subtle excitatory or inhibitory rate changes that
extend over several 100ms to a stimulus, we compared the
inter-spike interval (ISI) in the pre-test in a response window
of 600ms after stimulus onset- to the ISI in the post-test in
a response window of 600ms after stimulus (Figure 1D). The
same was done during acquisition from stimulus to stimulus
to search for ISI changes. We tested for significant differences
in the median of the ISI distributions in all trials using a
Wilcoxon singed-rank test. These approaches were adapted from
an analysis of MB extrinsic neurons in Strube-Bloss et al. (2011).
For depiction of the change, we subtracted the median ISI in
the post-test from the median ISI in the pre-test for every single
unit.

Histochemistry
Brains were fixed with 4% paraformaldehyde (PFA, Roth,
Karlsruhe, Germany) or a mixture of 1.3% PFA and 0.7%
glutaraldehyde (GA, Sigma-Aldrich, Munich, Germany) for at
least 4 h. Subsequently, brains were washed three times in
phosphate buffered saline [PBS; NaCl (37mM), KCl (2.7mM),
Na2HPO4 (8mM), KH2PO4(1.4mM), pH 7.2] for 10min
each, dehydrated in an ascending alcohol series (50, 70,
90, 99, and 100% each 10min), cleared in methylsalicylate
(Roth, Karlsruhe, Germany) for 10min, and mounted on
a special object slide (a metal plate of 0.5mm thickness
with a central hole and cover slips on both sides) in
methylsalicylate.

Confocal Imaging
Confocal image stacks of the whole brains were acquired using
a confocal laser scanning microscope (Leica TCS SP2, Wetzlar,
Germany) using a 40× 0.4 IMM lens objective or a 20× 0.5 water
lens objective. Per stack, around 400 sections were scanned with
a resolution of 1024 × 1024 voxels each, and with a voxel size of
0.61 × 0.61 × 1.3µm or 0.73 × 0.73 × 1.1µm. Stained neurons
were scanned at 633 nm. Linear intensity compensation was used
to adjust differences in brightness depending on scanning-depth.
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Statistics
For statistical analysis of multiple comparison, a Wilcoxon
signed-rank test was performed (Statistica version 8.0, StatSoft,
Inc., Tulsa, OK, USA). For normally distributed data, a two-
way ANOVA was used to analyze the interaction between two
variables (Statistica version 8.0, StatSoft, Inc., Tulsa, OK, USA)
with an additional Fisher LSD post-hoc test. For comparison of
nominal paired data, a McNemar test was performed in (R Core
Team, 2017) as well as a binomial test. A two one-sided t-test
(TOST) for equivalence was performed in (R Core Team, 2017)
using the equivalence package for a paired sample with epsilon
for small sample size = difference in standard deviations. In all
tests, differences were considered significant if p ≤ 0.05.

Terminology
The terms used to describe structural components of
the honeybee brain have been adapted according to the
nomenclature system of the Insect Brain Name Working Group
(Ito et al., 2014).

RESULTS

The Virtual Environment
The virtual environment (VE) simulated a simplified 3D world
for a honeybee walking stationary at the center of an air-
supported spherical treadmill (Figure 2A). An LCD projector
projected the visual patterns from above via a mirror into the
inner surface of a cone. The distortion of the patterns caused by
the projection on the inner surface of the cone were compensated
for by the design of projected patterns. The depth components
were simulated by occlusion, size, and motion parallax. The
rotatory and translatory movements of the treadmill were
translated into respective changes of the visual patterns. Different
scenarios were written in a custom program implemented in Java
by using OpenGL-Bindings for Java (LWJGL). We used a simple
set of stimuli consisting of two colored stripes (blue and yellow)
appearing in front of a structured gray skyline in the background,
which moved with different parallaxes mimicking far-distant
objects. To simulate the movement with the bee’s actual walking
speed, the animal walked on a checkerboard pattern projected
directly onto the sphere in front of it, thus providing a direct
visual-motor feedback by the ground over which the animals
walked. Two optical mice recorded the movement of the sphere.
To adapt to the walking situation, the experimental animals were
held on similar spherical treadmills during the night. Animals on
the spherical treadmills showed circadian activity (Figure 2B).
All data reported here came from experiments at times of the
day at which free-flying honeybees usually performed foraging
behavior and accordingly the highest activity on the treadmill.

Animals Transferred Learned Behavior
From Free Flight to the Virtual Environment
To analyze whether animals perceived the visual stimuli in the
VE and recognized them as meaningful stimuli, we performed a
transfer experiment. Free-flying bees were trained to enter a T-
maze (Figure 3A) in which they ran toward a T-junction with
two differently colored legs. Approaching one color was rewarded

with sucrose and approaching the other color was punished with
potassium chloride solution. After leaving the T-maze, they flew
back to their hive or -in case of a wrong decision- could enter
again. To avoid side preferences, we switched the sides of reward
and no-reward in a pseudo-random fashion. Subsequently the
animals were transferred to the VE and tested in a scenario
similar to that in the T-maze (Video S1). Here, no reward was
presented. The acquisition curve of correct choices in the T-
maze shows that the honeybees learned to make the correct turn
toward the rewarded color (C+) and discriminated it from the
unrewarded color (C–, Figure 3B, from trial 5 onwards: binomial
test p < 0.01). After the transfer into the VE, the same bees were
faced with a similar situation as in the T-maze (Figure 3A). They
could choose between the two colors that they had discriminated
in the T-maze by walking toward one of them. At the starting
point of the test two colored stripes were presented, similar to
the point of decision in the T-maze experiments. Here and in
the following experiments this stimulus situation is called color
choice (CC). When the animal walked toward one stripe, the
stripe moved toward it by increasing its visual angle in front of
it simulating the object to get closer. When the animal reached
it, the color covered 180◦ of the screen. Arriving at one color
(10 cm walking distance) was counted as a decision. Afterwards
the scenario was set back to CC and the animal could choose
again (Figure 3C). To avoid side preferences, the sides of the
colors were changed every 30 s. Each animal (N = 6) was tested
for 5min. In the first trial, all bees chose the previous C+
over the C– (Figure 3B, binomial test p = 0.015). Significantly
more decisions were made for C+ in all decisions (Figure 3D,
N = 6 animals, n = 150 choices, binomial test p = 0.0001). A
comparison of the percentage of choices demonstrates that there
was no side preferences for left or right in the VE without colored
stripes present [Figure 3E, N = 6 animals, n = 114 choices, two
one-sided t-test (TOST), p = 0.03, TOST test analyzes data for
equivalence (Walker andNowacki, 2011)]. Naïve bees introduced
into the VE for the first time showed no difference in choosing
between blue and yellow (Figure 3F, N =12 animals, n = 12
choices, TOST test, p= 0.018).

Neuronal Recordings During Learning in
the Virtual Environment
The search for neural correlates of learning in a VE requires the
combination of stable recording from central neurons and free
movement of an animal. We performed 24-h lasting extracellular
recordings from the area where A3 mushroom body extrinsic
neurons bifurcate (Figure 4). The recording site could be well
selected visually by placing the recording electrodes at the lateral
rim of the vertical lobe (red arrow in Figure 4D). After the
experiment, the recording site was verified by dye marking via
the tip of the recording electrode (Figures 4A–C).

To study operant learning in the VE we allowed the animal
to walk freely through the VE. Two different training paradigms
were used in the VE: Either only a color was rewarded (color-
only) or the rewarded color was paired with an odor (color-
odor, Figure 5A). Each bee was trained only in one paradigm.
At the beginning of each acquisition trial, two colored stripes
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were presented and the bee walked toward one of the two colors
such that it reached a particular size and location in front of the
animal. This size and location equaled 10 cm walking distance
from the starting point toward the center of the stripe thus
covering 180◦ of the screen (rewarding site). After arriving at a
previously determined color (blue or yellow, randomly selected
by the experimenter), the animal was rewarded with 30% sucrose
solution (rewarded color, C+). When this situation was reached
a rewarding device turned toward the animal, and the animal
could lick the sucrose solution for 10 s. Sides were switched to
distinguish between side and color effects on unit activity.

Single unit activity was analyzed (for sorting procedure see
Figure 1) in peri-stimulus time histograms with a bin size of
50ms in all trials (Figure 5B). Activity exceeding the mean plus
three standard deviations (from activity before stimulus onset)
threshold (m+3∗SD) or falling below m−3∗SD threshold was
noted as an excitatory or inhibitory response to the stimulus,
respectively. The response strength in Hz to the stimulus was
calculated with the sum of the unit’s activity divided by the
duration of the particular stimulus in seconds.

We performed pre-tests to get the neural responses of the
respective naïve animal toward the stimuli that were tested in a
pseudo-random fashion before operant training started: (1) both
a blue and a yellow stripe (CC) for 14 s. In this moment, the bee
could walk toward the C+ or C– (called CC for color choice), (2)
C+ (later the to be rewarded color) alone for 14 s, (3) C– (later
the not to be rewarded color) alone for 14 s, (4) US three times for
10 s each. (5) In the color-odor paradigm, we additionally tested
the odor three times in the pre-test for 4 s.

In a memory test on the day after acquisition (post-test), all
color stimuli (CC, C+, and C–), the US, and the odor were
presented again, separately. This remained the only extinction
tests in the experiment.

Comparing all bees, there were only two points in time that
were fixed: The time the color was switched on and the time the
reward was delivered. Therefore, we analyzed the neural activity
when C+, C–, or CC was switched on, during the time the
animal had arrived at C+ shortly before the reward (US) was
switched on, and during the US. We compared the activity of the
single units to the stimuli prior to acquisition (pre-test), during
acquisition (acquisition) and in a memory test after acquisition
(post-test) without a reward. No significant inhibitory responses
were determined, most likely due to the rather low spike activity
and the high criterion for the significant test (mean minus
three standard deviation). Only animals that received all pre-
tests, acquisition trials and post-test with a stable extracellular
recording over two consecutive days were analyzed (N = 29
Units).

During the five acquisition trials of the color-only training, the
mean of the time until the animals reached the reward decreased
although not significantly [Figure 6A, N = 3; rmANOVA, N
= 3, F(4,8) = 0.61, p = 0.66]. Walking traces from acquisition
trials with corresponding unit activity showed changes in neural
activity (Figure 6B). During random walk without any colored
stripes in the VE, the single unit activity varied over the course
of the walk and showed no indication of a place preference
(Figure 6C).

Response Rate Changes to the Rewarded
Stimuli During Learning
Color-Only Experiments
Twelve units were recorded while the bees were trained in the
VE to approach one of two colors (blue or yellow) that was
subsequently rewarded. Almost all units changed their responses
during the experiment with both an increase in the number
of responding units and an increase in the spike frequency to
C+ (Figure 7). First, we analyzed the changes in the number of
units responding to the stimuli during the pre-test and the post-
test and found higher response activity for the C+ (Figure 7A,
McNemar test, p = 0.04). Such a global analysis may, however,
not uncover learning-related plasticity in single units due to
opposing changes, e.g., units being recruited or units dropping
out. Recruitment in this case relates to a neuron, which had not
responded to the stimulus before and started to respond after
acquisition or in the test (after memory formation). Likewise, a
neuron that responded to a stimulus before acquisition and did
not respond in the acquisition or post-test situation anymore is
regarded as dropping out. An analysis revealed that single units
were recruited and dropped (Figure 7B).

When we compared responses to all stimuli (CC, C+, and C–)
during pre-test and post-test (Figure 7C), we found that in sum
10 out of 12 units (Units 1, 2, 3, 4, 6, 7, 8, 9, 10, 12) respond to at
least one more stimulus (CC, C+, and C–) after learning in the
post-test than in the pre-test. One unit gained a response to the
US (Unit 5).

Color-Odor Experiments
Sixteen units were recorded while the bees were trained in the
VE to approach one of two colors (blue or yellow) that was
subsequently paired with an odor and the reward (compare
Figure 5). As in the previous experiment, we compared the
activity of the single units to the stimuli prior to acquisition
(pre-test), during acquisition (acquisition) and in a memory test
after acquisition on the next day (post-test) without a reward.
In these color-odor experiments, we additionally analyzed
the activity during the odor presentation. We hypothesize
that the odor stimulus preceding the reward may become
salient and thus indicative in uncovering learning-related
plasticity.

When we compared the pre-test to the post-test no significant
changes were found in the percentage of responding units
(McNemar test > 0.05, Figure 8A). However, analyzing the
percentage of units that changed their responses to the stimuli
revealed that an equal number of units was recruited and
dropped out. More units were recruited than dropped during
C– stimulation. These changes are not significant (Figure 8B,
McNemar test p > 0.05). During acquisition, only two units
(Units 13, 18) responded to the C+. Comparing responses to
stimuli during post-test and pre-test (Figure 8C) showed that
nine units (Units 13, 14, 17, 20, 21, 23, 24, 25, 26) responded
to at least one more stimulus in the post-test than in the pre-
test, whereas six lowered their response activity to stimuli (Units
15, 16, 18, 19, 22, 27). Two units did not change their responses
(Units 28 and 29).
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FIGURE 7 | Learning-related plasticity during the color-only paradigm. (A) Percentage of responding units to the C+ increased significantly from the pre-test to the

post-test (McNemar test, p = 0.04). (B) Percentage of changing responses categorized as being recruited and dropping out as measured for the different stimulus

conditions. (C) Left side: Single unit responses in the pre-test, during acquisition and in the post-test for the different stimulus conditions. Excitatory responses are

marked in warm colors. The warmer the color, the higher the change in the respective activity. No change in activity compared to before is marked in blue. No

inhibitory responses were found during the analysis most likely due to the rather low spike activity and the high criterion for the significant test (mean minus three

standard deviation) (N = 12). The single unit activity changed from the pre-test to the post-test and during the acquisition. Right side: Summary of recruited or

dropped units after learning. Here, dropped and recruited refers to post-test compared to the pre-test for all stimuli. Black indicates that the unit responded less to the

respective stimulus in the post-test than in the pre-test, red indicates that the unit responded more than in the pre-test, white indicates no change; US, unconditioned

stimulus (reward). CC, response during the color choice with both colors blue and yellow present; C+, response to the rewarded color; C–, response to the

unrewarded color; US, response to the sucrose reward. Asterisks indiacte statistical significance.

Spike Rates Change of Units During
Learning
After analyzing the changes in the absolute number of units
responding to the stimuli, we next analyzed the changes in spike
firing rates (SFR) to the respective stimuli. Even though the
absolute number of units responding might not be different, this
analysis helps us detect an increase or a decrease in firing rate
to a stimulus. We compared the conditions during the pre-tests
with those during acquisition, and during the pre-tests with those
during the post-test for all tested stimuli.We calculated the1SFR
using the changes of spike rates during stimulation as compared
to the spontaneous spike rate 20 s before, including only those
data in which the changes exceeded the 3∗SD threshold in the
PSTHs. The spike activity was normalized by taking the ratio
between stimuli response in pre-test and training or pre-training
and test (see Experimental Procedures). Thus, 1SFR defines the
change in spike firing rate from e.g., pre-test to test toward a
stimulus divided by total response. A positive 1SFR indicates an
increase in firing rate, a negative 1SFR a decrease, and 1SFR of

0 indicates no change (Hussaini and Menzel, 2013). 1SFRs of all
units were analyzed together applying the Wilcoxon signed-rank
test against a hypothetical change of zero. Again, we shall deal
with the color-only paradigm first and then with the color-odor
paradigm.

Firing rate decreased significantly for US during color-only

training (Figure 9A, training as compared to pre-test, Wilcoxon

signed-rank test, N = 12, US: p = 0.04) but increased during

the test (Figure 9A, Wilcoxon signed-rank test, N = 12, p <

0.0001). Similarly firing rate increased significantly to both the
rewarded and unrewarded color (Figure 9B, Wilcoxon signed-
rank test, N = 12, C–: p = 0.02, C+; p =0.04). A significant
increase was found for the rewarded odor (Wilcoxon signed-
rank test, N = 17, O+: p < 0.00046) during color-odor training
but not for the rewarded color (C+). The post-tests revealed
a significant increase in firing rate for the non-rewarded color
C– (Wilcoxon signed-rank test, N = 17, C–: p = 0.016). Again,
a very different pattern of learning-related plasticity was found
between the two paradigms, color-only and color-odor. These
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FIGURE 8 | Learning-related plasticity during the color-odor paradigm. (A) No significant changes occurred in the percentage of responding units from the pre- test to

the post-test (McNemar test, p >0.5). (B) Percentage of changing responses categorized as being recruited and dropping out as measured for the different stimulus

conditions. (C) Left side: Single unit response in the pre-test, during the acquisition and in the post-test for the different stimulus conditions. Excitatory responses are

marked in warm colors. The warmer the color, the higher the change in the respective activity. No change in activity compared to before is marked in blue. No

inhibitory responses were found during the analysis most likely due to the rather low spike activity and the high criterion for the significant test (mean minus three

standard deviation) N = 17. Right side: Summary of recruited or dropped units after learning. Here, dropped and recruited refers to post-test compared to the pre-test

for all stimuli. Black indicates that the unit responded less to the respective stimulus in the post-test than in the pre-test, red indicates that the unit responded more

than in the pre-test, white indicates no change; US, unconditioned stimulus (reward). Only two units did not change their responses (number 28 and 29). CC,

response during the color choice with both colors blue and yellow present; C+, response to the rewarded color; C–, response to the unrewarded color; US, response

to the sucrose reward.

results indicate changes in spike firing to the stimuli in the range
of short-term memory (training) but also changes in neuronal
activity that persist until the next day (post-test).

Temporal Dynamics of Spiking Rate
Changes During Learning
We found learning-related spike rate changes for several stimuli,
but not for the CC situation. Animals saw both colors appearing
at the same time and walked toward one or the other color during
the CC scenario in order to get a reward (compare Figure 2A). It
seems surprising that no neural response changes were observed
during the CC condition. To detect fast spike rate changes that
are not detected by our global analyses during stimulation, we
compared the time courses of spiking by inter-spike interval (ISI)
analysis during pre-test, acquisition, and post-test, and focused
on the time window directly after stimulus onset (600ms). This

method detects subtle excitatory or inhibitory rate changes that
extend over several 100ms during stimulation (Strube-Bloss
et al., 2011). Additionally, we analyzed the ISI that occurred
during acquisition by comparing median ISI during onset of C+
to median ISI during US onset. The medians of the pre-test-
and the post-test- ISI was extracted and statistically analyzed for
every unit using a Wilcoxon signed-rank test (see also Figure 1

for median ISI). We subtracted the median ISI in the post-test
from the median ISI in the pre-test for every unit separately for
depicting the changes.

No significant differences in the changes of ISI medians were
found for any tested conditions for animals trained in the color-
only paradigm (Figure 10A, N = 12, Wilcoxon signed-rank test,
p > 0.05).

However, significant differences appeared for the CC situation
in animals trained in the color-odor paradigm (Figure 10B right
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FIGURE 9 | Learning-related changes in the spike firing rate. (A) Color-only paradigm: Normalized firing rate (1SFR) decreased significantly for the US during training

(training as compared to pre-test, Wilcoxon signed-rank test, N = 12, US: p = 0.04) and increased significantly for C–, C+ and US in the post-test as compared to

the pre-test (Wilcoxon signed-rank test, N = 12, C–: p = 0.02, C+; p = 0.04, US: p < 0.0001). (B) Color-odor paradigm: 1SFR increased significantly during training

for the rewarded odor (O+) (Wilcoxon signed-rank test, N = 17, O+: p < 0.00046), and increased significantly for C– in the post-test as compared to the pre-test

(Wilcoxon signed-rank test, C–: p = 0.016). Asterisks indiacte statistical significance.

side, Wilcoxon signed-rank test, N = 17, p = 0.046). The
changes in ISI medians indicate that learning lead to higher spike
frequencies in the CC test conditions immediately after stimulus
onset. Furthermore, the ISI medians became significantly shorter
at color onset as compared to sugar onset during acquisition
(Figure 10B left side, Wilcoxon signed-rank test, p= 0.005). The
ISI medians did not change significantly from pre-test to post-
test for the C+ and C–, the odor and the US (data not shown,
Wilcoxon signed-rank test p> 0.05). As a control we analyzed the
ISI over the whole time of the experiment. ISI did also not change
significantly whenwe compared the ISI of the time before the pre-
test without stimulation with the ISI of the time before the post-
test without stimulation (Wilcoxon signed-rank test p > 0.05).

These results show that even though no changes for the CC
were found when comparing the spike rate changes over the
whole stimulus (Figure 9), fast changes indeed occurred within
600ms after stimulus onset in one of our paradigms, the color-
odor training but not the color-only trainingmarking the operant
conditions of this experimental conditions.

DISCUSSION

We developed a virtual environment (VE) for honeybees that
allowed us to combine stable recordings from mushroom body
(MB) extrinsic neurons with a learning assay. The VE is suitable
for testing bees both after operant color learning of free-flying
bees, and de-novo color-only or color-odor training inside the
VE. MB extrinsic neurons (ENs) changed their responses both to
the rewarded color (C+) and unrewarded the color (C–). For the
first time, we found evidence for an involvement of A3 neurons
in operant learning in the honeybee.

In operant learning, animals establish an association between
an external stimulus and their behavioral responses by trial
and error. This form of learning is also called instrumental,
because the animal’s own behavior is instrumental to obtaining
some outcome (Wynne and Udell, 2013). The requirement is an
external stimulus that is only present if the animal performs a
certain behavior. This stimulus can be positive or negative and
subsequently alters the associated behavior (Mackintosh, 1974;
Spencer et al., 1999). A VE provides us with the opportunity to
study operant learning while the corresponding brain activity
is monitored. Although operant learning in freely moving
invertebrates has been widely studied (Giurfa and Menzel, 2013;
Perry et al., 2013; Hawkins and Byrne, 2015) the underlying
neural mechanisms are still largely unknown. Evidence for
neural correlates of operant learning in invertebrates comes
from Drosophila, Aplysia and Lymnae. These studies suggest
that different cellular and network mechanisms underlie classical
and operant conditioning (Brembs et al., 2002; Hawkins et al.,
2006; Hawkins and Byrne, 2015). In the honeybee, mushroom
body extrinsic neurons (MB ENs) were extensively studied in
classical conditioning paradigms and found to change their
response properties during olfactory conditioning (Mauelshagen,
1993; Grünewald, 1999; Okada et al., 2007; Haehnel and
Menzel, 2010; Strube-Bloss et al., 2011; Hussaini and Menzel,
2013; Menzel, 2014; Filla and Menzel, 2015). A3MB ENs are
particularly interesting in this context because it is known that
they change their responses during context-dependent classical
conditioning with learning-related neural changes both for
the visual context and the olfactory cue (Filla and Menzel,
2015). These data suggested a multisensory and value-integrating
pathway specifically designed for action selection comparable to
neurons in the mammalian prefrontal cortex.
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FIGURE 10 | Changes of the ISI medians as compared for the acquisition and the CC phase. Changes of ISI medians of the units (x-axis) are calculated for the

600ms after stimulus onset in the pre-test and in the post-test (y-axis). (A) Color-only paradigm: ISI medians of 12 units (x-axis) during the acquisition phase and the

CC phase. The changes of ISI medians are not significantly different for color onset as compared to reward onset (N = 12, Wilcoxon signed-rank test, p > 0.05). No

significant changes are found for the CC phase comparing the pre-test and post-test (N = 12, Wilcoxon signed-rank test, p > 0.05). (B) Color-odor paradigm:

Changes in ISI medians are significantly different during the acquisition for the color and the reward onset (N = 17, Wilcoxon signed-rank test, p = 0.005). The

changes of ISI medians are also significantly different for the CC for the pre-test and post-test comparison (N = 17, Wilcoxon signed-rank test, p = 0.046). Asterisks

indiacte statistical significance.

We applied two different learning paradigms where the
active selection and approach had to be performed for either a
colored target (color-only) or for a color that was subsequently
combined with an odor (color-odor). It is known from behavioral
studies with freely flying bees and bees conditioned to the
proboscis extension response that odors are particularly salient
stimuli (Menzel, 1990). In our context, studies in Drosophila

are notable documenting an involvement of the mushroom
bodies in complex stimulus learning and decisionmaking (Zhang
et al., 2007; Xi et al., 2008; Yi et al., 2013; Solanki et al.,
2015).

Neural activity in the color-only paradigm changed
significantly for the rewarded color C+ (Figure 7A). About
70% of the units were recruited and only few stopped responding
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to the C+. In response to the unrewarded color C– units were
recruited and dropped to a more equal amount (Figure 7B).
These findings resemble those found in other MB ENs (A1/A2)
during differential olfactory classical conditioning (Strube-Bloss
et al., 2011). Resembling classical conditioning, however might
be explained due to the fact that our operant conditioning
paradigm is not purely operant as possible for example in
Drosophila. These results corroborate the conclusion that MB
ENs appear to code learning-related plasticity for the CS+ by
a dominance of response increase. A different strategy might
be involved in coding responses to the unrewarded stimulus
CS- by keeping the overall excitation level rather constant
increasing and decreasing the neural responses in participating
neurons.

Response changes in the color-odor paradigm differed partly
from those found in differential olfactory classical conditioning
mentioned above. In a classical conditioning experiment where
a color context announced the rewarded odor cue, the number
of A3 neurons and their discharges increased for the odor cue
(Filla and Menzel, 2015). In our learning paradigm however,
the number of units responding to the C+ did not change
significantly (Figure 8A), and a similar number of units were
recruited and dropped out for all stimuli (Figure 8B). However,
during training, we observed a significant enhanced spike rate
to the rewarded odor (Figure 9B) and a tendency for a reduced
rate to the color during training. This observation fits previously
reported changes in the PE1 neuron (Okada et al., 2007;
Hussaini and Menzel, 2013). This single identified MB EN,
decreased its response to a classically conditioned odor (Okada
et al., 2007; Hussaini and Menzel, 2013) and increased it to a
rewarded context (Hussaini and Menzel, 2013). As this cell is

thought to get inhibitory input from PCT (or A3) cells (Rybak
and Menzel, 1998), its response changes fit very well to our
data.

Differences between classical conditioning and operant
learning can also be found in other experiments with MB
ENs. A1/A2 ENs, for example, develop their learning-related
spike rate changes during the 3 h after classical conditioning
(Strube-Bloss et al., 2011). We found such changes in what are
most likely A3 neurons, already during the training process
(Figure 10). We conclude from our verified recording site (see
Experimental Procedures) and the physiological properties of
the recorded cells that the analyzed spikes are A3 neurons,
at least to a large part. In our experiments 25 out of 29
units changed their spiking frequency before training toward
the presentation of an odor, a color or the sucrose reward.
A3 neurons typically react with an increase toward a sucrose
stimulation (Grünewald, 1999) and a change in the spiking
activity toward odors and colors (Grünewald, 1999; Filla and
Menzel, 2015).

In the search for neural correlates of operant learning, one
would like to analyze the point of decision where the animal
initiates a walk toward one of the two colors. Unfortunately,
such decision points were not obvious since every walking
trajectory included several turns or stops making it impossible
to isolate attempts to walk toward the color. Thus, we decided
to examine fixed points in every acquisition trial for all bees
and selected two specific moments in which the scenario with
both colors showed up (CC). This is the starting point for
each acquisition trial. Therefore, one might expect changes
in neural responses at this point when the animal responds
behaviorally and starts to walk toward the C+ to get the reward.

TABLE 1 | Comparison of changes in neural activity after learning in VE and classical conditioning.

Experimental result color-only Similar to classical conditioning Different from classical conditioning

Change in neural activity for the rewarded color C+ after

conditioning. About 70% recruited units and only few

that dropped out (Figures 7A,B).

Around 50% of MB ENs change their odor response after

differential olfactory classical conditioning dominated by

CS+ odor recruitment (Strube-Bloss et al., 2011).

Recruited and dropped out units in response to the

unrewarded color C– after conditioning (Figure 7B).

Recruited and dropped units to the CS– odor after

conditioning (Strube-Bloss et al., 2011).

Less responding units to the CS– odor after

conditioning compared to before, more units

dropped than recruited (Strube-Bloss et al.,

2011).

Experimental result color-odor Similar to classical conditioning Different from classical conditioning

No significant change in the number of units responding

to the C+ after conditioning (Figure 8A). Similar number

of recruited and dropped out units for all stimuli

(Figure 8B).

Recruited and dropped units to the CS– odor after

conditioning (Strube-Bloss et al., 2011).

Increased number of A3 neurons and their

discharges for the CS+ odor where a particular

color context announced the particular

rewarded CS+ odor (Filla and Menzel, 2015).

Significantly enhanced spike rate during training to the

rewarded odor (Figure 9B) and a tendency for a

reduced rate to the color during training.

PE1 neuron decreased its response to a classically

conditioned odor (Okada et al., 2007; Hussaini and

Menzel, 2013) and increased it to a rewarded context

(Hussaini and Menzel, 2013). PE1 is thought to get

inhibitory input from or A3 cells (Rybak and Menzel,

1998).

Changes in neuron response during the training process

(Figure 10B).

A1/A2 ENs develop learning-related spike rate

changes after classical conditioning

(Strube-Bloss et al., 2011).
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Indeed, in the color-odor paradigm, the inter-spike interval
(ISI) during the CC was significantly lowered after training
(Figure 10B). Filla and Menzel (2015) showed that after visual
pre-training the presence of a visual context induces an attention
effect, reflected in faster response to the reward odor than
testing the reward odor alone. The increased ISI to CC might
reflect such an attentional effect. After the onset of the CC
a behavioral response from the animal is needed to gain the
reward.

In summary, the VE for honeybees allowed us to search
for neural correlates of learning while animals navigated
in an environment that responded to their actions. We
demonstrate that honeybees transfer learned information
from free flight learning experiments to the VE, documenting
its suitability for testing operant behavior. Previously, this
transfer has been reported to be unpredictable most likely
due to the constrained movement and impaired active vision
in the VE (Buatois et al., 2018). The VE also enabled us to
study neural correlates of learning over several hours. We
found significant changes in neural activity after learning
to both the rewarded and unrewarded colors in the color-
only paradigm. These forms of neural plasticity resemble
processes found in classical conditioning experiments with
honeybees. Learning-related neural plasticity differed in
the color-odor paradigm from those reported in classical
conditioning (Table 1). These forms of neural plasticity
can be interpreted as indicating attentional effects. Our
results suggest the involvement of the MB in operant
learning.

AUTHOR CONTRIBUTIONS

HZ: conception and design, acquisition of data, analysis and
interpretation, writing the article; RB: conception and design,
revising the article; SL and MJ: acquisition of data; SH, JG,
and RA: writing custom program for virtual environment and

analysis software; SM: building virtual environment set-up; RM:
conception and design, writing and revising the article; SL and
MJ: acquisition and analysis of data.

FUNDING

Funding provided by the German Ministry for Education and
Research (BMBF) via 01GQ0941 is appreciated.

ACKNOWLEDGMENTS

Funding provided by the Deutsche Forschungsgemeinschaft
(DFG) via ME 365/41-1 is appreciated. We would like to
thank Sebastian Hausmann for training bees in the T-maze,
and Benjamin Paffhausen for help with micro-processors. The
authors have no conflict of interest to declare.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnbeh.
2018.00279/full#supplementary-material

Video S1 | Video shows a honeybee walking in the virtual environment. The

free-flying bee was trained in a T-maze to associate yellow with a sucrose reward

and blue with a potassium chloride punishment. Subsequently the animal was

transferred to the VE and tested in a scenario similar to the point of decision in the

T-maze. When the animal walked toward one stripe, the stripe turned in front of it

depending on the rotatory movement of the spherical treadmill. When it kept

walking toward the stripe, it got bigger, simulating the object getting closer, and

stopped, when it reached it. Afterwards the scenario set back to the decision

point and the animal could choose again. Sides were switched in a

pseudo-random fashion to avoid side preferences. The bee in the video

repeatedly chooses to walk toward yellow.

Figure S1 | (A) Example of all single unit waveforms (500 events) for one animal

with their corresponding principal component analysis (B). (B) Upper panel: Three

dimensional plot of principal component analysis for all units in (A). Lower panel: all

units crossing minus three standard deviations lower left panel and crossing plus

three standard deviations lower right panel. PCA is rotate in 3D for better display.
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