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Prolonged exposure (PE) is an empirically supported efficacious treatment for
posttraumatic stress disorder (PTSD). In this focused review, we briefly review the
neurobiological networks in PTSD relevant to PE, discuss the theoretical basis of PE,
review the neurobiological mechanisms underlying the effectiveness of PE and identify
the enhancements that can be applied to increase treatment response and retention.
Based on the reviewed studies, it is clear that PTSD results in disrupted network of
interconnected regions, and PE has been shown to increase the connectivity within
and between these regions. Successful extinction recall in PE is related to increased
functional coherence between the ventromedial prefrontal cortex (vmPFC), amygdala
and the hippocampus. Increased connectivity within the dorsolateral PFC (dlPFC)
following PE is associated with more effective downregulation of emotional responses in
stressful situations. Pre-existing neural connectivity also in some cases predicts response
to exposure treatment. We consider various enhancements that have been used with PE,
including serotonin reuptake inhibitors (SSRIs), D-cycloserine (DCS), allopregnanolone
(ALLO) and propranolol, repetitive transcranial magnetic stimulation (rTMS), oxytocin
and MDMA. Given that neural connectivity appears to be crucial in mechanisms of
action of PE, rTMS is a logical target for further research as an enhancement of PE.
Additionally, exploring the effectiveness and mechanisms of action of oxytocin and
MDMA in conjunction with PE may lead to improvement in treatment engagement and
retention.
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Posttraumatic stress disorder (PTSD) has been increasingly recognized as a public health
concern, with increased visibility as military service members return from combat deployments.
Due to the psychological burden associated with its symptoms, PTSD is associated with
significant physical, psychosocial and economic hardships (Ramchand et al., 2015). The
hallmark symptoms of PTSD include: (1) re-experiencing the memory of the traumatic
event through thoughts, images or nightmares; (2) avoidance of the reminders of trauma;
(3) negative self-image and/or deterioration in mood; and (4) physiological hyperarousal
(American Psychiatric Association, 2013). Trauma focused therapies, such as exposure-based
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and cognitive therapies, particularly prolonged exposure
(PE) and cognitive processing therapy (CPT), are efficacious
for the treatment of PTSD (Watts et al., 2013) and are
recommended in professional treatment guidelines (American
Psychological Association, 2017; Department of Veterans
Affairs & Department of Defense (VA & DoD), 2017) and
the Institute of Medicine Report (Institute of Medicine,
2014). PE has been studied extensively and has consistently
demonstrated causal reduction of symptoms of PTSD, anxiety
and depression (Watts et al., 2013). In the era of precision
medicine (Shukla et al., 2015) and objective (e.g., neurobiological
and psychophysiological) measures of treatment outcome, it
is crucial to move beyond establishing efficacy of treatment
approaches and to investigation of the mechanisms of action of
such efficacious treatments. A focus on mechanisms of action
will contribute to increasing efficacy (remission and response),
efficiency (time to response) and access (moving the active
ingredients to new models of application).

In this review article, we will bridge two bodies of knowledge:
the clinical mechanisms of action of an empirically-supported
treatment for PTSD and the neurobiological underpinnings of
such intervention. As such, we are bridging the bench and the
bedside by writing for clinicians who provide these interventions
and for the researchers designing future studies. We will begin
by briefly reviewing neural circuits implicated in PTSD that
are relevant in PE, followed by a description of PE and its
theoretical underpinnings. We will examine the state of current
knowledge on how PE impacts the neural circuits related to
PTSD.We will provide a synthesis of findings to date and discuss
neurobiological enhancements that have been or may be used
in conjunction with PE to enhance its effectiveness. Finally, we
will offer some neurobiologically-informed directions for future
research and practice.

NEUROBIOLOGY OF PTSD

In recent years, several reviews have summarized the state of
knowledge regarding neural circuits implicated in PTSD (Duval
et al., 2015; Liberzon and Abelson, 2016; Sheynin and Liberzon,
2017). In the current article, we briefly review the circuits most
relevant to understanding therapeutic mechanisms of action
in PE.

The neural circuit underlying fear-related learning is most
commonly implicated in models of PTSD (Rauch et al., 2006;
Shin and Handwerger, 2009; Jovanovic and Ressler, 2010;
Shvil et al., 2013). The fear neurocircuitry consists of several
brain structures including the amygdala, anterior cingulate
cortex (ACC) and the ventromedial prefrontal cortex (vmPFC;
Shin and Liberzon, 2010). The fear network is implicated
in evaluating whether a stimulus should be approached or
avoided, and activity in this network is correlated with anxiety
(Shin and Liberzon, 2010). The evidence from fMRI studies
indicates that the amygdala, which receives sensory input and
orchestrates the response to threatening signals, is overactive in
PTSD, likely contributing to the exaggerated fear response and
re-experiencing symptoms (Rauch et al., 2006; Shin et al., 2006;
Milad et al., 2009). The vmPFC downregulates the amygdala

and appears to play a critical role in extinction recall (Quirk
et al., 2000). In PTSD, vmPFC is hypoactive, thus projecting less
inhibitory input and contributing to the hyperactivation of the
amygdala (Rauch et al., 2006; Shin et al., 2006; Liberzon and
Abelson, 2016). ACC which, along with the amygdala, processes
aversive stimuli and projects to the peripheral nervous system
to trigger a response, has been shown to be hyperactive during
extinction recall in individuals with PTSD (Hayes et al., 2012;
Koch et al., 2016). This dysregulation in the fear neurocircuitry is
purported to underlie the failure to extinguish the fear response
over time (Rauch et al., 2006; Jovanovic and Ressler, 2010;
Liberzon and Abelson, 2016) and possibly the overgeneralization
of fear to non-threatening cues (Stevens et al., 2013; Lopresto
et al., 2016).

The neurocircuitry implicated in context processing has also
received attention in relation to PTSD etiology and maintenance
(Liberzon and Abelson, 2016). Within the fear neurocircuitry,
hippocampus is involved in the process of contextualization,
or accurately discriminating threat in the environment (Maren
and Fanselow, 1995). Hippocampal inputs provide contextual
information to the amygdala and to the vmPFC, thus
downregulating the amygdala and facilitating extinction learning
as the network normally functions (LeDoux, 2000). In the
overgeneralized conditioned fear response present in PTSD,
hippocampus and vmPFC are hypoactive in environments that
are safe thus projecting dampened inputs to the amygdala
and failing to downregulate amygdala’s functioning in those
contexts (Garfinkel et al., 2014). Hypoactivity of the vmPFC
and the hippocampus may contribute to the re-experiencing
symptoms via difficulties in extinction learning, a process further
reinforced by avoidance (Pitman et al., 2012). Individuals with
PTSD have demonstrated difficulty in maintaining learned fear
extinction, or extinction recall (Milad et al., 2008, 2009). In
fMRI studies, patients with PTSD have reduced hippocampal
and vmPFC activation, and increased ACC activation during
extinction recall (Milad et al., 2009; Hayes et al., 2012; Shvil
et al., 2014; Koch et al., 2016) and the contextual processing
period of extinction recall (Rougemont-Bücking et al., 2011).
Previous studies have found that smaller hippocampal volume
is associated with PTSD (Gilbertson et al., 2002). Hippocampus
volume does not appear to change longitudinally over the
course of PTSD in adults (Lindgren et al., 2016) but there
is some evidence for impaired hippocampus development
during childhood maltreatment (Dannlowski et al., 2012; Keding
and Herringa, 2015). This suggests that hippocampal volume
is vulnerability factor for PTSD that is likely epigenetically
shaped.

Finally, emotion regulation deficits, or difficulties in
awareness and modulation of intense negative emotional states,
may be a transdiagnostic factor for the development and
maintenance of many psychological disorders, including PTSD
(Bradley et al., 2011; Sheynin and Liberzon, 2017). Based on
neuroimaging findings, two broad types of emotion regulation
include explicit and implicit emotion regulation (Gyurak et al.,
2011). Explicit emotion regulation is effortful and requires
some level of insight and awareness (Etkin et al., 2015). The
most known example is reappraisal, or an alteration of the
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meaning of an emotion-inducing stimulus. The brain regions
implicated in reappraisal include dorsolateral PFC (dlPFC),
ventrolateral PFC (vlPFC) and parietal cortex (Buhle et al., 2014;
Kohn et al., 2014). Implicit emotion regulation is automatic
in response to a stimulus and can occur without insight or
awareness (Gyurak et al., 2011). The vmPFC is the brain region
primarily implicated in implicit emotion regulation (Gyurak
et al., 2011). Therefore, a neurobiological emotion regulation
model posits that the PFC regions are responsible for cognitive
control via stimulus interpretation (either explicit or implicit),
thus downregulating the amygdala activation in response to
emotionally salient stimuli (Ochsner et al., 2012; Buhle et al.,
2014). Only a handful of studies examined neuropsychological
and neurobiological correlates of emotion regulation in PTSD
(New et al., 2009; Aupperle et al., 2012; Rabinak et al., 2014;
Shepherd and Wild, 2014). The results point to the pattern of
suppressing emotions, using less cognitive reappraisal (Shepherd
and Wild, 2014), deficits in inhibitory control (Aupperle et al.,
2012), and diminished downregulation of emotional response
including hypoactivation of dlPFC (New et al., 2009; Rabinak
et al., 2014). While these three broad neural circuits are not an
exhaustive representation of neurobiological underpinnings of
PTSD, they comprehensively represent the regions of interest
when considering the effects of PE on neural activity.

PROLONGED EXPOSURE AND ITS
THEORETICAL UNDERPINNINGS

PE (Foa et al., 1991) is an exposure-based psychological
intervention designed to treat PTSD following trauma. The
main goal of PE is to promote emotional processing through
deliberate systematic confrontation with trauma-related stimuli
(Foa, 2011). The key components of PE are: (1) repeated imaginal
exposure (IE), which requires the individual to revisit their
trauma memory in a therapeutic context; (2) in vivo exposure
(IVE) to places and situations that are avoided because they evoke
stress and anxiety; and (3) emotional processing that focuses
on reviewing the experience of exposure and its impact on
thoughts related to the trauma. A significant body of evidence
has demonstrated the efficacy and effectiveness of PE in the
treatment of PTSD and related depression, general anxiety,
guilt, anger, and physical health concerns (e.g., Foa and Rauch,
2004; Rauch et al., 2009). In relation to PTSD, PE has reliably
established clinically significant reduction in symptoms, with
large effect sizes among various treatment samples with a variety
of trauma histories (Powers et al., 2010). Based on intent to
treat analyses, on average, 53% of those who initiate PE no
longer meet diagnostic criteria for the disorder, and the rate
of diagnostic change increases to 68% among individuals who
complete treatment (Bradley et al., 2005).

Development of PE was based on Emotional Processing
Theory (Foa and Kozak, 1986). The fundamental tenet of EPT
is that there are fear structures (expanded later to include other
emotions as well as fear; Rauch and Foa, 2006; expanded later
to include other emotions as well as fear; Rauch and Foa,
2006) that include stimulus, response, and meaning elements,
and that these structures are there to assist in response to

situations of danger or threat. Activation of the adaptive fear
structure is viewed as a normal and rational response to a
stimulus (e.g., a car racing towards me), meaning (dangerous)
that elicits a fear response (increased heart rate), followed by
an action (moving out of the way) to remain safe (Foa and
Kozak, 1986). Following trauma, additional unhelpful fear (or
other emotion) structures develop that represent the stimulus,
response, and meaning elements from the time of the trauma
but that may not represent actual threat or danger outside of
the specific trauma context. Rauch and Foa (2006) state that
an optimal level of activation including all elements of the
trauma structure is necessary for successful treatment. When
the full memory, including all the emotional and cognitive
responses, is activated, updated information that is incompatible
with the trauma memory can be incorporated (reconsolidated)
into the memory structure. Extinction1 occurs in the context of
repeated exposure to the feared stimulus and is marked by a
reduction in physiological and emotional intensity of response
to that stimulus (Sripada and Rauch, 2015). They argue that the
trauma structure of individuals with PTSD contains maladaptive
cognitions that underlie the maintenance of PTSD (Foa et al.,
1991).

Theoretically, the learning principles of classical conditioning
explain the acquisition of the fear response (Rothbaum
and Davis, 2003; Blechert et al., 2007). Specifically, the
traumatic event represents the unconditional stimulus (UCS),
which produces the unconditioned response (UCR; e.g., fear,
helplessness or horror). Neutral stimuli that were present during
traumatic event become conditioned stimuli (CS) that can elicit
a conditioned response (CR) similar to the reaction during the
initial traumatic event. In an effort to reduce the experience of
fear (or other negative emotions), individuals will avoid stimuli
which evoke the emotional response. Consistent with the operant
conditioning model (Mowrer, 1960), this avoidance serves as
a negative reinforcement strategy, reducing the experience of
negative emotions associated with the CS. In patients with
PTSD, the overgeneralization of conditioned fear maintains and
exacerbates PTSD symptoms (Lissek and Grillon, 2012).

While EPT and the learning theory are two separate theories
of PTSD, there is considerable overlap in the concepts from both
theories, and the mechanisms of PE have been conceptualized
using both theories (Rauch and Liberzon, 2016). The EPT
concept of extinction in PE can be better described in terms of
extinction and relearning including contextualization of learning
and memory (Rauch and Liberzon, 2016). Extinction occurs
when new inhibitory associations are formed on top of the
fear associations, and is marked by a reduction in subjective
fear response to the feared memory and its reminders. This
relearning is facilitated through the process of contextualization,
or learning to discriminate between safety and threat cues,
depending in the context in which they occur (Maren et al.,
2013). The cognitive and emotional processing changes that

1We have chosen to use extinction rather than the term habituation used
by Foa and Kozak (1986) based on more recent theorists and neuroscience
research that aligns more with extinction processes (see Rauch and Liberzon,
2016 for review).
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occur in tandem with extinction and relearning are marked
by increased sense of competence, reduced sense that the
world as dangerous, and reduction in social and emotional
withdrawal (Rothbaum et al., 2005; Rauch and Liberzon,
2016). Although change in self-efficacy and trauma-related
beliefs is not central to learning models, this learning of
increased competence to cope with negative affect and reduced
sense of a dangerous world can be viewed as a form of
inhibitory learning (Rauch and Liberzon, 2016), which has
been speculated to be a one of the key mechanisms of
action in exposure-based treatment for PTSD (Craske et al.,
2008).

NEUROBIOLOGY OF PE

Development of PE was not rooted in a neurocircuitry-
based framework but its purported mechanisms of action and
effectiveness may be examined using that framework. The fear
and contextualization neurocircuitry is implicated in extinction
learning and recall, one of the putative active components
of PE (Jovanovic and Ressler, 2010; Liberzon and Abelson,
2016; Lopresto et al., 2016). A few early studies which used
exposure-based therapy (but not PE specifically) have found
increased activation in the prefrontal regions in individuals with
PTSD following a course of psychotherapy (Felmingham et al.,
2007; Peres et al., 2007). Following therapy, increased activation
in the left PFC was correlated with decreased activation of
the amygdala and increased activation in the hippocampus
during retrieval of the traumatic memory by individuals with
PTSD (Peres et al., 2007). During processing of threatening
stimuli, individuals with PTSD demonstrated increased vmPFC
(particularly rostral ACC) activation and decreased amygdala
activation from pre- to post-treatment (Felmingham et al.,
2007). Recent studies examined the effect of PE on extinction
in laboratory settings. During fear extinction recall paradigm,
individuals who underwent PE demonstrated a decrease in
rostral ACC activation from pre- to post-treatment (Helpman
et al., 2016a). Structurally, those who remitted from PTSD
following a course of PE demonstrated volume reduction and
thinning in the left rostral ACC, compared to those who did not
remit and to controls (Helpman et al., 2016b). No between-group
differences in ACC volume and thickness were observed prior to
treatment (Helpman et al., 2016b).

One putative explanation of these functional and structural
brain changes following PE is the extinction of maladaptive
cognitive-emotional connections resulting from extinction
learning (Helpman et al., 2016b). In PTSD, fear neurocircuitry
may reinforce existing connections and contribute to the
formation of new ones (Johansen et al., 2011). These
results suggest that effective extinction that occurs during
PE contributes not only to a more balanced feedback loop
between the vmPFC and the amygdala (Felmingham et al.,
2007; Peres et al., 2007) but also to the thinning of the ACC via
decreased activation and pruning of the connectivity (Helpman
et al., 2016b). This reciprocal relationship between neural
connectivity and treatment response may also work the other
way. There is some evidence that individual’s capacity to benefit

from PE may be modulated by the degree of spontaneous
PFC downregulation of the amygdala when processing threat
cues prior to treatment (Fonzo et al., 2017). Specifically,
patients who before receiving a course of PE had greater
activation of the dlPFC as well as less amygdala activation
during an emotional reactivity task (detection and processing
of threatening cues), showed the biggest gains from PE (Fonzo
et al., 2017). This finding potentially suggests that extinction
learning and recall may be more difficult for some individuals
to achieve based on the extent to which their vmPFC is able to
downregulate the amygdala during exposure. Hippocampus is
another structure integral to the fear neurocircuitry. Structural
differences in the contextualization neurocircuitry, particularly
the hippocampus, have been shown to be associated with
vulnerability to PTSD (Gilbertson et al., 2002; Lindgren
et al., 2016). PE responders and controls had greater baseline
hippocampal volume compared to treatment non-responders
(Rubin et al., 2016), indicating that hippocampal volume
may not only confer risk for PTSD development (Gilbertson
et al., 2002; Lindgren et al., 2016) but also be related to better
outcome in PE. PE does not affect hippocampal volume (Rubin
et al., 2016). Recent research linked deficits in accurately
discriminating context between threating and safe situations to
a smaller hippocampus (Negash et al., 2015), thus extinction
recall in PE may be affected by it. While a few studies using
other exposure-based treatments for PTSD have demonstrated
increased hippocampal activation in patients with PTSD
following psychotherapy (Felmingham et al., 2007; Peres et al.,
2007), no study to date has demonstrated increased activation
with PE (Lindauer et al., 2005; van Rooij et al., 2015; Rubin et al.,
2016). Overall, the fear and contextualization neurocircuitries
(amygdala, vmPFC, ACC and the hippocampus) appear to
be heavily involved in the processes of extinction learning
and recall in PE. As expected, PE restores the balance in the
vmPFC-amygdala loop and decreases the activation in the ACC
during extinction recall. Interestingly, the functioning and
volume of some of these structures may also be a prognostic
indicator for PE’s efficiency and a target for enhancement
interventions.

Emotion regulation neurocircuitry is not a unified
neurocircuitry but a set of circuits that share regions with
the fear neurocircuitry (Ochsner et al., 2002; Sheynin and
Liberzon, 2017) but there is some evidence to suggest that
activation in and connectivity between these circuits may
underlie treatment outcomes in PE. In one neuroimaging
study, patients underwent an implicit (unintentional) emotion
regulation task and an explicit (intentional and deliberate)
emotion regulation task before receiving a course of PE (Fonzo
et al., 2017). Individuals with greater vmPFC activation during
the implicit emotion regulation task showed larger PTSD
symptom reduction at the end of treatment (Fonzo et al.,
2017). This points to the possibility that certain individuals’
brains may have diminished capacity to reduce interference
from an emotionally-salient cue in the environment, possibly
making it more difficult to fully engage in PE. Interestingly,
activation during the explicit emotion regulation task at baseline
did not predict symptom change (Fonzo et al., 2017). This
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is consistent with EPT’s emphasis on emotional engagement
during exposures to facilitate extinction and inhibitory learning
insofar that efforts at attenuating emotional responses during
exposure are counterindicated and interfere with learning
(Craske et al., 2008; Foa, 2011). Increased competence to cope
with negative affect is a type of inhibitory learning speculated
to be an active ingredient in PE’s effectiveness (Rauch et al.,
2001; Foa and Rauch, 2004; Zalta et al., 2014). These emotion
regulation skills are acquired both through successful exposures
and through processing that occurs following exposures. In a
study examining the effect of PE on emotion regulation skills
in a sample of individuals with PTSD (Jerud et al., 2016),
PE was associated with clinically meaningful improvements
in emotion regulation skills, but a course of sertraline had
a similar effect (Jerud et al., 2016). Therefore, it is difficult
to determine whether the PE effects on emotion regulation
are specific to PE or more generalized to any effective PTSD
intervention. One neuroimaging study examined connectivity in
the ‘‘default mode network’’ (mPFC, parietal cortex) which has
been implicated in attentional control (Fox et al., 2015) before
and following a mindfulness based exposure therapy (King et al.,
2016). Following exposure therapy (but not present-centered
therapy), increased connectivity of the default mode network
to the dlPFC was observed, and this increased connectivity
was associated with decreased avoidance and hyperarousal
symptoms of PTSD (King et al., 2016). This pattern of neural
activation suggests increased attentional control, one of the
components of emotion regulation (Thompson, 2008; Wilcox
et al., 2016), following mindfulness based exposure therapy.
Correlation with decreased avoidance and hyperarousal also
points to greater deployment of emotion regulation skills at the
behavioral level. However, no study has examined the effects
of PE on the emotion regulation neurocircuitry, therefore, it is
impossible to know howmuch of the effect is due to mindfulness
training and how much is to the exposure component. As
suggested previously, emotion regulation deficits may be a
transdiagnostic factor contributing to the development and
maintenance of various types of psychopathology (Bradley
et al., 2011; Sheynin and Liberzon, 2017), therefore, increased
connectivity in that region may reflect an alleviation in
symptoms due to an effective treatment in general, rather
than due to a mechanism specific to PE. PTSD results in
a disrupted network of interconnected brain regions. The
neuroimaging studies to date suggest that changes in some
neurocircuitries are more unique to the putative mechanisms
of PE (e.g., the fear and contextualization neurocircuitries are
affected by the extinction learning and recall component of
PE) while changes in others may be more generally related
to mechanisms not unique to PE (e.g., inhibitory learning
related to increased emotion regulation skills). Successful
extinction recall in PE appears to be related to increased
functional coherence between vmPFC, amygdala, and the
hippocampus (Helpman et al., 2016a). Similarly, increased
connectivity between areas implicated in attentional control
(default mode network) and areas implicated in explicit
emotion regulation (dlPFC) appears to be indicative of more
effective coping with negative affect and downregulation

of emotional responses in stressful situations (King et al.,
2016; Fonzo et al., 2017). Therefore, while the functioning of
individual brain structures is important and clearly impacted
by the active components of PE, it appears that increased
and more efficient communication between various structures
that regulate each other, is of greater importance in PTSD
remission.

NEUROBIOLOGICAL ENHANCEMENTS OF
PE TREATMENT

The purpose of this focused review is to create a bridge between
neuroscience and practice of PE therapy by examining the effects
of exposure therapy on the neural circuits implicated in PTSD.
Further, we aim to use the advances in neuroscientific treatment
outcome research in order to propose potential enhancement
to the practice of PE based on the neurocircuits that have been
shown to be affected by it. The neurobiological findings to date
may be applied in two ways: (1) to identify potential PE treatment
enhancements in order to facilitate emotional engagement,
extinction and emotion regulation/inhibitory learning; and (2) to
identify individuals whomay be more likely to respond to certain
enhancement, in order to provide personalized treatment.

Selective serotonin reuptake inhibitors (SSRIs) are
recommended in treatment guidelines as treatment for
PTSD, following the evidence-based psychotherapies such
as PE (Institute of Medicine, 2014; American Psychological
Association, 2017). Preliminary evidence suggests that
facilitation of serotonergic transmission produced by SSRIs
results in increased activation in the vmPFC regions (Brady
et al., 2000; Davidson et al., 2001). A recent study compared the
effects of PE alone or sertraline alone on attentional inhibition
(as measured by a laboratory task) in individuals with PTSD
to examine the effects of each of these therapies on one of the
purported main mechanism of change in treatment of PTSD,
inhibitory learning (Echiverri-Cohen et al., 2016). The authors
found that those who showed more symptom improvement
with PE treatment showed greater improvements in inhibitory
processes from pre- to post-treatment. In contrast, those who
showed greater symptom reductions on sertraline made less
improvement in their inhibitory processes (Echiverri-Cohen
et al., 2016). This discrepancy may point to different mechanism
of action of each of these treatment and support the hypothesis
that SSRIs bring about more bottom-up neurochemical changes
in the fear circuitry, vs. the top-down changes produced through
extinction and inhibitory learning in PE. In addition, another
study found emotion dysregulation was improved equally as
a result of PE or sertraline in individuals with PTSD from
pre- to post-treatment but the mechanisms of action of each
treatment were not tested (Jerud et al., 2016). Given that
SSRIs may have a suspected different path of action than PE
on restoring the balance in the limbic-prefrontical system,
many have speculated that combining these interventions may
augment each alone or alternatively that different people may
respond to each treatment. In two studies using reverse designs
(one augmenting PE on SSRI non-responders and the other
augmenting SSRI for PE non-responders), results supported
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that for partial responders to SSRI augmentation with PE was
effective (Rothbaum et al., 2006). However, when SSRI was
added for those who only partially or did not respond to PE,
there was no added benefit (Simon et al., 2008). Identification of
genetic variants associated with more robust response to SSRIs
or PE in PTSD could allow for more personalized and effective
treatments. Ongoing biomarkers studies of treatment response
(e.g., project PROGrESS; Rauch et al., 2018) promise to inform
our field in these areas over the next several years.

Glutaminergic and GABAnergic neurotransmission has been
implicated in fear conditioning and extinction (Riaza Bermudo-
Soriano et al., 2012), and D-cycloserine (DCS), a partial agonist
at the N-methyl-D-aspartate (NMDA), has been implicated in
fear extinction through the modulation of NMDA receptors in
the amygdala (Norberg et al., 2008). While preclinical studies
showed promising results (Walker et al., 2002; Ledgerwood
et al., 2005; Yang and Lu, 2005) when DCS was used to
facilitate extinction learning in rodents, human studies using
exposure therapy yielded mixed results. Of studies that examined
DCS as an augmentation agent in exposure therapy, only one
found improved treatment outcomes with DCS (Difede et al.,
2014). Two studies found no noticeable added benefit from
supplementing exposure therapy with DCS (de Kleine et al.,
2012; Rothbaum et al., 2014), while one study found poorer
treatment outcomes in the group who received DCS-augmented
exposure therapy compared to placebo (Litz et al., 2012). These
mixed findings suggest that DCS may be an effective exposure
enhancer for a certain subgroup of individuals with PTSD. For
example, de Kleine et al. (2012) found that patients with high
initial scores and who completed all treatment sessions actually
benefited from DCS augmentation. DCS has also been shown
to facilitate reconsolidation (or updating) of fear memory in
animal studies (Lee et al., 2006). Therefore, it is possible that in
the case of an exposure in which extinction is insufficient, fear
memory is reconsolidated in a more intense form (Litz et al.,
2012), basically making an unsuccessful exposure worse. To date,
themajority of studies usingDCS and exposure therapy for PTSD
have failed to find a clear enhancing value of DCS. Studies with
individuals with fear of heights as well as social anxiety found that
administering DCS following a successful exposure, did indeed
augment those exposures (Smits et al., 2013a,b; Tart et al., 2013).
It appears that DCS may be a very specific intervention and has
to be carefully tailored to individual’s symptom severity and their
response to IE, and more studies of moderators and mediators
of DCS impact on extinction and learning are needed before
recommending it as an augment to PE.

Exogenous administration of the neurosteroids DHEA(S) and
pregnenolone that modulate GABA action in the brain has also
been studied in PTSD interventions. Dehydroepiandrosterone
(DHEA) and its sulfated metabolite (DHEAS) are endogenous
neurosteroids with negative modulatory effects (GABA
antagonist) on the GABAnergic system (Maninger et al.,
2009). DHEA(S) levels have been shown to be inversely related
to depression (Barrett-Connor et al., 1999; Wong et al., 2011)
and positively related to executive function (Alhaj et al., 2006;
Davis et al., 2008). Allopregnanolone (ALLO), an endogenous
neurosteroid, is one of the most potent GABA agonists (Lambert

et al., 2003) and has been shown to have anxiolytic effects (Paul
and Purdy, 1992). In a sample of healthy men, single-dose
DHEA administration was associated with decreased activation
in the amygdala, and increased connectivity between the
amygdala and the hippocampus during emotion regulation
laboratory task (Sripada et al., 2013b). Administration of
pregnanolone was associated with decreased amygdala activation
and with increased connectivity between prefrontal cortical
regions and the amygdala during that same task (Sripada et al.,
2013c). Therefore, it appears that DHEA(S) and ALLO may be
involved in the emotion regulation neurocircuitry and affect
communication between the amygdala and the prefrontal
regions related to executive functioning. Of note, ALLO has been
shown to have positive effects on pain tolerance (Scioli-Salter
et al., 2016), symptoms of traumatic brain injury (Marx et al.,
2016), and depression and bipolar disorder (Osuji et al., 2010;
Brown et al., 2014). The same way emotion dysregulation may
be a transdiagnostic indicator of emotional disorders, DHEA(S)
and ALLO may have a transdiagnostic therapeutic effect,
independent of the mechanisms of action of PE and therefore
not specific to PTSD (Rasmusson et al., 2017).

As increased neural connectivity within and between different
neurocircuits is emerging as an important mechanism of
action in psycho- and pharmacotherapies, repetitive transcranial
magnetic stimulation (rTMS) has been of interested as a stand-
alone and add-on treatment for PTSD (Karsen et al., 2014; Yan
et al., 2017). rTMS uses an electromagnetic field to non-invasively
stimulate cortical neurons through repeated changes in the coil’s
magnetic field (George et al., 2002; George and Post, 2011) and
has been approved by the Food and Drug Administration for
the treatment of drug-resistant depression. The most common
target for these studies has been broadly the dlPFC (Karsen
et al., 2014), with its projections to the fear and contextualization
circuits (i.e., the amygdala, the hippocampus, and the vmPFC).
To date, several reviews and/ormeta-analyses have demonstrated
the effectiveness of rTMS for treatment of PTSD by targeting the
right dlPFC regions (Karsen et al., 2014; Clark et al., 2015; Yan
et al., 2017). Fonzo et al. (2017) found that when the right dlPFC
was stimulated via rTMS, it downregulated the inhibition of the
left amygdala; the magnitude of that effect was a predictor of
PE response. A study that used TMS as a stand-alone treatment
(no exposure therapy) found that the pre-existing connectivity
between the ACC and the default mode network responsible for
attentional control as well as connectivity between the amygdala
and the vmPFC predicted patient’s response in rTMS treatment
(Philip et al., 2018). Therefore, assessing patient’s brain activation
patterns pre-treatment may be used as a predictor of treatment
response. More importantly, the rTMS studies to date identify
neurostimulation-accessible brain regions that may serve as
targets for enhancing exposure therapy either prior to or during
the course of PE (Fonzo et al., 2017).

One novel candidate enhancement to PE that is purported
to target the actual engagement in treatment and the quality
of therapeutic alliance is a neuropeptide oxytocin (Olff et al.,
2010). Oxytocin’s properties of enhancing prosocial behavior,
trust and warmth may be useful in facilitating extinction and
inhibitory learning in exposure therapy through successful
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therapeutic alliance (McLaughlin et al., 2014) and decreasing
dropout rates (Tuerk, 2014). One unpublished small study
found that a single administration of oxytocin to individuals
with PTSD decreased anxiety scores, irritability, intensity of
intrusive symptoms, and increased the desire for social contact
(Yatzkar and Klein, 2010). Thus far, only one pilot randomized
controlled trial examined the efficacy of administering intranasal
oxytocin 45 min prior to each IE in patients with PTSD who
were undergoing PE (Flanagan et al., 2018). The group who
received oxytocin demonstrated lower PTSD and depression
symptoms during PE and had higher therapeutic alliance scores
but these differences were not statistically significant, potentially
due to low power (Flanagan et al., 2018). Therefore, larger RCTs
are warranted to further explore the efficacy of oxytocin as a
supplement to PE. Another promising novel augmentation to PE
isMDMA (Thal and Lommen, 2018), a substituted amphetamine
(i.e., a class of compounds based on the amphetamine
structure derived by replacing one or more hydrogen atoms
in the amphetamine core structure) with properties similar to
mescaline, psilocybin, and other psychedelic compounds. The
cognitive effects of MDMA in clinical studies have included
enhanced mood, happiness, physical and mental relaxation,
increased emotional responsiveness, increased openness and
extraversion, and increased prosocial behaviors such as trust
and feelings of closeness to other people (Harris et al., 2002;
Vollenweider et al., 2002). In addition, MDMA has been
demonstrated to facilitate extinction retention in mice (Young
et al., 2017). The exact pharmacological mechanisms of MDMA’s
action are not well-understood. MDMA is known to acutely
facilitate the release of serotonin and oxytocin (Dumont et al.,
2009; van Wel et al., 2012), potentially contributing to decreased
avoidance and greater engagement in exposure-based therapy.

To date, there have been three clinical trials examining the
effectiveness of MDMA as an adjunct to psychotherapy for
treating PTSD (Mithoefer et al., 2011, 2018; Oehen et al., 2013).
In all three of these studies, MDMA was administered shortly
before the psychotherapy session and participants demonstrated
significant decreases in PTSD symptoms at the end of treatment
and at follow up (Mithoefer et al., 2011, 2018; Oehen et al.,
2013). Of note, psychotherapy administered in these studies was
not one of the empirically supported exposure-based treatments
for PTSD and was instead non-directive and focused more
on experiencing than on verbal exchanges (Mithoefer, 2011).
MDMA remains to be tested as an enhancement to PE. Given
the proposed mechanism of action in MDMA (i.e., increases in
serotonin and oxytocin, increased trust and openness to new
ideas), it is possible that it would be particularly helpful to apply
it during the processing portion of the session, when patients’
beliefs about themselves, others, and the world are reflected and
become less rigid. Alternatively, MDMA may be useful only for
those patients who exhibit slow or no extinction during IE. One
recent study found that, on a personality trait level, patients who
received MDMA during psychotherapy exhibited an increase in
the Openness trait post-treatment and at follow-up, while their
Neuroticism trait remained unchanged (Wagner et al., 2017).
This suggests that indeed the mechanism of effective action
in the case of MDMA may be greater openness to new ideas

and decreased cognitive rigidity rather than decreased negative
emotionality. While promising, the efficacy and effectiveness of
supplementing PE with MDMA remains an empirical question.

FUTURE DIRECTIONS AND
CONCLUSIONS
The mechanisms of action of PE have been of great interest
in the past decade and neuroimaging studies followed suit.
Currently, it is clear that various neural circuits are impacted
in the course of PE but it also appears that certain patterns
of neural activation and connectivity predict patient’s response
in PE. Generally, exposure therapy appears to have an impact
on the fear and contextualization neurocircuitry by facilitating
improved communication between the vmPFC, hippocampus,
and the amygdala, leading to downregulation of the fear response
in the amygdala (Helpman et al., 2016a). PE has been shown
to decrease the activity in and the volume of the ACC. This
increased coherence between these particular regions may be the
mechanisms unique to PE (or exposure therapy in general) given
that successful exposures lead to extinction learning and recall,
thus extinguishing the overgeneralized fear response. There
appears to be a more general process of emotional regulation
that is of importance as well. Similarly, increased connectivity
between areas implicated in attentional control (default mode
network) and areas implicated in explicit emotion regulation
(dlPFC) appears to be indicative of more effective coping with
negative affect and downregulation of emotional responses in
stressful situations (King et al., 2016; Fonzo et al., 2017). This
process has been conceptualized as more transdiagnostic and
less specific to PTSD or PE. Finally, it appears that neural
connectivity prior to treatment may have profound impact on
treatment response, offering some directions for future use of
prognostic indicators as well as enhancements.

One future direction concerns identifying the types of
patients who would most benefit from PE (and those who
might not). Larger hippocampal volume has been shown to
be associated with better outcomes in PE (Rubin et al., 2016).
Increased connectivity between the fear and the emotion
regulation neurocircuitries during emotionally salient tasks is
also a predictor of treatment success is PE (Fonzo et al., 2017).
Therefore, neuroimaging or electroencephalography should be
used in future studies to not only corroborate these findings
but also potentially establish certain cut-off benchmark for
the magnitude of connectivity or the relative size of the
hippocampus in optimal PE response. Given consistently positive
findings regarding the effectiveness of rTMS in PTSD symptom
improvement, it is a priority to continue to research this potential
PE enhancement. Specifically, future studies should focus on
neurobiological and psychological moderators and mediators of
rTMS effects on PE response, as well as on identifying those
individuals who would most benefit from rTMS. Currently, it
appears that rTMS may be of particular importance for those
people whose brains do not ‘‘let’’ them engage fully in exposure
therapy, i.e., those with pre-existing decreased connectivity
between the key neurocircuitries, however, that is an empirical
question.
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Further examination of the enhancements that promote the
sense of connectedness and self-compassion (i.e., oxytocin and
MDMA) is also warranted. Currently, it is unclear whether
these agents affect neural circuits that are more unique to
exposure therapy (such as the fear or the contextualization
circuits) or the transdiagnostic emotion regulation circuitry, or
another circuitry altogether. They may be promoting decreased
behavioral avoidance (Dumont et al., 2009; van Wel et al.,
2012) but neuroimaging studies examining these agents’ effects
on neurocircuitries that are of most importance in PE would
clarify that conjecture. Concurrently, studies examining the
effects of these agents on PE response would be helpful in
clarifying whether these agents offer any added benefit above and
beyond regular PE. If so, then identifying patients who would
be appropriate candidates for such enhancements would be the
logical next steps, especially given the heterogeneity of PTSD
symptoms.

In order to tap into the change in the ability to handle
and regulate negative emotions and identify individuals most
likely to benefit from treatment, future studies should employ
various emotion regulation tasks during neuroimaging scans
pre- and post-treatment. For instance in the PROGrESS trial
(Rauch et al., 2018), participants engage in an emotional faces
matching task aimed at isolating the amygdala reactivity to
threat (i.e., angry and fearful faces) and non-threat (i.e., happy
and neutral faces; Hariri et al., 2002). Additionally, participants
engage in the Emotion Regulation Task designed to measure
both, the explicit emotion regulation (Gyurak et al., 2011)
activation in the prefrontal cortical regions including dlPFC and
vmPFC, as well as the implicit emotion regulation manifested
by the activation in vmPFC and the amygdala (Costafreda
et al., 2008; Buhle et al., 2014). Finally, the implicit emotional
regulation processes (Gyurak et al., 2011) are alsomeasured using
attentional control with emotional faces task (SEAT; Sripada
et al., 2013a). Administration of such tasks while undergoing
neuroimaging pre- and post-PE is essential in identifying not
only connectivity changes resulting from treatment in the fear,
contextualization, and emotion regulation neurocircuitries but
also pre-existing connectivity patterns that may be indicative
of individuals who might require enhancements in order to
fully benefit from PE. It would be useful to develop and utilize
neuropsychological measures of hippocampus activity in order
to evaluate PE’s effect on its function. Additionally, salivary
and plasma concentrations of DHEA(S) and ALLO have been
shown to be associated with increased communication between
prefrontal cortical regions and amygdala (Sripada et al., 2013c).
Therefore, establishing benchmarks for the extent of connectivity
related to certain concentrations of DHEA(S) and ALLO, and
measuring these concentrations pre and during PE may be a
potentially less burdensome method of identifying increased
communication between the relevant brain structures.

While most of our focus has been on improving response
to PE, retention, as previously mentioned, is a key area
for improvement across PTSD interventions (Tuerk, 2014).
Neurobiological advances can also provide insights that drive
better retention through more personalized, more efficient,
and more effective care. Dropout rates across populations and
treatment setting are approximately 30% or more (Bradley et al.,
2005; Eftekhari et al., 2013), which is not surprising given
that PTSD is characterized by behavioral avoidance. Therefore,
further exploring the effectiveness and the mechanisms of action
of oxytocin and MDMA as enhancements to PE is warranted
in an effort to improve retention in PE. For instance, for
those who have higher potential for dropout, administration
of intranasal oxytocin may be particularly effective in retaining
them in treatment through increased connectedness with their
PE provider. Identifying neurobiological biomarkers of those
who are at risk of dropping out would aid in clinical decision-
making process regarding patients who are good candidates for
such an enhancement.

CONCLUSIONS

In this focused review, we reviewed the neurobiological
mechanisms underlying the effectiveness of PE, an empirically-
supported efficacious treatment for PTSD, and the enhancements
that can be applied to increase treatment response and retention.
One of the proposed mechanisms of action in PE is exposure
which facilitates extinction of a fear response and new adaptive
learning. Neurobiologically, PE and successful extinction recall
has been associated with increased neural connectivity between
vmPFC, amygdala and the hippocampus. Increased connectivity
in regions implicated in emotion regulation has also been
shown to result from PE although it appears that this change
in activation is more transdiagnostic and not unique to PE.
Since neural connectivity and communication seem to be at the
heart of symptom alleviation in PTSD, treatment enhancements
that promote such connectivity, particularly rTMS, offer the
most appropriate targets for future research into effectiveness
of PE. Further research into the effects of oxytocin and
MDMA on treatment response and retention is also warranted.
Finally, establishing neurobiological benchmarks for identifying
individuals who are less likely to benefit from treatment would be
an exciting development to help guide clinical decision-making
as to who should receive enhancements to PE.
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