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During self-control, we may resist short-term temptations in order to reach a favorable
future (e.g., resisting cake to stay healthy). The neural basis of self-control is typically
attributed to “cold,” unemotional cognitive control mechanisms which inhibit affect-
related regions via the prefrontal cortex (PFC). Here, we investigate the neural
underpinnings of regulating cravings by mentally evoking the positive consequences
of resisting a temptation (e.g., being healthy) as opposed to evoking the negative
consequences of giving in to a temptation (e.g., becoming overweight). It is conceivable
that when using these types of strategies, regions associated with emotional processing
[e.g., striatum, ventromedial prefrontal cortex (vmPFC)] are involved in addition to control-
related prefrontal and parietal regions. Thirty-one participants saw pictures of unhealthy
snacks in the fMRI scanner and, depending on the trial, regulated their craving by
thinking of the positive consequences of resisting, or the negative consequences of not
resisting. In a control condition, they anticipated the pleasure of eating and thus, allowed
the craving to occur (now-condition). In line with previous studies, we found activation
of a cognitive control network during self-regulation. In the negative future thinking
condition, the insula was more active than in the positive condition, while there were
no activations that were stronger in the positive (> negative) future thinking condition.
However, additionally, multivariate pattern analysis showed that during craving regulation,
information about the valence of anticipated emotions was present in the vmPFC, the
posterior cingulate cortex (PCC) and the insula. Moreover, a network including vmPFC
and PCC showed higher connectivity during the positive (> negative) future thinking
condition. Since these regions are often associated with affective processing, these
findings suggest that “hot,” affective processes may, at least in certain circumstances,
play a role in self-control.
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INTRODUCTION

In our daily lives, we are often confronted with situations
requiring self-control, which can be defined as the ability to
resist temptation and override impulsive responses in order to
behave consistently with our long-term goals and social norms
(Baumeister et al., 2007; Hassin et al., 2010; Hofmann et al.,
2012). For example, we may resist eating tasty desserts in order
to stay slim, or perform daily workouts to stay fit and attractive.
In cognitive neuroscience, the neural basis of self-control is
often attributed to ‘‘cold’’ cognitive control mechanisms of
the prefrontal cortex (PFC) that compete with ‘‘hot’’ affective
impulses (e.g., McClure et al., 2004), or modulate value signals
(Hare et al., 2009, 2011). Similarly, Heatherton and Wagner
(2011) emphasize that ‘‘self-regulatory failure occurs whenever
the balance is tipped in favor of subcortical areas’’ (p. 1)
associated with impulses and emotions as opposed to control-
related prefrontal regions.

While such dual-system models are useful, they might have
limitations: human decisions requiring self-control may not
solely be explained by ‘‘cold’’ cognitive processes alone, but
may also depend on the mobilization of emotions consistent
with long-term outcomes (see Phelps et al., 2014; Lerner et al.,
2015 for a review). That is, conflicts may not only involve a
struggle between reason and emotion, but also a struggle between
different emotions associated with short-term and long-term
outcomes of decisions. In line with this, Berkman et al. (2017)
have proposed that self-control situations can be framed as
instances of value-based decision-making with different values
assigned to the short-term and the long-term option (see also
Bulley et al., 2016).

Specifically, theories of affective forecasting (e.g., Loewenstein
et al., 2001; Mellers and McGraw, 2001; Gilbert and Wilson,
2007) suggest that decision-making and self-control are crucially
influenced by anticipated emotions. Thinking about the future
may evoke emotional representations of long-term outcomes,
and these may support the assignment of value to options
(Pezzulo and Rigoli, 2011). For example, thinking about
long-term costs of not eating healthily (‘‘I will gain weight’’)
may evoke negative emotions, whereas thinking about benefits
of abstaining from unhealthy food (‘‘I will stay healthy’’)
may evoke positive emotions. In line with this, anticipated
emotions have been shown to influence decision-making and
goal-directed behavior (Mellers and McGraw, 2001; Perugini and
Bagozzi, 2001; Baumgartner et al., 2008; Patrick et al., 2009;
Pezzulo and Rigoli, 2011). The differences of being motivated
by potential gains as opposed to losses has also been described
and studied, but usually in the context of monetary rewards
(e.g., Kahneman and Tversky, 1979; Paschke et al., 2015). There
are hardly any neuroimaging studies that have investigated
this topic for primary rewards (e.g., food), and for more
complex potential gains and losses (e.g., being fit vs. putting on
weight).

In typical food craving-regulation studies, participants are
told to decrease their craving or to cognitively reappraise
short-term rewards by thinking of the negative consequences
of giving in to the temptation (e.g., Siep et al., 2012; Giuliani

and Pfeifer, 2015; Cosme et al., 2018). For example, Kober
et al. (2010) showed pictures of cigarettes and food items to
21 smokers. They then asked them to regulate their craving
by thinking of the (negative) long-term consequences
of smoking or eating the food. Likewise, Hollmann
et al. (2011) (p. 2) asked participants ‘‘to reinterpret the
subjective value of unhealthy food with respect to long-term
consequences (that is, negative effects on health and social
life).’’ When comparing regulating with allowing craving,
studies typically find activation in a network previously
implicated in cognitive control and emotion regulation,
including the dorsolateral PFC (dlPFC; Kober et al., 2010;
Hollmann et al., 2011; Giuliani et al., 2014; Giuliani and
Pfeifer, 2015; Cosme et al., 2018). It is puzzling why
neuroimaging researchers have been focusing so much on
negatively oriented reappraisal strategies for the regulation of
cravings.

There was only one neuroimaging study, to our knowledge,
that included a self-regulation condition for food in which
participants anticipated the positive consequences of resisting
(Yokum and Stice, 2013). The authors asked participants to
regulate craving using, depending on the trial, a positive or a
negative future thinking strategy (i.e., benefits of not eating vs.
costs of eating). Again, during regulation, there was activation of
regions typically implicated in higher cognitive processes, namely
the superior frontal gyrus and the ventrolateral PFC (vlPFC).
There were no significant differences between the negative and
positive future thinking strategy. However, the sample in this
study consisted of 21 adolescents with a mean age of 15 years
and, in this study, only a traditional univariate analysis approach
was used to analyze the data.

Relevant to the current study, using more abstract stimuli,
Kruschwitz et al. (2018) measured brain activation while
participants anticipated bi-valent stimuli: aversive sounds
that were presented simultaneously with monetary gains.
Crucially, during the anticipation of the bi-valent stimulus (in
Experiment 2), participants either focused on the positive aspect
of the outcome (the monetary gain) or the negative aspect (the
aversive sound). Focusing on the negative was associated with
increased activation of the bilateral insula during anticipation,
whereas focusing on the positive was associated with increased
activation in the ventral striatum (VS), ventromedial PFC
(vmPFC) and posterior cingular cortex (PCC; see also Doré
et al., 2017). Moreover, activation in the insula correlated with
the degree to which participants experienced negative emotions
(distress) during anticipation, while activation in the VS, vmPFC
and PCC correlated with the degree to which participants
experienced positive emotions (pleasure and relief; the former
for all three regions and the latter only for VS and vmPFC). The
logical next question is whether the same neural mechanisms can
be observed in a more complex self-control situation during the
regulation of food cravings.

Here, we set out to delineate the neural differences between
positive and negative future thinking in the regulation of food
craving in an adult sample, with a focus on regions of the brain
that have previously been associated with affective processing.
In contrast to Yokum and Stice (2013), we did not only use a
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standard univariate approach to analyze our data, but combined
it with a more sensitive multivariate pattern analysis approach
(MVPA; Haynes and Rees, 2006) and a network connectivity
analysis. While traditional univariate analyses simply determine
the overall activation of each individual voxel, MVPA is highly
sensitive in detecting differences in neural activation patterns
across voxels (Davis et al., 2014). In the MVPA analysis, we
used searchlight decoding to answer the question ‘‘Where in
the brain does the activity pattern contain information about
the experimental condition?’’ (i.e., positive vs. negative future
thinking; Kriegeskorte et al., 2006; p. 3863). A network-based
task-related functional connectivity approach (Rissman et al.,
2004; Zalesky et al., 2010) was also used, to investigate the
differences in connectivity patterns between positively and
negatively oriented regulation strategies. This extends previous
studies that mostly focused on connectivity between single brain
regions (e.g., Kober et al., 2010), by using a more holistic
network-based approach.

In line with previous studies, we expected to replicate the
finding of a cognitive control network, including the lateral
PFC, during the use of both reappraisal strategies, in the
univariate analysis. We further hypothesized that the negative vs.
positive regulation strategy would be associated with differential
activation in regions previously associated with emotional
processing and anticipated emotions: the VS, vmPFC, amygdala,
insula and PCC (Bechara and Damasio, 2005; Sharot et al.,
2007; D’Argembeau et al., 2008; Knutson and Greer, 2008; Bray
et al., 2010; Benoit et al., 2014; Lin et al., 2015). These were
the same regions of interest (ROIs) as used by Kruschwitz et al.
(2018). In line with Kruschwitz et al. (2018), for the univariate
analysis, we expected higher activation of the insula for the
negatively oriented control strategy, and higher activation of
VS, vmPFC and PCC for the positively oriented strategy. In
addition or alternatively to this, we predicted differential patterns
of neural activation in these regions in the positive vs. negative
condition, as revealed by multivariate analysis. Moreover, we
expected there to be changes in connectivity patterns between
the regions depending on whether a positively or negatively
oriented strategy was used. More specifically, regions classically
associated with positive affect processing (i.e., vmPFC, VS,
PCC) might show enhanced connectivity during the positive
future thinking condition, while regions usually associated with
negative affect processing (i.e., insula, amygdala) might show
enhanced connectivity during the negative condition.

MATERIALS AND METHODS

Participants
Data from 31 healthy, non-obese participants were analyzed
(16 female, 15 male; mean age: 25.9 ± 3.34 years; range: 18–32).
One additional participant was excluded from data analysis
because we observed abnormalities in cortical development
that could have compromised statistical analyses. On average,
participants had a score of 6.35 (SD 2.61) on the Restraint Scale
for assessing restrained eating behavior (Herman and Polivy,
1980; German version by Dinkel et al., 2005), which is in the

normal range; thus, participants were eating normally. Eleven out
of the 31 participants said they regularly engaged in sports (the
other 20 did not), and the average score for drinking alcohol in
the sample was 2.77 (SD: 0.669) on a scale of 5 (from 0: never
to 5: often). None of the participants reported a lifetime history
of psychiatric disorder. Additional exclusion criteria included
pregnancy and other general MRI contraindications. Written
informed consent was provided by all participants and the study
was approved by the Ethics Committee of Technische Universität
Dresden. After completing the fMRI tasks, participants were
debriefed and received compensation.

Design
Participants were asked not to eat for 2 h before coming to the
lab. Prior to the experiment, participants rated their craving in
response to each snack on a 5-point Likert scale to establish a
baseline. The stimuli were 36 photographic images of unhealthy
snacks, which were selected based on their ability to induce
craving and validated in a previous study (Ludwig et al., 2014).

Next, participants read standardized instructions for the
experiment (included in the Supplementary Material).
Specifically, they were instructed to regulate their craving
by thinking about either the negative long-term consequences of
repeatedly consuming the snacks or the positive consequences
of abstaining from the presented snacks. To understand the
instructions better, a list of example strategies was provided
to participants that could be used for downregulating craving
(e.g., negative: ‘‘I will become obese’’ or ‘‘I will develop dental
problems,’’ and positive: ‘‘I will look good at the beach’’ or ‘‘I
will feel fit and energized;’’ see Supplementary Material for
the entire list). The experimenter went through the examples
with participants and explained the concepts of negative and
positive future thinking. However, participants were also free to
choose their own strategies, which felt most relevant to them.
In a control condition we asked participants to not regulate,
but to anticipate the rewarding nature of the stimulus itself
(now-condition). This was done in a within-subject design with
all participants applying all strategies.

The experimenter verified that participants understood and
were able to apply the strategies during the experiment. To
control for low-level visual confounds in the neuroimaging data
that would compromise multivariate decoding, each strategy was
indicated by two distinct visual cues (see Wisniewski et al., 2015
for a similar approach). Memorization of the cues was verified
by a stringent quiz, and participants performed 12 training
trials of the regulation task on a different set of snacks (see
Supplementary Material). The scanning session began once the
experimenter verified that participants had performed the task
correctly during the training.

During scanning, participants completed a cognitive emotion
regulation task that extends the self-control study by Kober et al.
(2010); (Figure 1A). In each trial, we first instructed participants
to use one of the valence-specific self-control strategies using the
respective abstract visual cue (2 s). After the cue, an image of a
snack was presented for 6 ± 1 s, during which the participants
applied the strategy. After each trial, participants rated their
craving for the snack on a 5-point Likert scale by moving a cursor
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using response keys. The rating scale was presented for up to 3 s
or until the participant had given a response. Each trial concluded
with an inter-trial interval of 10 ± 4 s, during which participants
saw a fixation cross (Figure 1C). Participants completed five runs
consisting of 36 trials each (12 trials per condition, one for each
snack) that were presented in a pseudorandomized order. The
same 12 snacks (six sweet and six salty) were always presented
for the same strategy within one participant, as the strategies
were expected to become associated with the specific snack
types. Across participants, the assignment of the snacks to the
three strategies was permutated to exclude bias produced by the
specific stimuli.

Experimental, Statistical and fMRI Data
Analysis Software
The experiment was implemented using E-prime software
(Version 2.0). Behavioral data analyses were performed with IBM
SPSS Statistics 21. ROIs were created using FSLView Version
3.2.0 (FMRIB centre, University of Oxford). Standard univariate
fMRI data analyses for all experiments were performed with
SPM81. Multivariate pattern analysis was carried out using
the Decoding Toolbox (Hebart et al., 2015). Network-based
task-related functional connectivity analyses were performed
using BASCO (Göttlich et al., 2015) and GraphVar (Kruschwitz
et al., 2015).

Functional Magnetic Resonance Imaging
Participants were scanned in a 3T Siemens Tim Trio MRI
scanner with a 12-channel head coil. We acquired 380 images
for each of the five runs with 33 axial slices in descending
order using a T2∗-sensitive one-shot gradient-echo echo-planar
imaging (EPI) sequence with the following parameters: repetition
time 2,000 ms, echo time 30 ms, flip angle 78◦, field of view
192 mm, matrix size 64 × 64, voxel size 3 × 3 × 3 mm and inter-
slice spacing 0.75 mm.

Moreover, we acquired a high-resolution image for spatial
referencing with 192 sagittal slices using a T1-weighted
magnetization-prepared rapid gradient-echo (MPRAGE)
sequence with the following parameters: repetition time
1,900 ms, inversion time 900 ms, echo time 2.52 ms, flip angle
9◦, matrix size 256 × 256 and voxel size 1 × 1 × 1 mm.

Analysis of Behavioral Data
We first made sure that the snacks assigned to each of the three
strategies did not differ in terms of craving values prior to the
experiment (i.e., without any application of a strategy). For this,
we carried out a repeated-measures ANOVA with the within-
subject factor ‘‘assigned strategy’’ (3 levels) on the craving values
obtained before the fMRI experiment.

For the main analysis, for each participant, we calculated the
mean of the craving ratings per condition (including 60 trials in
total per condition; 12 trials in each of the five runs) during the
fMRI experiment and applied a repeated-measures ANOVA to
the resulting values (i.e., one within-subject factor ‘‘condition’’
with 3 levels, n = 31). We then calculated dependent t-tests for

1http://www.fil.ion.ucl.ac.uk/spm

the post hoc comparisons of interest (positive vs. now, negative vs.
now, and positive vs. negative) and applied Bonferroni correction
for three comparisons.

fMRI Analysis
Regions of Interest (ROIs)
ROIs for the univariate and multivariate pattern analysis were the
vmPFC, bilateral VS (defined as nucleus accumbens), bilateral
insula, bilateral amygdala and bilateral PCC. Previous studies
have identified these regions as being involved in future thinking
and anticipated emotions (Sharot et al., 2007; D’Argembeau et al.,
2008; Knutson and Greer, 2008; Staudinger et al., 2009; Bray et al.,
2010; Sharot et al., 2010; Benoit et al., 2011; Carlson et al., 2011;
Winecoff et al., 2013; Benoit et al., 2014; Greenberg et al., 2015;
Lin et al., 2015; Kruschwitz et al., 2018). ROIs were derived from
the Harvard-Oxford Structural Atlas. The vmPFC ROI was taken
from a previous study using the same stimuli (Ludwig et al., 2014)
in which a probabilistic ROI was constructed. The basis for this
ROI were coordinates of vmPFC activation of previous studies
on value-based decision making (see Supplementary Material
for details).

For the network connectivity analysis, the aforementioned
ROIs were considered to be too big, as they had the purpose
to restrict the univariate and multivariate analysis to these
regions on a rougher scale and to correct for family-wise
error (FWE) within these regions. Averaging voxel time courses
over these big regions for the connectivity analysis would
not be reasonable. Therefore, for network construction we
instead chose the 116 AAL ROIS (Tzourio-Mazoyer et al.,
2002) over the Harvard-Oxford Structural Atlas (69 ROIs) and
the aforementioned vmPFC ROI due to its finer granularity
(resulting in a larger network and potentially higher number
of observable interactions) but comparable neuroanatomical
spanning range.

Preprocessing
All volumes were realigned (i.e., the runs were first realigned
to each other, by aligning the first scan of each run to the first
scan of the first run. Then the images within each run were
aligned to the first image of the run) and slice-time corrected in
a standard way (reference slice 16). Volumes were normalized
(unified segmentation of T1-image, 3 mm isotropic voxels)
to the MNI (Montreal neurological institute) template (ICBM
152) and smoothed with a Gaussian kernel with a full-width
half-maximum (FWHM) of 8 mm. Of note, for MVPA analyses
all data were processed in native space (i.e., the resulting accuracy
maps were normalized and smoothed (FWHM: 8 mm) after
MVPA computations for second level analyses; see below).

Analysis
We then constructed a general linear model (GLM) for
each participant. To correct for motion-related effects, we
included six motion regressors in the GLM. All regressors were
convolved with the SPM8 canonical hemodynamic response
function. Intrinsic autocorrelations were modeled by a first-order
autoregressive model. Low frequency oscillations were removed
with a high-pass filter with a cut-off frequency at 1/128 Hz.
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FIGURE 1 | (A) Trial sequence with cues indicating to regulate the craving by thinking about either the negative long-term consequences of repeatedly consuming
the snacks (e.g., “I will become obese”) or the positive consequences of abstaining from the presented snacks (e.g., “I will look good at the beach”). In a control
condition we asked participants to not regulate, but to anticipate the rewarding nature of the stimulus itself (“now”-condition). (B) Left: snacks assigned to each
condition did not differ in terms of elicited craving at baseline. Right: craving was significantly regulated by the use of (future) thinking strategies in the fMRI scanner.
ME: ANOVA main effect. n.s.: not significant, t: trend, ∗∗∗: p < 0.001. Error bars depict 95% confidence intervals of the mean, adapted for within-subject designs
(Cousineau, 2005). (C) Whole brain analysis for the contrast “positive + negative > now” revealed significant activation [all p < 0.05 family wise error (FWE)-corrected]
of the cognitive regulation network. (D) Region of interest (ROI) analyses for the contrast “negative > positive” future thinking revealed significant activation in the
insula (p < 0.05 small-volume FWE-corrected; activation displayed at p < 0.001 uncorrected for illustrative purposes).

The analysis then consisted of three independent parts. First,
we analyzed the data using a standard univariate approach.
For this, on the first level, cues and image presentation were
combined and modeled by a separate regressor for each strategy
that lasted 2 + 6 ± 1 s. The rating period after the image
presentation and the inter-trial intervals were modeled as two
separate regressors of no interest. We then calculated the
contrasts of interests regarding the cognitive control network
(positive + negative > now), and valence-dependent anticipation
processes (negative > positive; positive > negative) in each
participant and, on the second level, carried out one-sample
t-tests to assess activations and significance on the group level. To
ensure the validity of the results derived by the directed contrasts,
we additionally (post hoc) calculated an F-test spanning all three
conditions in a flexible factorial design which included subject
as a factor. Masking the respective t-contrasts with the derived
F-Test search space resulted in the same set of activations.

Second, we performed MVPA to overcome constraints of
univariate analyses and to localize brain regions associated
with differential processing of anticipated emotions. For the
MVPA, we again constructed a GLM for each participant as
before. However, we constructed one regressor for each strategy
and cue combination lasting 2 + 6 ± 1 s, which resulted
in two regressors per strategy (i.e., 2 strategies × 2 cues per
strategy = 4 regressors).

Although ROI-based decoding (e.g., Gallivan et al., 2011;
Chadwick et al., 2012) is often used to determine if brain regions
contain information discriminating experimental conditions, we

decided to use a searchlight decoding approach (Kriegeskorte
et al., 2006). This approach makes no spatial a priori assumptions
about functional regions (the ROIs are only used at the end
of the analysis to constrain the area being looking at and to
correct for multiple comparisons). Using searchlight decoding,
it is possible to detect if only a specific part of a ROI contains
information of interest. Specifically, we applied multivariate
pattern classification for each subject using a support vector
classifier (SVC) with a linear kernel and a fixed regularization
parameter (C = 1) on the parameter estimates of the GLM
(Cox and Savoy, 2003; Mitchell et al., 2004; Kamitani and
Tong, 2005; Haynes and Rees, 2006), as implemented in
LIBSVM2). Here, we constructed a sphere with a radius of
three voxels around each voxel in the acquired volumes and
extracted parameter estimates for the two regulation conditions
(i.e., two cues per condition = 4 extractions) for each of the
N voxels in the respective sphere, resulting in an N-dimensional
pattern vector. A SVC was subsequently trained to discriminate
pattern vectors of the conditions ‘‘cue 1 strategy 1’’ vs. ‘‘cue 1
strategy 2.’’ The classification performance was then tested using
the independent pattern vectors of ‘‘cue 2 strategy 1’’ vs. ‘‘cue
2 strategy 2’’ (i.e., evaluation of the classifier performance via
cross-classification on the independent strategy cues which also
controls for potential problems of overfitting). We used a leave
one-run out cross-validation scheme with our five runs (i.e., we
trained on four runs and used the 5th one for testing; and

2https://www.csie.ntu.edu.tw/∼cjlin/libsvm/
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repeated this five times in total with all possible combinations).
We then calculated the mean prediction accuracy across the
cross-classification steps and assigned this value to the central
voxel of the sphere. The classification was repeated for every
sphere in the volume, resulting in a three-dimensional accuracy
map for each subject.

The resulting accuracy maps were normalized and smoothed
as before. For group-level analyses, the accuracy maps of each
subject were entered in one-sample t-tests against chance level
(50%). As the use of theoretically derived chance levels (e.g., 50%
chance with two classes) in multivariate pattern analyses has been
recently criticized (Combrisson and Jerbi, 2015), we additionally
performed permutation testing to derive voxel-wise empirical
chance levels for our data (see Supplementary Material).

To account for interindividual differences in classification
accuracies between conditions due to differential success in
applying the two strategies (see ‘‘Behavioral Results’’ Section),
we entered the latter as a covariate in group-level analyses
(mean rating positive − mean rating negative) in both univariate
and MVPA analyses. For both univariate and MVPA analyses,
significance was assessed as follows: for ROI-based as well as
whole-brain analyses we applied a FWE-corrected statistical
threshold of p < 0.05 (peak-level), which has been shown to
be an appropriate correction method (Eklund et al., 2016). For
ROI-based fMRI analyses no cluster-extent threshold was used in
addition to the (FWE-corrected, small volume correction; SVC)
voxel peak-level thresholding.

Third, we performed a network-based task-related functional
connectivity approach (Rissman et al., 2004; Zalesky et al.,
2010) to investigate if affect-related subnetworks would be
differentially engaged during self-control. By focusing on
network-wide connectivity changes between task-conditions,
this network analysis approach overcomes a-priori restrictions
of previous studies that focused on interactions between
single brain regions (e.g., Kober et al., 2010). Specifically, we
used a beta-series correlation analysis approach to establish
task-related functional connectivity between brain regions
(Rissman et al., 2004) for the two regulation conditions
(i.e., positive and negative). For network construction we
chose the 116 AAL ROIS (Tzourio-Mazoyer et al., 2002),
as explained above. Based on this parcellation, we extracted
the mean beta-series for each experimental condition (across
runs) and derived a connectivity matrix (116 × 116) for
each experimental condition (positive and negative regulation)
per subject by correlating all ROI beta-series with each
other applying Pearson’s linear correlation. Subsequently, for
identification of a subnetwork associated with connectivity
changes between the positive and the negative regulation
condition (i.e., graph component), we applied the network-based
statistic (NBS) approach (Zalesky et al., 2010) as implemented
in GraphVar (Kruschwitz et al., 2015) in which we entered
both connectivity matrices per subject in a repeated measures
GLM. To estimate the null-distribution of maximal graph
component size (i.e., to control the FWE rate of the graph
component), we used a permutation-based non-parametric
approach with 1,000 random permutations. To derive sets of
supra-threshold links (i.e., the effect associated subnetwork) we

set the initial-link threshold to p < 0.001 (permutation-based
single-link significance). Graph components were considered
significant with p < 0.05 FWE-corrected. Additionally, in a
less conservative approach, we used a link-based approach to
explore individual connections between any ROI pair within
the network that may ultimately form an extended connected
component. Here, we used a link-wise false discovery rate
correction procedure (corrected p < 0.001) that, as compared
to NBS, may provide additional information on focal effects
concerning individual connections.

RESULTS

Behavioral Results
There were no significant differences in the pre-experimental
craving values between the snacks assigned to each strategy
(F(2,60) = 1.434, p = 0.246; see Figure 1B, left), suggesting that
the random assignment of the snacks to the categories had been
successful.

In the main analysis of the craving values measured during
the fMRI experiment, we found a significant main effect
of strategy: F(1.686,50.566) = 45.158, p < 0.001; Huynh-Feldt
correction was applied due to a violation of the assumption
of sphericity). As Figure 1B (right) shows, craving values
during a negative-thinking strategy and a positive-thinking
strategy were both significantly lower than when focusing on
the now (neg. vs. now: (T(30) = 8.721, p < 0.0001; pos. vs.
now (T(30) = 6.319, p < 0.0001). The negative-thinking strategy
tended to be associated with lower craving than the positive
thinking strategy (T(30) = 2.369, p = 0.024) but this was
not significant after applying Bonferroni-correction (required
significance value when conducting three tests: 0.017).

fMRI Results
Whole-brain analyses for the contrast positive + negative >
now revealed significant activation in the cognitive regulation
network, specifically the left dlPFC, left vlPFC and left middle
temporal gyrus (MTG; p < 0.05; Figure 1C; Table 1A). As
shown in the Supplementary Material, analyses for the contrasts
negative > now and positive > now revealed a similar and
comparable activity of the well-established cognitive regulation
network in both cognitive control strategies.

ROI-based analyses for the contrast negative > positive
revealed significant activations in the bilateral insula (p < 0.05;
Figure 1D; Table 1B). Whole-brain analysis did not reveal
any additional activations. ROI and whole-brain analyses for
the positive > negative contrast did not reveal any significant
activations.

ROI-constricted analyses of MVPA accuracy maps revealed
a significant discrimination between the positive and negative
conditions in the vmPFC (55.78%; Z = 3.51, p < 0.05),
left insula (55.75%; Z = 3.97, p < 0.05) and PCC (55.77%;
Z = 4.28, p < 0.05; Table 1C; Figure 2). A whole-brain
analysis additionally revealed a significant discrimination in
the bilateral visual cortex. When performing the same analyses
with the permutation derived empirical chance level maps, we
additionally observed a significant discrimination between the
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TABLE 1A | Results of standard univariate whole-brain analyses with voxel-wise one-sample t-test for the contrast “positive + negative > now” (n = 31; all p: FWE,
whole-brain corrected).

Whole-brain L/R Cluster size Peak-voxel activity T Z p—peak voxel FWE

x y z

dlPFC L 1721 −36 5 49 6.74 5.25 <0.01
vlPFC L −54 23 7 9.59 6.49 <0.01
SFG L 447 −6 17 64 7.78 5.75 <0.01
MTG L 544 −42 −40 −2 5.76 4.71 0.01

dlPFC, dorsolateral prefrontal cortex; vlPFC, ventrolateral prefrontal cortex; SFG, superior frontal gyrus; MTG, middle temporal gyrus; FWE, family wise error corrected.

TABLE 1B | Results of standard univariate region of interest (ROI) analyses with voxel-wise one-sample t-test for the contrasts “negative > positive” future thinking
(n = 31; all p: FWE, small-volume corrected).

ROI (bilateral) L/R Cluster size Peak-voxel activity T Z p—peak voxel FWE

x y z

negative > positive
insula L 89 −36 −1 −2 4.48 3.90 0.02

R 157 39 5 −5 6.18 4.95 <0.01

FWE, family wise error corrected.

TABLE 1C | Results of multivariate pattern analyses (searchlight decoding) within ROIs with voxel-wise one-sample t-test (against chance level) for the contrast “negative
vs. positive” future thinking (n = 31; all p: FWE, small-volume corrected).

ROI (bilateral) L/R Cluster size Peak-voxel activity T Z p—peak voxel FWE

x y z

positive vs. negative
vmPFC - 84 0 41 −11 3.96 3.51 0.045
PCC L 207 −6 −46 19 5.11 4.28 <0.01
insula L 40 −30 8 13 4.62 3.97 0.02

vmPFC, ventromedial prefrontal cortex; PCC, posterior cingulate cortex; FWE, family wise error corrected.

positive and negative conditions in the right anterior insula and
VS (see Supplementary Material).

NBS on the condition-specific task-related functional
connectivity matrices (positive vs. negative) revealed a single
subnetwork (p = 0.005) comprising five interconnected brain
areas. These areas included the left cuneus, left post central gyrus,
right superior orbitofrontal gyrus, right inferior orbitofrontal
gyrus and left medial orbitofrontal gyrus (Figure 3A; the area
in the VMPFC was similar to the region identified in the
MVPA: medial orbitofrontal cortex). The less conservative
link-based FDR correction approach resulted in a sub-network
of 11 regions (covering the NBS-detected component) but
additionally included the right inferior occipital gyrus, left
lingual gyrus, left and right PCC, left rolandic operculum and
left superior orbitofrontal gyrus (Figure 3B). This (extended)
network was characterized by stronger connectivity during the
positive vs. the negative regulation condition. There was no
network that showed stronger connectivity during the negative
compared to the positive regulation condition.

DISCUSSION

Motivated by theories of affective forecasting and the assumption
that human behavior may be influenced by anticipated emotions,
we performed an fMRI experiment to investigate the role of
brain regions associated with affect regulation during craving
regulation. Using MVPA and a network connectivity analysis,
we investigated the neural correlates of a strategy of anticipating

positive consequences of resisting temptations (e.g., staying
fit) as compared with anticipating negative consequences of
succumbing to temptations (e.g., becoming overweight).

While self-control is often seen as a ‘‘cold’’ higher cognitive
process which modulates ‘‘hot’’ affective processes from top-
down, we report evidence suggesting that self-control may
actually involve ‘‘hot’’ affective processes as well. Specifically,
we find that regions implicated in emotional processing
show differential activation and connectivity patterns when
participants use the two strategies (positive vs. negative future
thinking). Thus, such cognitive control strategies may not only
involve purely cognitive representations of outcomes, but may
actually involve anticipated emotions which then influence
decision-making (see also Damasio, 1994).

More specifically, in a univariate pattern analysis, we found
insula activation in the negative future thinking (> positive)
strategy, but, contrary to our expectation, no activation in the
vmPFC, PCC, or VS in the positive (> negative) condition.
Using a more sensitive decoding approach, however, we observed
that the two strategies were indeed associated with differential
activation in the anterior insula, vmPFC and PCC (as well
as, using a more explorative statistical threshold, the VS),
regions previously associated with affect and valence processing
(e.g., Kruschwitz et al., 2018). Using a network analysis approach
based on task-related functional connectivity (Rissman et al.,
2004; Zalesky et al., 2010), we further found that positive future
thinking (> negative) was associated with stronger connectivity
of a network involving these regions (specifically those linked

Frontiers in Behavioral Neuroscience | www.frontiersin.org 7 December 2018 | Volume 12 | Article 297

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Kruschwitz et al. Craving Regulation

FIGURE 2 | Multivariate pattern analyses (searchlight decoding) within ROIs for the contrast “negative vs. positive” future thinking revealed significant discriminatory
information (all p < 0.05 small-volume FWE-corrected) in the ventromedial prefrontal cortex (vmPFC), insula and posterior cingulate cortex (PCC).

with positive affective processing), including among other areas
orbitofrontal regions (similar to the one found in the multivariate
analysis) and the PCC.

Previous studies found that the same regions (i.e., vmPFC and
dorsal PCC) appeared to encode the subjective value of delayed
monetary rewards in intertemporal choice tasks (Kable and
Glimcher, 2007; Peters and Büchel, 2009, 2010; Benoit et al., 2011;
Liu et al., 2012), and also correlated with taste ratings, health
ratings and overall value of food items at decision time (Hare
et al., 2011). Furthermore, vmPFC has been shown to be involved
in the computation and encoding of subjective and emotional
value during imagined scenarios (Benoit et al., 2014; Lin et al.,
2015) and during emotion regulation (Winecoff et al., 2013).
Combining these findings, we can speculate that these regions are
implicated in processing future positive affect. Thus, it is possible

that anticipated affect may be crucial for the determination of the
reward value of anticipated outcomes (Pezzulo and Rigoli, 2011).
The same may be true for the insula as it has been implicated
in the anticipation of negative emotion (Berns, 2006; Knutson
and Greer, 2008; Carlson et al., 2011) and was speculated to
influence the computation of value signals (e.g., Hare et al.,
2010).

Of course it has to be kept in mind that the regions that
we term affect-related are not exclusively linked with emotions
but also with other processes (e.g., self-referential processing,
or the default mode network; e.g., Northoff et al., 2006; Uddin
et al., 2009). However, there is a bulk of studies showing a link
between these regions and affective processing (e.g., Bechara
and Damasio, 2005; Sharot et al., 2007; Knutson and Greer,
2008), and in a previous study (Kruschwitz et al., 2018), we
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FIGURE 3 | (A) Network-based statistic (NBS) on the condition-specific
task-related functional connectivity matrices (positive vs. negative) revealed a
sub-network (p = 0.005, FWE) comprising five interconnected brain areas that
showed stronger connectivity during the positive compared to the negative
regulation condition. (B) A less conservative link-based FDR correction
approach (corrected p > 0.001) resulted in an extended component of
11 regions (entailing the NBS detected network).

found that activation in the exact ROIs used here correlated
with anticipated affect. The current findings challenge dual
systems views of self-control, because the cognitive control
system was found to be activated alongside with involvement
of brain regions associated with affect. Previously, affect-related
brain regions were thought to only be inhibited during self-
control.

A surprising finding was that the visual cortex also showed
differential activation in the two conditions. We can speculate
that this is due to the two strategies involving relatively different
visual imagination processes. Also unexpectedly, we did not
detect any significant effects in the amygdala. This may be due
to the fact that negative future thinking does not induce very
high level of arousals, as for example loud bursts of noise do,
which relate to amygdala activation (see Davis and Whalen, 2000;
Carlson et al., 2011).

Note that we did not collect subjective ratings of emotions
during scanning because such ratings (in addition to the
craving ratings) could have interfered with the task and
thereby influenced neural activation. In an unpublished study,
we found that participants find it difficult to subjectively
distinguish between craving (‘‘How strong is my craving
while I imagine something in the future?’’) vs. feeling (‘‘How
do I feel while I imagine this?’’). In this unpublished
study, we found almost perfect correlations between these
two concepts. Future studies could train participants more
extensively in differentiating between these experiences to
reassess this issue. Such studies may also investigate if the
strength of the anticipated affect (e.g., in a self-report/behavioral
study) predicts the degree to which craving is successfully
regulated.

There are two points to note with regard to the snack stimuli.
First, the same snacks were used for the same strategies across the
experiment within participants. This was done since we expected
that snacks would automatically get associated with a certain

strategy. Across participants, however, the assignment of snacks
to the three strategies was permutated to exclude bias produced
by specific stimuli. Second, the food stimuli in the current study
were craved by this sample to an intermediate rather than a high
degree, with a craving value of around 3 out of 5 on the Likert
scale for the NOW-condition. Giuliani et al. (2013) showed that
regulation strategies have stronger effects when foods are highly
craved (in their study: a craving value of 3.7 out of 5) when
compared to regulating craving for food that is craved very little
(in their study: 2.3 out of 5). However, regulation strategies were
still effective, albeit to a lesser degree, for the stimuli that were
craved little in their study. To maximize effects in future studies,
however, we recommended to ask participants not to eat before
the experiment for more hours than we did (e.g., 3 or 4 instead
of 2 h), in order to increase craving further (e.g., Hare et al.,
2009).

The present findings are consistent with theories of affective
forecasting that assume the prominence of anticipated emotions
(e.g., Mellers and McGraw, 2001; Loewenstein et al., 2001; Gilbert
and Wilson, 2007) and their presumed influence on decision-
making and goal-directed behavior (Mellers and McGraw, 2001;
Perugini and Bagozzi, 2001; Baumgartner et al., 2008; Patrick
et al., 2009; Pezzulo and Rigoli, 2011). Thus, they may provide
neural evidence for the standing assumption that volitional
future thinking may evoke affective anticipations of long-term
outcomes that could support self-control in the balancing of
short-term and long-term costs and benefits (Pezzulo and Rigoli,
2011; Benoit et al., 2014).

Thus, self-control may not only rest on cognitive
representations of future outcomes but may simultaneously
rely on anticipated emotions via affective feeling states. Future
studies should assess this further by using additional dependent
variables to measure affective experience.
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