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Cognitive impairment contributes to errors in different tasks. Poor attention and poor
cognitive control are the two neural mechanisms for performance errors. A few studies
have been conducted on the error mechanism of working memory. It is unclear whether
the changes in memory updating, attention, and cognitive control can cause errors and,
if so, whether they can be probed at the same time in one single task. Therefore, this
study analyzed event-related potentials in a two-back working memory task. A total
of 40 male participants finished the task. The differences between the error and the
correct trials in amplitudes and latencies of N1, P2, N2, and P3 were analyzed. The P2
and P3 amplitudes decreased significantly in the error trials, while the N2 amplitude
increased. The results showed that impaired attention, poor memory updating, and
impaired cognitive control were consistently associated with the error in working
memory. Furthermore, the results suggested that monitoring the neurophysiological
characteristics associated with attention and cognitive control was important for
studying the error mechanism and error prediction. The results also suggested that the
P3 and N2 amplitudes could be used as indexes for error foreshadowing.
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INTRODUCTION

Performance errors may have serious consequences. For instance, the error made by Apollo
astronauts almost led to the collision of the moon with their spacecraft (Shayler, 2000). Further,
a serious mistake made by a driver may lead to casualties and loss of the means of transport.
Therefore, it is important to study the errors for improving human-system safety. Many causes
account for errors, with some defaults in cognitive function playing an important role. Investigating
the error-related neural patterns is important to uncover the error mechanisms, thus helping in
improving the safety.

The error-related neural mechanisms were usually through analyzing the event-related
potentials (ERPs) (Ridderinkhof et al., 2003; Hajcak et al., 2005; Padilla et al., 2006; Maidhof et al.,
2009; Masaki et al., 2012; Wessel et al., 2012; Bode and Stahl, 2014; Ora et al., 2015; Shou et al., 2015).
Lapse of attention (Padilla et al., 2006; Hanslmayr et al., 2007; Klimesch et al., 2007; Mathewson
et al., 2009; Jensen and Mazaheri, 2010) and decreased cognitive control (Ridderinkhof et al., 2003;
Kok et al., 2004; Schmajuk et al., 2006; O’Connell et al., 2009) are the two main error-related neural
patterns (Mazaheri et al., 2009; Eichele et al., 2010; Shou et al., 2015). Decreased P3 amplitude in
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the centroparietal region validating the lapse of sustained
attention is the cause of error (Padilla et al., 2006; Hanslmayr
et al., 2007; Mathewson et al., 2009; Jensen and Mazaheri, 2010).
The diminished N2 amplitude in the error trials showed that
the impaired cognitive control was the reason for errors (Kok
et al., 2004; Falkenstein, 2006; O’Connell et al., 2009). The
N2 amplitude correlated with the cognitive control, reflecting
the psychology template mismatch, response inhibition, and
selection (Patel and Azzam, 2005; Azizian et al., 2006; Folstein
and Van, 2008; Gajewski et al., 2008). Some studies indicated
that an increased N2 amplitude also correlated with an impaired
cognitive control (Kok, 1990; Pinal et al., 2015). A larger
amplitude reflects increased energetic costs (Kok, 1990; Pinal
et al., 2015), with more resources allocated and more neurons
activated. Generally speaking, more efforts are needed for
performing the same task with poor performance, indicating an
impairment of the cognitive control.

A few studies explored the error-related neural mechanism
(Ora et al., 2015; Shou et al., 2015) by analyzing multiple cognitive
processes in one single task. Ora et al. (2015) analyzed the
spatiotemporal neural activities during performance errors and
found that attentional lapses and inappropriate action impulses
caused subsequent performance errors in a d2 task. Shou et al.
(2015) studied the error mechanism by the comprehensive
analysis of N2 and alpha power in the Stroop task. The results
revealed that the alpha power of error increased in the parieto-
occipital area under congruent trials, while the N2 amplitude
decreased only in incongruent trials. These findings implied
that poor sustained attention and poor cognitive control caused
errors. As to working memory, what cognitive changes may cause
errors is still unknown.

Memory updating is the key process of working memory.
The P3 amplitude is associated with memory updating, and its
latency is related to match function (Watter et al., 2001; Chen
et al., 2008). On the contrary, P3 is closely linked with attention
and cognitive resource reallocation. P3a is bound with attention
to the selection-driven stimulus, especially the novelty stimulus
(Falkenstein et al., 1994; Polich, 2007). In contrast, the P3b
(Polich and Heine, 1996; Schapkin and Freude, 2013) is related
to the reallocation of cognitive resources and memory. Some
studies showed that a few cognitive resources were reallocated
to other memory processes, resulting in a longer P3 latency
and a decreased P3 amplitude (Polich, 2007; Daffner et al.,
2011; Wild-Wall et al., 2011; Saliasi et al., 2013; Gajewski and
Falkenstein, 2014) in working memory. One study also showed
that latency jitter can decreased P3 amplitude (Aricò et al.,
2014). P2 is part of memory information process related to
the onset of memory updating (Lenartowicz et al., 2010; Yuan
et al., 2016). N2 is regarded as an ERP component related to
cognitive control in memory (Daffner et al., 2011; Gajewski and
Falkenstein, 2014). N1 is the early component of information
process, which remains sensitive to physical features of stimulus
and reflects the recognition and code processes (Ritter et al.,
1979; Hopf et al., 2002). To date, no studies have reported on
the error mechanism of working memory. It is unknown whether
memory updating, attention, and cognitive control may change
in working memory and cause errors. No studies have identified

error-related neural patterns in one single task for working
memory. Therefore, the two-back working memory task was
adopted in this study to investigate error-related neural patterns
and cognition impairment.

A few studies showed the N1 difference in errors. Maybe,
the stimulus is identical in correct and error trials. Also, it is
too simple for recognition and hardly leads to error. Therefore,
N1 was analyzed to verify the hypothesis in the present study.
The memory updating is the key cognitive process in working
memory. Therefore, the P3 and P2 amplitudes may decrease in
error trials. Some studies (Ridderinkhof et al., 2003; Kok et al.,
2004; Padilla et al., 2006; Schmajuk et al., 2006; Hanslmayr et al.,
2007; Klimesch et al., 2007; Eichele et al., 2008; Mathewson et al.,
2009; Mazaheri et al., 2009; O’Connell et al., 2009; Jensen and
Mazaheri, 2010; Bode and Stahl, 2014; Ora et al., 2015; Shou et al.,
2015) showed that poor attention and poor cognitive control were
the error-related neural patterns, leading to changes in P3 and N2.
The P2 and P3 amplitudes may decrease in error trials, but the N2
amplitude may increase for impaired cognitive control due to the
energy cost theory (Kok, 1990; Pinal et al., 2015).

MATERIALS AND METHODS

Participants
This study was approved by the ethics committee of China
Astronaut Research and Training Center. All participants
provided written informed consent in accordance with the
Declaration of Helsinki. For this study, 40 male participants,
aged 19–34 years with an average age of 24 years [standard
deviation (SD) = 2.92)] were enrolled. The participants were
postgraduate or graduate students with normal or corrected-to-
normal vision and without any reported psychiatric disorders.
Five participants were excluded because of too many artifacts in
electroencephalogram (EEG), and the remaining 31 participants
who had more than 20 performance errors were selected for
further analysis.

Two-Back Working Memory Task
A numerical two-back task was used in the present study (Yuan
et al., 2016) The sequences of 1, 2, 3, 4, 5, 6, 7, 8, and 9 were
pseudo-randomly displayed in a white against black background
on a 24-inch LCD screen (with an updating rate of 60 Hz) one
by one. The height and width of the stimulus were 1.8 and
1.4 cm, respectively. At the beginning of each trial, a stimulus
(Figure 1) was displayed for 500 ms or disappeared if responded.
Then, a new stimulus was displayed after 2500 ms. Participants
were required to press the “F” or “J” button as accurately and
quickly as possible. If the stimulus presented was the same as the
one that had appeared two presentations before, the participants
were required to press the button “F”; if not, the participants
were required to press the button “J.” The time of the task was
10 min, and the target rate was 33.33%. The number of trials
was different between participants, probably due to the reaction
times. However, the minimum number was 200 from the required
time in the task design.
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FIGURE 1 | Procedure of two-back working memory task.

Procedure
The participants were needed to come to the laboratory two
times. The first time was to get training, 1 day before the test,
to ensure that all participants were familiar with the task. The
second time was to get the formal test the next day. EEG data
were recorded during the working memory test. The laboratory
had a shield room. The participants were seated in the shield
room to record the EEG data. The size of the shield room was
2.4 m × 2.4 m × 2.4 m.

EEG Recording
Electroencephalogram data were recorded during the working
memory test. After placement of electrodes, the participants were
requested to sit in a comfortable chair 80 cm away from the
LCD screen and instructed to refrain from excessive blinking and
movement during data collection. Participants then underwent
a two-back working memory task. Then, the EEG was recorded
with Ag-AgCl electrodes embedded in an elastic cap (EasyCap,
Brain Products GmbH) at 63 scalp locations according to the
10–20 system of Jasper (1958). The vertical electrooculogram
(vEOG) was recorded from an electrode infraorbital to the left
eye and the horizontal EOG was recorded at the outer canthi
of the right eye. The ground electrode was positioned at AFz,
and the reference electrode was positioned at FCz. The Vertical
and horizontal electrooculogram (EOG) were recorded from
electrodes above and below the right eye and on the outer
canthi of both eyes. The electrode impedance was kept below
5 k�. Signals were recorded using the BrainVision Recorder
(Brain Products GmbH, Ver. 1.03), with a band-pass filtered
at 0.01–250 Hz. The sampling rate was 1000 Hz, and the
signals were amplified in the range of ±3.27 mV, and at a
resolution of 0.1 µV.

Statistical Analysis of Behavioral Data
Descriptive statistics of error rate, reaction times (RTs) of
correct and error responses, and the total number of errors
were computed. The error was that the response did not
accord to the stimulus. For example, although the button
accorded to the stimulus was “F”, the participant pressed
“J”; this was an error response. The omission was not
included in error statistics. The error rate was defined as
the number of error responses divided by the total number

of responses. RTs of two trials (correct vs. error) were
examined using the paired t-test (Hsieh et al., 2010; Murphy
et al., 2010; Sambrook and Goslin, 2014; Ora et al., 2015;
Shou et al., 2015).

EEG Analysis
The EEG data were processed off-line using the BrainVision
Analyzer 2.0. Software (Brain Products GmbH, German). The
mastoids (TP9, TP10) were selected as the new references (Brain
Products GmbH; Möckel et al., 2015). The semi-automatic
inspection method was implemented to inspect the raw data.
The gradient criterion was set at 50 µV/ms. The maximum
absolute difference allowed was 200 µV with a 200-ms interval.
The amplitude was in the range of −200 to 200 µV. The
allowed activity with the lowest amplitude was 0.5 µV. After
inspecting the raw data, the EEG signals were corrected for eye
movement artifacts using the artifact rejection method, which
was based on the Gratton and Coles’ algorithm. This procedure
was implemented in the BrainVision Analyzer 2.0 Software. The
continuous EEG signals were filtered using a band-pass filter
from 0.1 to 35 Hz with a 0-phase shift of 48 dB, and the notch
filter was 50 Hz.

Stimulus-locked data were segmented into epochs of −200 ms
to 800 ms after stimulus and were baseline-corrected relative
to the interval of −200 ms to 0 ms. The ERPs of accepted
trials were then averaged separately for obtaining a correct or
error trial. The N1, P2, N2, and P3 values were quantified
as the maximum amplitudes, and the intervals were increased
from 130 to 170 ms, 170 to 270 ms, 270 to 360 ms, and
400 to 500 ms post-stimulus, respectively. The maximum
amplitudes of each ERP component were the average of 10
points around the peak amplitude. Grand average waveforms
of N1, N2, and P3 were created for the correct and error
trials at each of the three electrode sites (Fz, Cz, and Pz). The
three components were analyzed using a two-way repeated-
measures analysis of variance with Trial (correct and error)
and Site (Fz, Cz, and Pz) as within-subject factors (Gehring
and Fencsik, 2001). With no overt P2 in Pz, ANOVA with
repeated measures was conducted on P2 with Trial (correct and
error) and Site (Fz and Cz) as within-subject variables. The
partial eta squared (η2

p) was the effect size, and the Greenhouse–
Geisser correction was used where appropriate (Liu et al., 2015).
Paired-sample t-tests were used for analysis of latencies of Trial
(correct and error).

RESULTS

Behavioral Results
Due to different RTs, the response number of the participants
was between 200 and 422 within 10 min and the mean response
number was 356.4 (SD = 59.8). The mean error rate was 0.12
(SD = 0.05) with the 0.01 (SD = 0.02) omission rate, and the mean
error responses in 31 participants was 43.8 (SD = 18.6). The RTs
of error trials were significantly longer than those of correct trials
(t = −2.078; P = 0.01). The results are shown in Figure 2.
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FIGURE 2 | Reaction time of error and correct trials.

ERP Results
The means of ERP amplitudes and latencies are shown in
Tables 1, 2. The ERP wave and mapping of correct and error trials
of all participants are presented in Figures 3, 4.

For the N1 amplitudes, no main effect of trial was observed
[F(1,30) = 0.386; P = 0.539; η2

p = 0.013], but a main effect
of electrode sites was found [F(1.207,36.207) = 8.260;
P = 0.004; η2

p = 0.216)] and the Fz showed the largest
amplitude. In contrast, the Pz amplitude was the smallest.
However, no interaction effect was noted between electrode
sites and trials [F(1.385,41.546) = 0.141; P = 0.790;
η2

p = 0.005].
The P2 amplitudes decreased in error trials significantly

[F(1,30) = 4.211; P = 0.049; η2
p = 0.123]. Moreover, a main

effect of electrode sites was observed [F(1,30) = 4.506; P = 0.042;
η2

p = 0.131]. The Fz amplitude was the largest, but the Cz
amplitude was the smallest. However, no significant interaction

effect was observed between the electrode sites and the trials
[F(1,30) = 2.244; P = 0.145; η2

p = 0.070].
For the N2 amplitudes, the amplitude in the error

trial increased significantly [F(1,30) = 5.142; P = 0.031;
η2

p = 0.146]. However, no main effect of electrode sites was found
[F(1.185,35.551) = 0.290; P = 0.632; η2

p = 0.010]. Additionally, no
interaction effect was observed between electrode sites and trials
[F(1.076,32.392) = 0.533; P = 0.483; η2

p = 0.017].
For the P3 amplitudes, the amplitudes of error trial

decreased significantly [F(1,30) = 6.663; P = 0.015; η2
p = 0.182].

Furthermore, a main effect of electrode sites was noted
[F(1.240,37.191) = 10.607; P = 0.001; η2

p = 0.261]. The Pz (P3b)
amplitude was the largest, but the Fz (P3a) amplitude was the
smallest. However, no significant interaction effects were found
between the electrode sites and the trials [F(1.335,40.047) = 0.660;
P = 0.464; η2

p = 0.022]. The mean amplitudes of all participants
(Figure 3) showed that the amplitudes in correct trial were
far larger than the errors, especially in the central and parietal
areas. These results were also illustrated using topographic
maps (Figure 4).

The t-test of latency in different trials (correct vs. error) for N1,
N2, P2, and P3 revealed no significant difference (N1: t = 1.40,
P = 0.17; N2: t = 0.82, P = 0.42; P2: t = −0.24, P = 0.81; P3:
t = −0.67, P = 0.51).

DISCUSSION

The present study partially verified the hypotheses. Reduced P2
and P3 amplitudes in error trials were found. However, the N2
amplitudes increased in error trials. The RT of the error trial was
longer than that of the correct trial. The results revealed that
poor attention, poor cognitive control, and impaired memory

TABLE 1 | Event-related potential amplitudes.

Electrode site Fz Cz Pz

Trial Correct Error Correct Error Correct Error

N1 Mean −1.82 −1.92 −1.72 −1.81 −0.94 −1.11

SD 1.20 1.42 1.33 1.40 1.11 1.54

N2 Mean −1.06 −1.51 −1.13 −1.86 −1.03 −1.32

SD 2.35 2.85 2.15 2.55 1.72 1.99

P2 Mean 3.84 3.31 3.40 3.06 / /

SD 1.76 1.99 1.79 1.78 / /

P3 Mean 1.57 1.01 2.38 1.48 4.32 3.49

SD 3.02 3.34 3.12 3.35 2.68 2.09

TABLE 2 | Event-related potential latency.

ERP Correct Error t P

N1 155.29 ± 12.028 152.68 ± 11.976 −0.86 0.66

N2 294.03 ± 33.355 289.87 ± 31.678 −0.50 0.89

P2 209.45 ± 20.772 210.32 ± 23.798 0.15 0.64

P3 433.13 ± 30.5 429.06 ± 34.112 −0.50 0.52
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FIGURE 3 | Event-related potential of correct and error trials of all participants. (A–C) show the N1, P2, N2, and P3 amplitudes of the two trials. (A) Shows the four
amplitudes in Fz; (B) shows the four amplitudes in Cz; and (C) shows the four amplitudes in Pz. The N1 amplitude showed no difference between error and correct
trials. The P2 and P3 amplitudes diminished in error trials, while the N2 amplitude was larger.

FIGURE 4 | Event-related potential mapping of correct and error trials. (A–D) Show the N1, P2, N2, and P3 mapping of correct ERP, respectively; (E–G) show the
N1, P2, N2, and P3 mapping of error ERP, respectively. (A,E) Show the N1 amplitudes of the two trials; (B,F) show that the P2 amplitudes of the error trials was
smaller than that of the correct trials in central areas; (C,G) show the N2 amplitudes of the two trials; (D,H) show that the P3 amplitudes of the error trials was
smaller than that of the correct trials in the parietal areas.

updating might cause errors in working memory. The N1
amplitudes showed no difference between the two trials.

As expected, the N1 amplitudes showed no significant changes
in different trials. N1 is thought to be the early component of
information processing. Its amplitudes reflect the recognition and
code processing of stimulus (Kutas and Hillyard, 1980; Hopf
et al., 2002), which are sensitive to the physical features of the
stimulus. Therefore, the results indicated that the neural activity

was comparable during the stimulus encoding stage of working
memory process between correct and error trials. Additionally,
no differences were found between trials that resulted from the
same too simple physical features of the stimulus.

No study has been found regarding the association of P2
with an error. The results revealed that the P2 amplitude
decreased when participants presented an error response.
Previous studies found that the P2 component reflected the
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initial stage of context updating, and was believed to be
the onset of memory updating (Lenartowicz et al., 2010;
Yuan et al., 2016). Therefore, the diminished amplitudes of
error trials were related to the impaired ability of memory
updating onset. The onset of updating was encoded after
stimuli and then translated to phonological representations.
Thus, it was considered one of the crucial steps for successful
performance and impaired ability, resulting in an error response
in this study.

The increased N2 amplitude in error trial implied that the
cognitive control decreased (Kok, 1990; Caseras et al., 2006;
Unsworth et al., 2009; Bode and Stahl, 2014; Pinal et al., 2015)
and induced errors based on the energy cost theory (Kok,
1990; Pinal et al., 2015). N2 was related to cognitive control,
including response selection and conflict detection in memory
(Daffner et al., 2011; Gajewski and Falkenstein, 2014). The
peak N2 amplitude was significantly larger in the older group
than in the younger group (Pinal et al., 2015), which might
be due to the use of more energy for the older participants.
The increased N2 amplitude reflected an enhanced energetic
cost in cognitive control, such as mismatch and response
selection (Nieuwenhuis et al., 2005; Folstein and Van, 2008;
Daffner et al., 2011; O’connell et al., 2012b). Previous studies
showed that a high N2 amplitude was found in patients than
in controls because the patients need more resources to process
the information including the mismatch and response selection
(Bruder et al., 1998, 2001; Daurignac et al., 2006; Guillem et al.,
2006; Shu et al., 2014; Sumich et al., 2014; Pinal et al., 2015;
Zuj et al., 2017). A larger N2 amplitude possibly demanded
greater efforts in task completion and even induced hyper-
activation by way of more efforts during the completion of
a relatively simple task (Bruder et al., 1998, 2001; Guillem
et al., 2006; Sumich et al., 2014). Some studies showed a
diminished P3 amplitude in working memory because more
resources were recruited in the cognitive control and increased
the N2 amplitude (Daffner et al., 2011; Gajewski and Falkenstein,
2014). More neuron-related cognitive control was activated,
subsequently increasing the N2 amplitude. The stimulus was
identical in all the error and correct trials, and therefore the
cognitive demands remained the same. This indicated that more
resources were used for the same task, and the error rate
increased, indicating a declination in cognitive ability in the
wrong trial.

P3 was associated with sustained attention, cognitive resource
reallocation (Snyder and Hillyard, 1976; Donchin, 1981;
Nieuwenhuis et al., 2005; Polich and Criado, 2006; Polich, 2007;
Verleger, 2008; Duncan et al., 2009; Beste et al., 2010; Hart
et al., 2012; O’Connell et al., 2012a; Kim and Kim, 2016),
and memory updating (Donchin and Coles, 1988; Polich, 2007;
Zhao et al., 2013).

Decreased P3 Amplitude Reflected
Impaired Attention
Falkenstein and Polich (Falkenstein et al., 1994; Polich, 2007)
showed that frontal P3(P3a) was related to attention selection
(Polich and Heine, 1996; Schapkin and Freude, 2013) and parietal

P3(P3b) was associated with cognitive resource reallocation. The
decreased P3 amplitude in frontal and parietal areas implied
that some resources were reallocated in other memory processes,
impairing the attention. Gajewski and Falkenstein (2014) found
that cognitive resource was reallocated in other processes and
the impaired attention led to a decreased P3 amplitude in the
two-back working memory task (Polich and Heine, 1996; Polich,
2007; Daffner et al., 2011; Wild-Wall et al., 2011; Saliasi et al.,
2013; Schapkin and Freude, 2013). A decline of P3 amplitude
in frontal and parietal areas implied impaired attention and
diminished cognitive resources, resulting in increased omission
rate, false alarm, and more errors (Donchin and Coles, 1988;
Polich, 2007; Zhao et al., 2013; Schapkin and Freude, 2014).
On the contrary, longer RT in error trials was thought as
attention lapses, which was supported by fMRI (Weissman
et al., 2006) and other findings (Padilla et al., 2006). This was
consistent with the results of the present study, which implied
impaired attention.

Decreased P3 Amplitude Reflected
Deficit Ability in Memory Updating
The P3 amplitude is an effective measurement of memory
updating (Donchin and Coles, 1988; Watter et al., 2001; Polich,
2007; Chen et al., 2008; Zhao et al., 2013), and the latency is
related to the match function (Donchin and Coles, 1988; Watter
et al., 2001; Polich, 2007; Chen et al., 2008; Zhao et al., 2013). The
ability associated with memory updating increased with better
performance, leading to an increased P3 amplitude in the parietal
area when the participants underwent n-back training (Watter
et al., 2001; Chen et al., 2008). A reduced amplitude indicated
that the memory updating capability was impaired. Updating
included code, operation, search, and selection of information.
Impaired memory updating caused some faults in information
operation and updating in the memory mode. Thus, the errors
were related with poor memory updating.

CONCLUSION

Diminished P3 and P2 amplitudes and an increased N2
amplitude in errors were related to impaired attention and deficit
in memory updating and cognitive control. The diminished
P3 amplitude indicated that more cognitive resources were
reallocated to other memory processes, leading to impaired
attention in the memory updating process. As a result, it caused a
deficit in the ability of memory updating and decreased cognitive
control. This was the first study on the poor memory updating
causing errors.

Poor attention and cognitive control were the major causes of
error in many common tasks (Ridderinkhof et al., 2003; Kok et al.,
2004; Padilla et al., 2006; Schmajuk et al., 2006; Hanslmayr et al.,
2007; Klimesch et al., 2007; Mathewson et al., 2009; O’Connell
et al., 2009; Jensen and Mazaheri, 2010). Hence, much attention
should be paid to the neurocognitive characteristics, which are
important for error mechanism and can be used as indexes for
error prediction. How to predict the error based on EEG trial-to-
trial analysis needs further investigation in the future.
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