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Objective: We investigated the independent and joint associations of changes in

estimated cardiorespiratory fitness (eCRF) and symptoms of anxiety and depression with

brain volumes in individuals from the general population.

Method: 751 participants (52% women, aged 50–67 years) from the Nord-Trøndelag

Health Study (HUNT) MRI cohort were included. eCRF obtained from a non-exercise

algorithm and symptoms of anxiety and depression were assessed twice; at HUNT2

(1995–97) and HUNT3 (2006–08). Brain MRI was performed shortly after HUNT3.

Brain parenchymal fraction (BPF), bilateral hippocampal and total cortical volume

were extracted from brain MRI obtained at 1.5T, using FreeSurfer and Statistical

Parametric Mapping.

Results: Multiple regression revealed that participants whose eCRF increased had larger

BPF (β = 0.09, 95% CI 0.02, 0.16) and larger hippocampal volume (β = 0.09, 95% CI

0.03, 0.16) compared to participants whose eCRF remained low. Participants whose

eCRF remained high had larger BPF (β = 0.15, 95% CI 0.07, 0.22) and larger cortical

volume (β = 0.05, 95% CI 0.01, 0.09). Participants whose anxiety symptoms worsened

had smaller BPF (β = −0.09, 95% CI −0.15, −0.02) and cortical volume (β = −0.05,

−0.08,−0.01) than participants whose anxiety symptoms remained low. Eachml/kg/min

increase in eCRF was associated with larger cortical volume among individuals with

worsening of anxiety symptoms (β = 0.13, 95% CI 0.001, 0.27), and larger BPF among

individuals whose depressive symptoms improved (β = 0.28, 95% CI 0.02, 0.53).

Conclusion: Promoting exercise intended to improve eCRF may be an important public

health initiative aimed at maintaining brain health amongmiddle-aged individuals with and

without changing psychological symptoms.
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INTRODUCTION

It is well established that the volume of the human brain
decreases in normal aging. However, accelerated hippocampal
and cortical atrophy may be an indicator of the development of
mild cognitive impairment or dementia in older adults (Driscoll
et al., 2009; Fotuhi et al., 2012; Hartikainen et al., 2012). Given
the aging population and the related personal, economic, and
social burdens of cognitive impairment, efforts to uncover risk
and protective factors for brain structural and functional decline
are currently a priority.

Cardiorespiratory fitness (CRF) has been proposed as a
factor which may attenuate age-related brain atrophy (Hayes
et al., 2013; Erickson et al., 2014). CRF expresses the ability
of the body’s circulatory and respiratory systems to support
oxidative metabolism during sustained physical activity (PA),
and can be improved through aerobic exercise (Ross et al.,
2016). Studies have shown an association between CRF and
larger whole brain (Zhu et al., 2015), hippocampal (Erickson
et al., 2009; Szabo et al., 2011), and cortical volumes (Williams
et al., 2017). Furthermore, accumulating evidence suggests that
CRF is beneficial for cognition in older adults (Wendell et al.,
2014; Freudenberger et al., 2016) and has been associated with
a reduced risk of dementia (Defina et al., 2013), emphasizing
the importance of CRF for healthy brain aging. As assessment of
CRF using exercise tests may be challenging (American College of
Sports Medicine, 2014), non-exercise algorithms to estimate CRF
(eCRF) have been developed, and have been found to correlate
favorably with direct measures of CRF (Nes et al., 2011; Jackson
et al., 2012; Nauman et al., 2017). In a cross-sectional study,
eCRF was associated with cognitive function and hippocampal
volume, and these associations did not differ significantly from
when applying objectively measured CRF (McAuley et al., 2011).
Thus, eCRF may serve as a suitable proxy for the objectively
assessed CRF in epidemiological studies with larger populations,
where exercise testing may not be feasible (Ross et al., 2016).

Anxiety and depression have been linked to reduced brain
volumes (Mah et al., 2016; Zhang et al., 2018), and increased
risk of dementia (Kaup et al., 2016; Petkus et al., 2016). As
anxiety and depression are common among middle-aged and
older adults (Reynolds et al., 2015), understanding the role of
these disorders in relation to brain atrophy is important. There
is evidence that exercise interventions and higher levels of CRF
lower symptoms of anxiety (Williams et al., 2016; Stubbs et al.,
2017) and depression (Schuch et al., 2016a,b). However, there
is a lack of studies assessing the association of both CRF and
anxiety and depression with brain structure. Furthermore, it is
important to understand how changes in CRF and anxiety and
depression are associated with aging-related brain areas such
as the hippocampus and cortex, as this may provide important
information for public health interventions.

Abbreviations: BPF, brain parenchymal fraction; CRF, cardiorespiratory

fitness; eCRF, estimated cardiorespiratory fitness; HADS, Hospital Anxiety and

Depression Scale; HADS-A, Hospital Anxiety and Depression Scale anxiety

subscale; HADS-D, Hospital Anxiety and Depression Scale depression subscale;

HUNT, Nord-Trøndelag Health Study; ICV, intracranial volume; PA, physical

activity, rHR, resting heart rate; WC, waist circumference.

The aim of the present study was to investigate the
independent and joint associations of concurrent changes in
eCRF and symptoms of anxiety and depression over a period
of 12 years with brain parenchymal fraction (BPF), which is an
estimate of structural brain reserves (Vagberg et al., 2017), total
hippocampal and total cortical volume in a middle-aged sample
drawn from the general population.

METHODS

Study Population
Data was collected from the Nord-Trøndelag Health Study
(HUNT), a large population-based health survey from the
Nord-Trøndelag County in Norway (Krokstad et al., 2013).
All adult inhabitants of the county were invited to participate
in HUNT1 (1984–1986), HUNT2 (1995–1997), and HUNT3
(2006–2008), with overall participation rates of 89.4, 69.5, and
54.1%, respectively. However, in HUNT3 the participation rate
in the age group 60–69 years was 71.1% (Thoen and Krokstad,
2011). In the present study, only data from HUNT2 and HUNT3
was used, as questions regarding physical activity, anxiety, and
depression were different at HUNT1.

To be included in the HUNT magnetic resonance imaging
(MRI) study, a sub-study in HUNT3, participants were required
to have participated in HUNT1,−2, and−3, be between 50 and
65 years of age at inclusion, live within 45min traveling distance
from the location of theMRI examination, and not have standard
MRI contraindications such as body weight above 150 kg. Of
1,494 invited participants, 1,088 (73%) agreed to participate in
the study, and 1,006 (64.5%, 530 women) had successful MRI
examinations and were defined as MRI participants. For details
on inclusion and characteristics of participants, non-participants,
and non-invited see Honningsvag et al. (2012).

This study was approved by the HUNT study board of
directors and the Helse Midt-Norge Regional Ethics and Health
Research Committee (REK midt). All participants were legally
competent adults, and gave their written informed consent.

MRI Scan Protocol
Brain MRI was performed using a 1.5 T GE Signa HDx 1.5 T
MRI scanner, equipped with an eight-channel head coil (GE
Healthcare) and software version pre-14.0M4. All participants
underwent the same scan protocol, for details see Haberg et al.
(2016). The following MRI scans were used in the current study;
The Alzheimer’s Disease Neuroimaging Initiate volume, which is
a T1 weighted volume (TR = 10,156ms, TE = 4.044ms, FOV =

240mm, slice thickness = 1.2mm, gap 0mm, matrix 192 × 192,
giving an in plane resolution of 0.94× 0.94mm) and an axial T2
weighted sequence (TR= 7.84ms, TE= 95ms, FOV= 203mm,
slice thickness = 4mm, gap 1mm, matrix 512 × 320, giving an
inplane resolution of 0.45× 0.45 mm).

MRI Data Analysis
MRI data was analyzed with FreeSurfer V5.3.0 (Fischl and Dale,
2000; Fischl et al., 2002; Whelan et al., 2018) for automatic
segmentation of total brain volume, total hippocampal volume,
and total cortical volume, area, and thickness in accordance
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with the ENIGMA pipeline, and quality assessed visually (http://
enigma.ini.usc.edu/protocols/imaging-protocols/). The sum of
left and right hemisphere volume measurements was used.

Intracranial volume (ICV) was estimated based on a
combination of T1 and T2 images using an automated version
of the reverse brain mask method (Keihaninejad et al., 2010)
termed the “automatic reverse brain mask method” by using the
“new segment” approach of the SPM8 (http://www.fil.ion.ucl.ac.
uk/spm) toolbox, full description inHansen et al. (2015). BPFwas
calculated from total brain parenchymal volume divided by ICV
(Juengling and Kassubek, 2003), and is presented as percentage
of ICV.

Estimated Cardiorespiratory Fitness
A previously validated non-exercise prediction model (Nauman
et al., 2017) based on sex, age, waist circumference (WC), resting
heart rate (rHR), and self-reported PAwas used to calculate eCRF,
expressed as ml oxygen uptake per kg per minute (ml/kg/min).
Participants were stratified into two PA groups based on self-
reported intensity, duration, and frequency of PA performed
weekly during the past year. In the algorithms presented below,
PA = 1 if the participant followed the current recommendations
of 150min moderate or 75min vigorous physical activity per
week (Garber et al., 2011), and PA = 0 if not. The sex-specific
algorithms used to predict individual eCRF were (Nauman et al.,
2017):

Women : 78.00−
(

0.297∗Age
)

− (0.270∗WC) − (0.110∗rHR)

+(2.674∗PA)

Men : 105.91−
(

0.334∗Age
)

− (0.402∗WC) − (0.144∗rHR)

+(3.102∗PA)

To assess change in eCRF, participants were dichotomized into
“low” and “high” eCRF groups based on sex- and age- (≤46
or >46 years at HUNT2, ≤59 or >59 years at HUNT3)
specific medians of the eCRF distribution. The participants
were then stratified into four eCRF change groups: “remained
low” (“low” at both HUNT2 and HUNT3), “decreased”
(“high” at HUNT2, “low” at HUNT3), “increased” (“low” at
HUNT2, “high” at HUNT3), and “remained high” (“high”
at both HUNT2 and HUNT3). For greater statistical power,
the continuous change variable delta eCRF (1eCRF) was
calculated by subtracting eCRF at HUNT2 from eCRF at HUNT3
for each participant. Whereas the categorical change variable
provides a relative measure of eCRF change dependent on the
age- and sex-specific median, the continuous change variable
provides data on absolute change in ml/kg/min from HUNT2
to HUNT3.

Symptoms of Anxiety and Depression
Symptoms of anxiety and depression were assessed using the
Hospital Anxiety and Depression Scale (HADS). The HADS is
a self-assessment scale developed in 1983 by Zigmond and Snaith
(1983), and is a reliable instrument for detecting and assessing
symptoms of anxiety and depression in somatic, psychiatric,
and primary care patients, and in the general population
(Herrmann, 1997; Bjelland et al., 2002). The Norwegian version

of the HADS included in HUNT2 and HUNT3 has good
psychometric properties and is in close agreement with the
original questionnaire developed by Zigmond and Snaith
(Mykletun et al., 2001).

The HADS consists of 7 items that cover anxiety symptoms
(HADS-A) and 7 items that cover depressive symptoms (HADS-
D), giving a total of 14 items. Each subscale item has a 4-point
Likert scale ranging from 0 (no symptom) to 3 (highest symptom
level), with a maximum score of 21 on each scale indicating the
highest symptom load. Participants who had responded to <5
questions on either the HADS-A (HUNT2 n = 3, HUNT3 n =

114) or HADS-D (HUNT2 n = 2, HUNT3 n = 114) scale were
excluded from the analyses. For participants who had answered
5 or 6 questions (HUNT2: HADS-A n = 67, HADS-D n = 28;
HUNT2: HADS-A n = 17, HADS-D n = 14), the total score was
extrapolated by multiplying the sum by 7/5 or 7/6, respectively. A
total score of 8 or above on theHADS-A orHADS-D subscale was
used as an indication of clinically relevant anxiety or depression
symptoms, respectively (Bjelland et al., 2002).

Based on the cut-off of≥8 on theHADS-A andHADS-D scale,
participants were classified into “low” (< 8) and “high” (≥8)
HADS-categories at HUNT2 and HUNT3. Next, four HADS
change groups were created: “remained low” (“low” at both
HUNT2 and HUNT3), “improved” (“high” at HUNT2, “low”
at HUNT3), “worsened” (“low” at HUNT2, “high” at HUNT3),
and “remained high” (“high” at both HUNT2 and HUNT3). For
greater statistical power, we also calculated delta HADS-A and
HADS-D (1HADS-A and 1HADS-D) by subtracting HADS-
scores at HUNT2 from HADS-scores at HUNT3. Whereas the
categorical HADS change variables provide a relative measure
of HADS change as they depend on the cut-off for clinically
relevant symptoms of anxiety and depression, the continuous
change variables provide data on absolute change in HADS score
from HUNT2 to HUNT3.

Statistical Analyses
Forty-five participants were excluded from further analyses
due to brain pathology, and 50 participants were excluded
due to failed or incorrect FreeSurfer processing. Further, 160
participants were excluded due to missing data on eCRF
or HADS. The final sample comprised 751 participants (390
women) with a mean age of 58.9 years (range 50–67) at the time
of the HUNT MRI examination, and with a mean time of 11.8±
0.2 years between HUNT2 and HUNT3.

Descriptive statistics were used to assess study sample
characteristics for the four categorical change in eCRF groups.
Pearson’s correlation (r) and Cramér’s V (φc) were computed
to estimate correlation between changes in eCRF, HADS-A,
and HADS-D. We used multiple regression models to assess
standardized regression coefficients (β) and 95% confidence
intervals (CI) for the associations of changes in eCRF and HADS,
both as categorical and continuous variables, with BPF, total
hippocampal volume, and total cortical volume. The “remained
low” eCRF and “remained low” HADS groups served as reference
categories. The role of age and sex in the eCRF prediction models
is to refine the estimate of CRF, not to remove the effect of age and
sex in the relationships between eCRF and brain volumes. Thus,
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all models were adjusted for age, sex, education (highest achieved
level: primary, upper secondary, or college/university), and
smoking (never, former, or current). Models with hippocampal
and cortical volumes were also adjusted for ICV. In addition,
models with 1eCRF and 1HADS were adjusted for eCRF at
HUNT2 and HADS score at HUNT2, respectively.

To assess the joint associations of changes in eCRF and
HADS, we investigated the association of 1eCRF with brain
volumes, stratified by categorical change in HADS-A and HADS-
D. This allowed us to assess the influence of changes in eCRF
on brain volumes among different strata of HADS change.
Interaction between categorical measures of eCRF and HADS
could not be assessed due to low statistical power. Thus, we
investigated interaction on an additive scale between1eCRF and
1HADS on brain volumes. In additional analyses, we assessed
the independent associations of changes in eCRF and HADS with
brain volumes. Here, 1eCRF, 1HADS-A, and 1HADS-D were
included in one model, and categorical measures of change in
eCRF, HADS-A, and HADS-D were included in another model.
Finally, in order to better capture areas in the cortex that may
be associated with changes in eCRF and HADS, we performed
analyses with cortical thickness and area. Here, General Linear
Models (GLMs) were fitted at each vertex across the cortical
surface. Individual surface maps were smoothed with a full-
width-half-maximumGaussian kernel of 25mm, averaged across
participants (Fischl and Dale, 2000). Contrast vectors were set to
test for the effect of 1eCRF, 1HADS-A, and 1HADS-D yielding
continuous cortical maps. All models were adjusted for the same
variables as in the main analyses. The two p-value maps from left
and right hemisphere were combined and thresholded at <5%
False Discovery Rate (FDR).

All statistical analyses were performed with IBM SPSS Version
25 for Windows (SPSS Inc, Los Angeles, USA). A p < 0.05 was
considered statistically significant.

RESULTS

Study sample characteristics stratified by change in eCRF are
shown in Table 1. Across the study population, there was a
mean reduction in eCRF from HUNT2 to HUNT3 of 6.37 ±

3.14 ml/kg/min. The prevalence of clinically relevant anxiety
symptoms (HADS-A ≥8) was 13.0% at HUNT2 and 11.3% at
HUNT3, whereas the prevalence of clinically relevant depressive
symptoms (HADS-D ≥8) was 7.5% at HUNT2 and 9.9% at
HUNT3. Mean 1HADS-A was −0.270 ± 2.97 and mean
1HADS-D was 0.022 ± 2.70. There was no evidence of any
meaningful correlation between changes in eCRF and HADS;
1eCRF and 1HADS-A, r = 0.03, p = 0.410, 1eCRF and
1HADS-D, r = 0.004, p = 0.903, categorical eCRF change and
HADS-A change, φc = 0.06, p = 0.497, categorical eCRF change
and HADS-D change, φc = 0.09, p = 0.024. 1HADS-A and
1HADS-D were moderately correlated, r = 0.51, p < 0.001, as
were categorical measures of change in HADS-A and HADS-D,
φc = 0.61, p< 0.001. Results from the multiple regressionmodels
assessing the associations of changes in eCRF and HADS with
BPF, hippocampal and cortical volume are shown in Tables 2,3.

Brain Parenchymal Fraction
Participants in the “increased” eCRF group and in the “remained
high” eCRF group had larger BPF; β = 0.09 (95% CI 0.02, 0.16)
and β = 0.15 (95% CI 0.07, 0.22), respectively, compared to
participants in the “remained low” eCRF group. In addition, each
ml/kg/min increase in 1eCRF corresponded to a larger BPF, β =

0.16 (95% CI 0.10, 0.23).
Participants in the “worsened” HADS-A group had smaller

BPF, β=−0.09 (95% CI−0.15,−0.02), compared to participants
in the “remained low” HADS-A group. Further, each unit
increase in 1HADS-A was associated with a smaller BPF, β

= −0.07 (95% CI −0.15, −0.002). 1HADS-D was associated
with smaller BPF, although this result did not reach statistical
significance, β =−0.07 (95% CI−0.15, 0.001) (Table 2).

Hippocampal Volume
Participants in the “increased” eCRF group had a larger
hippocampal volume, β = 0.09 (95% CI 0.03, 0.16), compared
to participants in the “remained low” eCRF group. Furthermore,
each ml/kg/min increase in 1eCRF was associated with a larger
hippocampal volume, β = 0.09 (95% CI 0.03, 0.15).

Neither change in HADS-A nor HADS-D was significantly
associated with hippocampal volume (Table 2).

Total Cortical Volume
Participants in the “remained high” eCRF group had larger
cortical volume, β = 0.05 (95% CI 0.01, 0.09), compared to those
in the “remained low” eCRF group. In addition, each ml/kg/min
increase in 1eCRF corresponded to a larger cortical volume, β =

0.05 (95% CI 0.02, 0.09).
Participants in the “worsened” HADS-A group had smaller

cortical volume compared to those in the “remained low” HADS-
A group, β = −0.05 (95% CI −0.08, −0.01). Further, each
unit increase in 1HADS-A was associated with smaller cortical
volume, β =−0.04 (95% CI−0.08,−0.003). Change in HADS-D
was not significantly associated with cortical volume (Table 2).

Stratified Analyses
In analyses stratified by categorical HADS change, each
ml/kg/min increase in 1eCRF was associated with larger BPF
(β = 0.17, 95% CI 0.09, 0.24), hippocampal (β = 0.08, 95%
CI 0.01, 0.14) and cortical volume (β = 0.04, 95% CI 0.004,
0.08) among participants in the “remained low” HADS-A group.
In the “worsened” HADS-A group, each ml/kg/min increase in
1eCRF was associated with larger cortical volume, β= 0.13 (95%
CI 0.001, 0.27). In the “remained low” HADS-D group, each
ml/kg/min increase in 1eCRF was associated with larger BPF
(β = 0.17, 95% CI 0.10, 0.24), hippocampal (β = 0.08, 95% CI
0.02, 0.14), and cortical volume (β = 0.05, 95% CI 0.01, 0.09). In
addition, each ml/kg/min increase in 1eCRF was associated with
larger BPF in the “improved” HADS-D group, β = 0.28 (95% CI
0.02, 0.53) (Table 3).

Additional Analyses
Analyses assessing independent changes in eCRF, HADS-A, and
HADS-D did not alter the associations, although the association
between1HADS-A and BPF and1HADS-A and cortical volume
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TABLE 1 | Characteristics of study population stratified by change in eCRF, relative to sex-, and age-defined median, from HUNT2 to HUNT3 (n = 751).

Change in eCRF

Remained low (n = 265) Decreased (n = 112) Increased (n = 110) Remained high (n = 264)

Age at HUNT MRI, mean, SD 60.3 ± 3.88 56.9 ± 3.34 60.8 ± 3.43 57.6 ± 4.15

Women, n (%) 137 (51.7) 59 (52.7) 57 (51.8) 137 (51.9)

University/college, n (%) 70 (26.4) 36 (32.1) 33 (30.0) 110 (41.7)

Smokers (current), n (%) 67 (25.3) 31 (27.7) 29 (26.4) 58 (22.0)

HADS-A change*, n (%)

Remained low 217 (81.9) 86 (76.8) 92 (83.6) 213 (80.7)

Improved 14 (5.3) 12 (10.7) 9 (8.2) 23 (8.7)

Worsened 17 (6.4) 7 (6.3) 3 (2.7) 18 (6.8)

Remained high 17 (6.4) 7 (6.3) 6 (5.5) 10 (3.8)

HADS-D change*, n (%)

Remained low 217 (81.9) 92 (83.0) 100 (90.9) 235 (89.0)

Improved 11 (4.2) 3 (2.7) 6 (5.5) 12 (4.5)

Worsened 25 (9.4) 9 (8.0) 2 (1.8) 14 (5.3)

Remained high 12 (4.5) 7 (6.3) 2 (1.8) 3 (1.1)

HADS-A HUNT2, mean, SD 3.93 ± 3.06 4.35 ± 3.83 3.53 ± 2.93 3.81 ± 2.99

1HADS-A**, mean, SD −0.15 ± 2.99 −0.55 ± 3.41 −0.13 ± 2.52 −0.34 ± 2.92

HADS-D HUNT2, mean, SD 3.56 ± 2.94 3.32 ± 3.26 2.92 ± 2.69 2.67 ± 2.64

1HADS-D**, mean, SD 0.03 ± 2.90 −0.11 ± 3.01 0.01 ± 2.19 0.08 ± 2.56

eCRF HUNT2, mean, SD 38.5 ± 5.23 43.9 ± 4.76 40.5 ± 4.66 45.3 ± 5.41

1eCRF§, mean, SD −6.81 ± 2.82 −9.97 ± 2.25 −3.13 ± 2.19 −5.76 ± 2.35

eCRF, estimated cardiorespiratory fitness; HADS-A, Hospital Anxiety and Depression Scale anxiety subscale; HADS-D, Hospital Anxiety and Depression Scale depression subscale.

*Change in HADS from HUNT2 to HUNT3 based on a cut-off at ≥8 on the HADS-A and HADS-D subscales. **Change in HADS calculated by subtracting HADS-scores at HUNT2 from

HADS-scores at HUNT3. §Change in eCRF calculated by subtracting eCRF at HUNT2 from eCRF at HUNT3.

was attenuated and was no longer statistically significant after
adding 1HADS-D, HADS-D at HUNT2, 1eCRF, and eCRF at
HUNT2 to the model (Supplementary Table 1). No interaction
effects of 1eCRF and 1HADS on brain volumes were observed
(all ps ≥ 0.188). Finally, no localized associations were observed
for cortical thickness or area.

DISCUSSION

In our study of 751 adults from the general population, we found
that increasing or maintaining a high eCRF during middle-age
was associated with larger BPF, hippocampal and total cortical
volume. Worsening of anxiety symptoms was associated with
smaller BPF and total cortical volume. In the stratified analyses,
increasing eCRF was associated with larger brain volumes among
individuals whose anxiety and depressive symptoms remained
low, among individuals with worsening anxiety symptoms, and
among those with improving depressive symptoms.

The increased brain volumes observed among individuals
whose eCRF increased or remained high is in accordance with
previous studies showing larger whole brain (Zhu et al., 2015),
hippocampal (Erickson et al., 2009), and cortical (Williams et al.,
2017) volume in individuals with higher levels of CRF measured
from exercise testing. Whereas, these studies measured CRF at a
single time-point, our study provides evidence for the importance
of maintaining high eCRF or increasing one’s eCRF with regards
to brain volumes. We also found that the associations between
changes in eCRF and brain volumes were independent of

concurrent changes in symptoms of anxiety and depression. This
underlines the significance of eCRF for brain volumes in the
aging general population regardless of psychological symptoms.
Previous studies examining the relationship between CRF
measured from exercise testing and brain volumes have typically
had smaller sample sizes (Erickson et al., 2009; Williams et al.,
2017). In agreement with earlier findings showing associations
between non-exercise CRF algorithms and gray matter volume
(McAuley et al., 2011; Boots et al., 2015), our study provides
additional support for the use of eCRF in larger population-based
studies where exercise testing may be costly and time-consuming
(American College of Sports Medicine, 2014).

Earlier studies investigating gray matter volume in anxiety
disorders have found smaller volumes in the hippocampus,
midbrain, thalamus, insula, and superior temporal gyrus among
patients with general anxiety disorder (Moon et al., 2014)
and smaller volumes in the rostral anterior cingulate gyrus,
the dorsal anterior cingulate gyrus, and left middle/superior
temporal area among individuals with panic disorder and social
anxiety disorder without comorbid major depressive disorder
(van Tol et al., 2010). However, these studies did not take
into account changes in anxiety severity over time. In addition,
findings in individuals with anxiety disorders are not necessarily
transferrable to individuals from the general population with
unspecified anxiety symptoms. In this study, we found that
individuals with worsening anxiety symptoms had smaller BPF
and cortical volume. Thus, our study suggests that reduced
gray matter volume is not limited to anxiety disorders, but is
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TABLE 2 | Standardized beta coefficients (β) and 95% confidence intervals (CI) for the associations of changes in eCRF and HADS from HUNT2 to HUNT3 on BPF,

hippocampal, and cortical volume measured at HUNT3 (n = 751).

Brain region

BPF (mean = 69.7%)* Hippocampal volume (mean = 7,599 µl)** Cortical volume (mean = 426,764 µl)**

n β (95% CI) Adjusted R2 β (95% CI) Adjusted R2 β (95% CI) Adjusted R2

eCRF change

Remained low 265 Ref. 0.22 Ref. 0.40 Ref. 0.77

Decreased 112 0.01 (−0.07, 0.08) 0.04 (−0.02, 0.11) −0.003 (−0.04, 0.04)

Increased 110 0.09 (0.02, 0.16) 0.09 (0.03, 0.16) 0.02 (−0.01, 0.06)

Remained high 264 0.15 (0.07, 0.22) 0.05 (−0.02, 0.12) 0.05 (0.01, 0.09)

HADS-A change

Remained low 608 Ref. 0.21 Ref. 0.40 Ref. 0.77

Improved 58 0.01 (−0.05, 0.08) −0.01 (−0.06, 0.05) 0.001 (−0.03, 0.04)

Worsened 45 –0.09 (–0.15, –0.02) −0.06 (−0.11, 0.001) –0.05 (–0.08, –0.01)

Remained high 40 −0.01 (−0.08, 0.05) 0.03 (−0.03, 0.09) −0.01 (−0.04, 0.03)

HADS-D change

Remained low 645 Ref. 0.21 Ref. 0.39 Ref. 0.77

Improved 32 0.02 (−0.05, 0.08) −0.01 (−0.07, 0.05) −0.01 (−0.04, 0.03)

Worsened 50 −0.05 (−0.11, 0.02) −0.03 (−0.08, 0.03) −0.03 (−0.07, 0.01)

Remained high 24 −0.04 (−0.10, 0.03) 0.01 (−0.05, 0.07) −0.002 (−0.04, 0.03)

1eCRF§ 751 0.16 (0.10, 0.23) 0.24 0.09 (0.03, 0.15) 0.40 0.05 (0.02, 0.09) 0.78

1HADS-A§ 751 –0.07 (–0.15, –0.002) 0.21 −0.05 (−0.12, 0.01) 0.40 –0.04 (–0.08, –0.003) 0.77

1HADS-D§ 751 −0.07 (−0.15, 0.001) 0.21 −0.01 (−0.08, 0.05) 0.39 −0.03 (−0.07, 0.01) 0.77

BPF, brain parenchymal fraction; eCRF, estimated cardiorespiratory fitness; HADS-A, Hospital Anxiety and Depression Scale anxiety subscale; HADS-D, Hospital Anxiety and Depression

Scale depression subscale. Bold text indicates statistically significant associations at p < 0.05. *Adjusted for age, sex, education, and smoking. **Adjusted for age, sex, education,

smoking, and intracranial volume. §Additionally adjusted for eCRF, HADS-A, or HADS-D at HUNT2.

also present among individuals in the general population with
worsening subclinical symptoms of anxiety.

Surprisingly, we did not observe a statistically significant
association between changes in depressive symptoms and brain
volumes, although we observed a similar reduction in BPF
associated with 1HADS-D as observed for 1HADS-A (see
Table 2). These non-significant findings are in contrast to
several studies showing reduced hippocampal volume among
individuals with elevated depressive symptoms (Elbejjani et al.,
2015; Szymkowicz et al., 2018). High comorbidity of depression
and anxiety (Gorman, 1996), supported by the moderate
correlations between changes in symptoms of anxiety and
depression in our study, is a possible explanation as to why our
results did not support earlier findings. However, the association
between changes in symptoms of anxiety and brain volumes was
not noteworthy attenuated after adding concurrent changes in
depressive symptoms to the regression model, suggesting that
symptoms of anxiety and depression are differently associated
with brain volumes. It is also worth noting that the prevalence
of clinically relevant symptoms of depression was lower than
the prevalence of clinically relevant symptoms of anxiety in our
sample, and was also lower than in the same age group in the
general HUNT sample (Stordal et al., 2001). Thus, it is plausible
that we may have obtained different results in a sample with a
higher prevalence of depressive symptoms.

To our knowledge, no previous study has investigated
the joint associations of long-term changes in eCRF and

symptoms of anxiety and depression on brain volumes. The
results from stratified analyses showed that increased eCRF was
associated with larger cortical volume among participants whose
symptoms of anxiety worsened and with larger BPF among
participants whose symptoms of depression had improved. With
few exceptions, eCRF was positively associated with larger
brain volumes across all strata of change in HADS-A and
HADS-D, even though a number of these associations did not
reach statistical significance. Given that anxiety and depressive
symptoms are common among older adults (Reynolds et al.,
2015), strategies aimed at reducing brain structural decline, and
thus associated consequences such as cognitive decline, in these
individuals are of uttermost importance. PA, specifically aerobic
exercise, is considered to be one of the main modifiable factors
associated with CRF (Ross et al., 2016). Hence, our findings
suggest that encouraging PA participation aimed at maintaining
or increasing eCRF may attenuate accelerated brain atrophy
among middle-aged adults with worsening symptoms of anxiety
and those with a history of heightened depressive symptoms.

The present study has several strengths. First, the study
included a large, validated, population-based sample with a
relatively narrow age range and an acceptable participation rate
of 71.1% for the age group 60–69 at HUNT3 (Krokstad et al.,
2013). Of those invited to participate in HUNTMRI, 73% agreed
to participate (Honningsvag et al., 2012). The demographic data
for HUNT MRI participants did not differ from that of non-
invited and non-participants, except that participants had less
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TABLE 3 | Standardized beta coefficients (β) and 95% confidence intervals (CI) for the association of 1eCRF from HUNT2 to HUNT3 with BPF, hippocampal, and cortical

volume measured at HUNT3, stratified by change in HADS (n = 751).

Brain region

BPF (Mean = 69.7%)* Hippocampal volume (Mean = 7,599 µl)** Cortical volume (Mean = 426,764 µl)**

n β (95% CI) Adjusted R2 β (95% CI) Adjusted R2 β (95% CI) Adjusted R2

HADS-A change

Remained low 608 0.17 (0.09, 0.24) 0.24 0.08 (0.01, 0.14) 0.38 0.04 (0.004, 0.08) 0.78

Improved 58 0.25 (−0.01, 0.51) 0.26 0.09 (−0.13, 0.30) 0.61 0.08 (−0.07, 0.22) 0.79

Worsened 45 0.07 (−0.17, 0.32) 0.38 0.14 (−0.12, 0.40) 0.44 0.13 (0.001, 0.27) 0.82

Remained high 40 0.12 (−0.14, 0.37) 0.24 0.10 (−0.16, 0.36) 0.30 0.02 (−0.14, 0.18) 0.69

HADS-D change

Remained low 645 0.17 (0.10, 0.24) 0.23 0.08 (0.02, 0.14) 0.39 0.05 (0.01, 0.09) 0.77

Improved 32 0.28 (0.02, 0.53) 0.49 0.09 (−0.34, 0.51) 0.35 0.15 (−0.02, 0.31) 0.83

Worsened 50 −0.03 (−0.27, 0.21) 0.24 0.16 (−0.09, 0.41) 0.53 0.11 (−0.02, 0.23) 0.85

Remained high 24 0.26 (−0.26, 0.78) 0.42 0.29 (−0.17, 0.76) 0.39 −0.14 (−0.38, 0.09) 0.81

BPF, brain parenchymal fraction; eCRF, estimated cardiorespiratory fitness; HADS-A, Hospital Anxiety and Depression Scale anxiety subscale; HADS-D, Hospital Anxiety and Depression

Scale depression subscale. Bold text indicates statistically significant associations at p < 0.05. *Adjusted for age, sex, education, smoking, and eCRF at HUNT2. **Adjusted for age,

sex, education, smoking, intracranial volume, and eCRF at HUNT2.

cardiovascular risk factors and higher education (Honningsvag
et al., 2012). In addition, the prospective observational design
of the study made it possible to assess changes in anxiety and
depressive symptoms and eCRF over an extended time period.

The main limitation of our study is the lack of longitudinal
brain MRI data, making causal inferences about the observed
associations between changes in eCRF, symptoms of anxiety and
depression, and change in brain volumes impossible. However,
there is evidence indicating that both anxiety (Mah et al.,
2016) and exercise that increases CRF (Kandola et al., 2016)
may have causal effects on brain volume. Selection bias may
have been present, as quite many participants did not complete
the HADS at HUNT3. Participants who did not complete the
HADS at HUNT3 were slightly younger than those who did,
but did not differ with regards to HADS scores at HUNT2,
eCRF, or brain volumes (data not shown). Further, the HADS
measures symptoms of anxiety and depression during the past
week. Thus, we did not have data on symptoms occurring
between HUNT2 and HUNT3, possibly decreasing the precision
of our results. Similarly, the PA question used in the eCRF
calculation only captures PA during the past year. Thus, we do
not have data on fluctuations in PA levels that may have occurred
between HUNT2 and HUNT3. The study may also be limited
by subjective measurements of anxiety, depression, and the PA
question used in the calculation of eCRF. However, a cross-
sectional study investigating the association between eCRF and
hippocampal volume found that eCRF significantly predicted
hippocampal volume, and that this association did not differ
significantly from the association between objectively assessed
CRF and hippocampal volume (McAuley et al., 2011). The non-
exercise CRF algorithm used in this study has been found to
have similar accuracy and be highly comparable to previously
published eCRF algorithms (Nauman et al., 2017). Although
the authors went through a number of possible confounding
variables and selected the variables included in the regression
models carefully, the possibility of residual confounding cannot
be completely ruled out, as is the case in most epidemiological
studies. In addition, there may be residual confounding due

to unmeasured variables, such as prescription medication or
cognitive function, which may have influenced both changes in
eCRF or HADS and brain volumes.

In conclusion, our study demonstrated that increasing or
maintaining high eCRF during midlife was associated with larger
BPF, and hippocampal and cortical volume in a sample ofmiddle-
aged adults drawn from the general population. Worsening
of anxiety symptoms was associated with smaller BPF and
cortical volume. Importantly, increased eCRF appeared to be
especially beneficial for cortical volume among individuals with
worsening anxiety symptoms. In sum, our findings underline
the importance of physical activity promotion, and anxiety
prevention, as a means of promoting healthy brain aging in the
general population. Health care professionals in primary clinical
practice should promote physical activity and emphasize treating
anxiety symptoms in order to maintain brain health among
middle-aged individuals.
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