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Judgment bias tests (JBTs) use responses to ambiguous stimuli to infer emotional
states in animals. However, with repeated testing, animals can learn to recognize the
previously ambiguous stimuli rendering the test less effective. We describe a novel
approach to this problem. Calves (n = 9) were trained in a spatial discrimination task
to associate five locations with a specific probability of reward/punishment (Positive:
100%/0%; Near-Positive: 75%/25%; Middle: 50%/50%; Near-Negative: 25%/75%;
Negative: 0%/100%). As predicted, calves showed increased latencies to touch
locations that had higher probabilities of punishment and lower probabilities of reward.
To validate our methodology for detecting mood changes, we followed calves in the
hours after routine hot-iron disbudding, a time when animals were likely experiencing
post-operative inflammatory pain. At 6 h after disbudding, when inflammatory pain
was likely to peak, calves expressed increased approach latencies to the Positive,
Near-Positive and Middle locations. These results suggest that calves perceived the
value of the reward as being lower (i.e., anhedonia) or had lower expectations of
positive outcomes (i.e., pessimism). When re-tested at 22 and 70 h after disbudding, we
found no evidence of pessimism or anhedonia (i.e., latencies had returned to baseline).
We conclude that our probability-based judgment bias task can detect pain-induced
mood changes.

Keywords: cognitive bias, emotion, dehorning, animal welfare, dairy cattle

INTRODUCTION

Judgment bias tests (JBTs) have been used to assess long-lasting emotional states (i.e., mood) in
animals. In JBTs animals are trained to differentiate between cues that have positive and negative
outcomes, and then are tested using ambiguous, intermediate cues; a decreased responsiveness to
these intermediates (i.e., pessimistic judgment bias) is expected when animals are in a negative
emotional state (Paul et al., 2005). However, repeated exposure to the intermediate cues can result
in a loss of ambiguity as animals learn to associate these with a specific outcome (Roelofs et al.,
2016). As ambiguous cues are commonly unrewarded, the loss of ambiguity may lead to decreased
responsiveness (i.e., increased latencies to respond or decreased frequency of optimistic choices;
Doyle et al., 2010; Barker et al., 2018), affecting the validity of the tests.

Several studies have attempted to prevent animals from learning to recognize ambiguous
cues, for example, by using partial reinforcement for the training stimuli and thus rendering
the lack of reinforcement for ambiguous cues less salient (Neave et al., 2013; Daros et al., 2014;
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Barker et al., 2016). In addition, the number of ambiguous
cues presented can be minimized providing animals with fewer
opportunities to learn (Hintze et al., 2018). In this study,
we aimed to avoid the problem of declining ambiguity by
intentionally training animals to recognize the different cues (in
this case different locations) and associate these with specific
probabilities of reward and punishment (e.g., from left to right:
Positive: 100%/0%; Near-Positive: 75%/25%; Middle: 50%/50%;
Near-Negative: 25%/75%; Negative: 0%/100%). Thus in our
design, the task is not based on ambiguity but rather on reward
probabilities that are known to the calves (even though the
outcome for any specific trial is random within the constraints
of that probability function). We predicted that calves would
show higher approach latencies to cues associated with a lower
probability of reward (and higher probability of punishment).
To test the ability of this method to detect changes in mood
we used hot-iron disbudding, a routine procedure known to
cause postoperative inflammatory pain (Stafford and Mellor,
2011) and pessimistic judgment bias in calves (Neave et al.,
2013). We predicted that animals would exhibit a pessimistic
judgment bias (i.e., have a reduced expectation of reward and/or
an increased expectation of punishment indicated by higher
latencies to approach the intermediate locations) in the hours
after disbudding, and that responses would return to baseline in
the days following the procedure when pain had dissipated.

MATERIALS AND METHODS

Animals
Nine female Holstein calves (BW: 38.3 ± 3.6 kg) were enrolled
in the experiment from 10 to 35 days old. Within 6 h of birth,
calves were separated from their dam and fed 4 L of >50 g/L
IgG colostrum. Calves were housed singly (pen size 1.2 × 2.0 m)
until 7 days of age after which they were moved to a double pen
(2.4× 2.0 m) and pair housed for the duration of the experiment.
Calves were fed 4 L of whole pasteurized milk twice per day (at
08:00 and 16:00 h) using a nipple bottle, and had ad libitum
access to water, hay, and grain. Fresh sawdust was added daily
to the pens.

Experimental Setup
The experimental setting (Figure 1) consisted of the same
apparatus described by Lecorps et al. (2018). The extreme right
and left locations were designated as either the positive (S+)
or negative (S−) locations (pseudo-randomly balanced across
calves), and the intermediate three locations were designated as
near positive: nS+, middle: M, near negative: nS−. Calves were
familiarized with the apparatus in pairs for 10 min, 1 day before
the training phase began.

Training
Animals were trained individually in a go/no-go spatial judgment
bias task to discriminate between five different locations each
associated with a different probability of reward/punishment
(S+: 100%/0%; nS+: 75%/25%; M: 50%/50%; nS−: 25%/75%; S−:
0%/100%). When calves were rewarded they were allowed to
drink milk for 10 s. When calves were punished, they could not

FIGURE 1 | Experimental apparatus. All five locations were assigned a
specific probability of reward/punishment (S+: 100%/0%; nS+: 75%/25%;
M: 50%/50%; nS−: 25%/75%; S−: 0%/100%). Calves (n = 9) were trained
for 20 days before being tested. The figure is adapted from Lecorps et al.
(2018).

access milk from the bottle and instead received a puff of air to
the face and had to wait 1 min before starting the next trial. For
each trial, calves could choose to ‘‘go’’ (i.e., touch the bottle and
receive the reward or punishment) or ‘‘no-go’’ (i.e., either wait
for 30 s in the arena, or return to the start box to start a new
trial). No-go responses were attributed the maximum latency.
Training was divided into four phases (Table 1). Sequences
used for training and testing as well as a video showing how
calves responded to the different locations, can be found in the
Supplementary Materials.

Following training, baseline measures were recorded over
two sessions each consisting of 20 consecutive trials. All probe
locations were presented four times in pseudo-randomized
sequences designed to minimize the number of consecutive
rewards and punishments.

Disbudding Procedure
Immediately before disbudding calves were sedated with a
subcutaneous injection of xylazine (Rompun, 2%, Bayer Inc.,
Mississauga, ON, Canada; 0.1 mL/kg body weight; half-life
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TABLE 1 | Training and testing phases for the judgment bias task.

Phase Locations Description Sessions Cumulative trials

Training
1 S+ Training to associate positive location with milk reward 3 30

2 S+ S- Training to associate negative location with punishment 3 30 (15-15)

3a S+ nS+ S- Introducing the intermediate locations one at the time, in this case nS+ 4 80 (24-32-24)

3b S+ M S- Introducing the intermediate locations one at the time, in this case M 4 80 (24-32-24)

3c S+ nS- S- Introducing the intermediate locations one at the time, in this case nS− 4 80 (24-32-24)

4 S+ nS+ nS- S- This phase aimed at reinforcing the contrast between the two sides 2 40 (12-8-8-12)
Baseline

1 S+ nS+ M nS- S- All locations pseudo-randomly presented 1 20 (4-4-4-4-4)

2 S+ nS+ M nS- S- All locations pseudo-randomly presented 1 20 (4-4-4-4-4)
Tests

1 (6 h) S+ nS+ M nS- S- All locations pseudo-randomly presented 1 20 (4-4-4-4-4)

2 (22 h) S+ nS+ M nS- S- All locations pseudo-randomly presented 1 20 (4-4-4-4-4)

3 (70 h) S+ nS+ M nS- S- All locations pseudo-randomly presented 1 20 (4-4-4-4-4)

30 min), followed by a cornual nerve block on each horn
bud (4 mL per side of 2% Lidocaine; Ayerst Veterinary Labs,
ON, Canada; half-life 90 min). Five minutes later a hot-iron
(Rhinehart X-30; Rhinehart Development Corp., Spencerville,
IN, USA) was applied to each horn bud for approximately 15 s.

Testing
Animals were tested at 6, 22, and 70 h after disbudding. Each test
consisted of 20 consecutive trials in which probe locations were
presented (four trials each) in pseudo-randomized sequences
(using the same criteria as in baseline sessions).

Statistical Analysis
Calves were allowed 30 s to approach the probe or return to the
start box, but in 764 of 800 trials (i.e., 95.5%) theymade a decision
in less than 10 s (i.e., they either touched the bottle ‘‘go’’ or went
back to the start box ‘‘no-go’’). We therefore used 10 s as the
maximum latency to avoid over-weighted outliers.

We used a curvilinear model including the latency to reach
each location (as the response variable), and tested the effects of
distance from the positive probe location. Calf was included as
a random effect. Model residuals were scrutinized for outliers
and normality. We then compared latencies to touch the
different locations to the time calves took to go to the S+
location using non-parametric two-sample permutation tests
because model residuals were not normally distributed even after
logarithmic transformations.

We compared latencies between baseline and testing sessions
at 6, 22, and 70 h after disbudding using three different models
including the interaction between probe location (distance
in meters with respect to S+) and session (two levels)
with calf specified as a random effect. When the effect of
session × location interaction was significant additional tests
were performed by location.

RESULTS

During baseline tests the latency to touch the bottle increased
with the probability of punishment (χ2 = 525.4, df = 4,

P < 0.0001; Figure 2A), indicating that calves were able to
discriminate among the different locations. Calves showed longer
latencies to approach the M (Z = 2.9, P = 0.001), nS− (Z = 6.9,
P < 0.001) and S− (Z = 9.6, P < 0.001) locations compared to
S+, but the latency to approach the nS+ cue did not differ from
the S+. Calves tended to ‘‘go’’ (i.e., approach the test stimulus),
regardless of location. For example, during the baseline sessions
calves always showed a ‘‘go’’ response to the S+, nS+ and M
locations, and almost always responded in this way to the nS−
(91.7% ‘‘go’’) but went less frequently to the S− (41.7% ‘‘go’’).

At 6 h after disbudding, response latencies increased
(F(1,8) = 12.9, P = 0.007), with some evidence for a
session × location interaction (F(4,32) = 2.3, P = 0.08; Figure 2B).
This interaction was driven by calves taking longer to touch the
S+ (F(1,8) = 25.3, P = 0.001), nS+ (F(1,8) = 52.7, P < 0.001) and
M (F(1,8) = 21.9, P = 0.0016) after disbudding in comparison
with the baseline. At 22 h after disbudding, no effect of testing
session and no session × location interactions were observed
(Figure 2C). At 70 h after disbudding response latencies were
shorter than at baseline (F(1,8) = 5.8, P = 0.043), with again
some evidence of a session × location interaction (F(4,32) = 2.0,
P = 0.12; Figure 2D), driven by session differences at the S−
location (F(1,8) = 4.7, P = 0.061).

DISCUSSION

Our aim was to develop a method of assessing judgment biases
that eliminates the risk that initially ambiguous intermediate
cues lose ambiguity with repeated testing. Calves were trained
to associate each location with a different probability of
reward/punishment, such that the latency to approach these
intermediate locations declined in relation to reward probability
(and increased in relation to the likelihood of punishment).

Although the increase was clear for the nS− and S− locations,
it was less clear for the most rewarded locations. Calves were
statistically slower to touch the M location compared to the S+,
but the time difference was small, and there was no difference
in approach latency for the nS+ and S+ stimuli. Given that
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FIGURE 2 | Least-square mean latency (±SE) of calves (n = 9) to reach locations associated with different probabilities of reward and punishment (S+: 100%/0%;
nS+: 75%/25%; M: 50%/50%; nS−: 25%/75%; S−: 0%/100%) before (A), and 6 (B), 22 (C) and 70 h (D) after hot-iron disbudding. Each location was presented
four times in a pseudo-randomized order (i.e., 20 trials). Baseline latencies to reach each location were calculated over two consecutive days of testing (40 trials;
eight measures per location).

reward probability varied linearly across the five locations, one
might expect that the responses should have also increased in
a linear manner. However, according to the Expected Utility
theory, decisions are based on how the reward and punishment
are valued by the animal, and by the interaction between values
and outcome probabilities (Loewenstein et al., 2008; Mendl et al.,
2009). In this study, we controlled for outcome probability but
not for the value of the reinforcers. Our finding of low latencies
to touch the most rewarded locations may be explained by
differences in the value of reinforcers, with the reward being
more attractive than the punisher was aversive.

We intentionally varied rewards/punishers in relation to
the generalization gradient to facilitate training, making it
impossible to distinguish learned responses to intermediate
reward probabilities from a stimulus generalization function.
Curvilinear functions are common in JBTs, probably because
the inherent value attributed to the reinforcers by the animals is
usually unknown (e.g., Lyasere et al., 2017; Barnard et al., 2018).

However, a previous study from our group used the same spatial
learning task and the same reinforcers, but in this case calves were
not trained to recognize the intermediate locations (Lecorps et al.,
2018); in that study, the latency to approach the cues declined
in a more linear manner in relation to proximity with the S+.
The more curvilinear response in the current study suggests
that the extensive training with the intermediates changed the
animals’ perception of the reinforcers, most likely by decreasing
the aversive nature of the punisher.

Although not systematically recorded, we noted different
behaviors when calves approached the different locations. For
instance, calves almost always only touched the nS− bottle
with their nose, but directly latched onto the nipple of the
nS+ bottle. The expression of micro-behaviors provides fertile
ground for predictions based upon the different expectations
calves had when approaching different locations; these
predictions should be made explicit and tested in future research
(Weary et al., 2017).
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The current experiment was designed to detect changes in
mood-based decision-making. After disbudding (when animals
were likely in pain), calves responded more negatively (i.e., with
longer approach latencies) to positive (S+) and the two closest
intermediate locations (i.e., nS+ and M). This response biased
was only found 6 h after disbudding when the inflammatory
pain is thought to be most intense (Stafford and Mellor, 2011;
Mintline et al., 2013).

Pessimistic responses are usually detected at intermediate
locations, but we observed a bias that extended beyond the
intermediate locations to include the S+ location. This response
is consistent with some earlier work using traditional JBT
(Harding et al., 2004; Novak et al., 2016). Reduced responding
to the S+ may be driven by reduced motivation to access the
reward (i.e., a decrease in the reward value), referred to as
anhedonia and characterized bymotivational and consummatory
deficits in the consumption of specific resources (Treadway
and Zald, 2011). Anhedonia is usually expressed when in a
negative emotional state such as depression (Rizvi et al., 2016)
or pain (Yalcin et al., 2014). Our results suggest that pain
associated with disbudding induced mood changes that either
triggered a loss in motivation (i.e., anhedonia) or lowered calves’
expectations of being rewarded (i.e., pessimism). Previous work
in calves found a pessimistic bias to ambiguous probes after
disbudding (especially to intermediate and near-negative cues;
Neave et al., 2013; Daros et al., 2014), with no change in
responding to the S+; this previous research used a different
design (a color discrimination task) and a different response
measure (go/no-go frequency) than that used in the current
study. Latency measures are preferable when the number of
observations is too low to accurately estimate the percentage
of go responses, and some have argued that latency is a
more sensitive indicator of motivation (Bateson and Nettle,
2015). Most importantly, the reduced responding to intermediate
cues in previous work may have been due to calves learning
that these cues were unrewarded, although this would not
explain why the bias was focused at only one end of the
generalization curve (Neave et al., 2013; Daros et al., 2014). It
is important to note that previous work did not continue to
test calves after the pain was expected to dissipate; in contrast,
the current study shows that the negative bias disappeared
when calves were re-tested at 22 and 70 h after disbudding.
Whether hot-iron disbudding induces anhedonia needs to be
confirmed. An alternate hypothesis is that calves were slower
because the procedure affected their locomotion. In addition,
as milk is the main component of the calves’ diet, the reduced
motivation to go to most rewarded locations could be due to
appetite loss (i.e., anorexia), another symptom of depression
(Maes et al., 2012).

At 70 h after disbudding responses again differed from
baseline. At this time calves showed a reduced latency to
approach the S− location relative to baseline tests; this result
can be interpreted as an optimistic response bias, perhaps
associated with a positive contrast effect driven by calves no
longer experiencing the inflammatory pain (Boissy et al., 2007).
However, a positive contrast would be expected to cause a
positive response bias also at other locations, including the nS−

location. Calves were not tested between 22 and 70 h; this
period between tests may have increased the animal’s interest in
the task.

CONCLUSION

We developed a probability-based judgment bias task for
animals that reduces the risk that responses to intermediate
cues are confounded with loss of ambiguity. Animals were
trained to discriminate among locations associated with
different probabilities of reward and punishment. Calves
showed increased latencies to touch highly rewarded locations
6 h after disbudding, suggesting that they suffered from
pain-induced pessimism and/or anhedonia. These results suggest
that calves experience depression-like symptoms in the hours
after disbudding.
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FIGURE S1 | Sequences used for each of the four phases and the
baseline/tests. During Phase 1, calves were trained to associate the positive
probe location (S+) with the reward. During Phase 2, calves were trained to
associate the negative probe location (S-) with the punishment. During Phase 3,
calves were trained to associate each of the intermediate probe location (nS+, M,
nS-) with a different probability of being rewarded/punished. During Phase 4, all
probe locations except the Middle were presented to maximize the contrast
between the positive and negative sides of the arena. All probe locations were
presented during baseline measurements and judgment bias testing. The dot
denotes punished trials for intermediate locations.

VIDEO S1 | Calves performing the spatial learning task. Calves were trained
to associate each location with a specific probability of reward/punishment
(From Left to Right: Positive: 100%/0%; Near-Positive: 75%/25%; Middle:
50%/50%; Near-Negative: 25%/75%; Negative: 0%/100%). When rewarded
animals were given 10s to drink milk. When punished, they had no access
to milk, a blower was activated and calves had to wait 1min before the
following trial.

DATASET | Pain-induced anhedonia and pessimism: Evidence from a novel
probability-based judgment bias test.
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