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Visual working memory (WM) training and practice can result in improved task
performance and increased P300 amplitude; however, only training can yield
N160 enhancements. N160 amplitudes are related to the spatial attention, the detection
of novelty and the inhibitory control, while P300 amplitudes are related to the selective
attention. Therefore, it could be speculated that the mechanisms underlying N160 and
P300 production may differ to accommodate to their functions. Based on the different
N160 engagements and different functional roles of N160 and P300, we hypothesized
that the effects of visual WM training and practice can be dissociated by their brain
effective connectivity patterns. We compared different neural connectivity configurations
for the main task-related brain activities including N160 and P300 during the visual
three-back task in subjects after visual WM training (the WM group) and after repetitive
task practice (the control group). The behavioral result shows significantly greater
improvement in accuracy after training and suggests that visual WM training can
boost the learning process of this simple task. The N160 peak amplitude increased
significantly after training over the anterior and posterior brain areas but decreased
after practice over the posterior areas, indicating different mechanisms for mediating
the training and practice effects. In support of our hypothesis, we observed that visual
WM training alters the frontal-parietal connections, which comprise the executive control
network (ECN) and the dorsal attention network (DAN), whereas practice modulates
the parietal-frontal connections underpinning P300 production for selective attention. It
should be noted that the analytic results in this study are conditional on the plausible
models being tested and the experimental settings. Studies that employ different tasks,
devices and plausible models may lead to different results. Nevertheless, our findings
provide a reference for distinguishing the visual WM training and practice effects by the
underlying neuroplasticity.
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INTRODUCTION

Working memory (WM) is a system that is required to maintain
and manipulate information to perform complex reasoning or
learning tasks (Baddeley, 2003). It is believed that WM capacity
relates to learning ability (Willis and Schaie, 2009) and can be
enhanced through WM training. Behavioral measures indicate
thatWM training improvesWM functions and task performance
(Buschkuehl et al., 2008; Jaeggi et al., 2008; Harrison et al., 2013;
Redick and Lindsey, 2013; Thompson et al., 2013; Spencer-Smith
and Klingberg, 2015). Furthermore, neurophysiological studies
provide convincing evidence of neuronal effects following WM
training (for reviews, see Buschkuehl et al., 2012; Constantinidis
and Klingberg, 2016). The n-back task is the most used task
to investigate the neuronal correlates of WM functions and
training effects because higher-order control processes, including
maintenance, rehearsal and manipulative processes like updating
of memory contents, can be accessed through this task (Cohen
et al., 1997; Owen et al., 2005; Schneiders et al., 2011). When
measured with the event-related potentials (ERPs) during visual
n-back task, N160, a negative peak evoked at around 160 ms
after stimulus, and P300, a positive peak at around 300 ms after
stimulus, were consistently enhanced after WM training over
the frontal-central and the temporal-parietal area (Zhao et al.,
2013; Covey et al., 2018). When measured with neuroimaging
techniques for the local activities after WM training, it has
been reported that the middle frontal gyrus (MFG), superior
frontal gyrus (SFG) and intraparietal sulcus (IPS) were involved
during visual n-back tasks (Olesen et al., 2004; Klingberg,
2010; Schneiders et al., 2011). Recently, Thompson et al. (2016)
further tested the functional anatomy after intensive WM
training using fMRI. They reported that WM training enhanced
the functional connectivity within both the executive control
network (ECN)—which comprises the dorsolateral frontal gyrus,
dorsomedial frontal gyrus, and IPS—and the dorsal attention
network (DAN)—which comprises the human frontal eye fields,
SFG, and superior parietal lobe. In summary, WM training can
result in improved task performance and enhanced N160 and
P300 amplitudes during visual n-back tasks (McEvoy et al.,
1998; Zhao et al., 2013). Moreover, the WM training effects
are possibly mediated by the frontal-parietal and parietal-
occipital network alternations (Kundu et al., 2013; Thompson
et al., 2016). However, the analysis of the characteristics of
the ERPs’ components of N160 and P300 has not been used
to specifically address the WM training effects on the frontal-
parietal connections. Previous studies tested only the oscillatory
activities measured with EEG and their coupling in the frontal-
parietal network during WM tasks (Sauseng et al., 2005;
Astle et al., 2015; Ewerdwalbesloh et al., 2016). It remains
unclear whether N160 and P300 changes after WM training are
associated with the frontal-parietal network alternations.

WM practice can enhance the WM function too. The effects
of WM practice are similar to that of WM training in two ways:
an improved task performance (Adam and Vogel, 2018) and
an enlarged P300 amplitude (McEvoy et al., 1998; Zhao et al.,
2013). However, no studies have ever reported an increase in
N160 magnitude after practice. In fact, in Ahonen et al. (2016)

study, they demonstrated that the latency and amplitude of
M160, a magnetoencephalographic equivalent to N160 when
measured with magnetoencephalography, remain stable at the
group level across four consecutive measurements. Indeed, the
functional roles of N160 and P300 may not be identical, although
both are related to attention. Previous studies have suggested
that the enhanced N160 amplitudes are related to the selective
allocation of spatial attention (McEvoy et al., 2001), the detection
of novelty or mismatch and the cognitive control (Folstein and
Van Petten, 2008), while the enhanced P300 amplitudes are
related to the selective attention (Linden, 2005; Duncan et al.,
2009). Therefore, it could be speculated that the underlying
mechanisms for N160 and P300 generation may differ to a
certain degree to accommodate to their functions. Regarding the
neuronal correlates of P300, no studies thus far have investigated
the network modifications concerning P300 after WM practice
using n-back tasks. The mechanism of P300 generation has been
studied mainly using the oddball paradigm and conclusions have
been relatively inconsistent (Crottaz-Herbette and Menon, 2006;
Chen et al., 2014). For instance, it has been reported that the
parietal-frontal neural network of the anterior cingulate cortex
(ACC), dorsolateral prefrontal cortex (DLPFC) and inferior
parietal lobule (IPL) constitutes a common mechanism for
P300 production in the oddball task (Huang et al., 2005; Chen
et al., 2014). Crottaz-Herbette and Menon (2006) identified the
left premotor area (PMA) and primary sensory areas, in addition
to ACC and IPL, to form a network underlying the generation of
P300 (Crottaz-Herbette and Menon, 2006). In brief, P300 can be
modulated after WM practice and training and is generated by a
distributed network.

Therefore, based on the difference in N160 engagements
betweenWM training and practice and different functional roles
of N160 and P300, we hypothesized that the effects of VM
training and practice can be dissociated by their brain effective
connectivity patterns associating with themain task-related brain
activities including N160 and P300 components during the
visual three-back task. Specifically, we tested whether the visual
WM training could lead to neuroplasticity of ENC and DAN
while practice is mainly about altering the effective connections
underpinning P300 production for selective attention. Finally,
we studied the visual WM training-specific modulations on the
effective connectivity that may be responsible for the fluctuations
in cortical signals after training.

MATERIALS AND METHODS

Participants and Training
We recruited 20 right-handed, healthy graduate students and
randomly divided them into two groups—theWM (n = 10; mean
age = 23.9; two females) and control groups (n = 10; mean
age = 24.5; one female). We instructed the WM group to log
in a public website and play a memory matching online game,
MemoryMatrix 3, as theirWM training task1 at home. This game
comprises two phases, namely the memory and the retrieval
phases. We instructed the participants to memorize the shapes

1http://www.gyrigym.com/tw/news/index.php
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and positions of X pairs of objects that were arranged in a matrix
within 30 s, after which we covered these objects. In the retrieval
phase, we instructed the participants to randomly select an object
in the matrix and find its match according to their memory. The
difficulty level of the task is proportional to the value of X and the
initial level of task difficulty in each training section is subjective
to the participant’s performance. Figure 1A shows the training
materials. The training strength was 30 min per day, 5 days a
week for 3 weeks. On a daily basis, we check the logbook of
each participant in the WM group to see if they comply with the
prescribed training dose. A reminder was given to those who have
missed one training (i.e., 30 min) such that all subjects adhered
to the training plan. By the end of the training, all WM subjects
reached the most difficult level (X = 7). We did not conduct
any training for the control group. The study was approved by
the Research Ethics Committee of National Taiwan University
(approval number: 201311ES020) in accordance with the ethical
principles of the Declaration of Helsinki and all subjects have
signed an informed consent form.

Visual Three-Back Task
We employed the visual 3-back task to probe the neuronal
correlates of visual WM. During the visual 3-back task, we
presented a series of stimuli consecutively and participants had
to decide whether the presented stimulus matched the stimulus
that was presented three positions back in the sequence. A total
of 80 targets and 160 nontargets were presented randomly in
sequence every 3 s (stimulus length = 500 ms; interstimulus

interval = 2,500 ms). A response was required for every stimulus
and participants respondedmanually by using their right hand to
press the space key of a standard computer keyboard. Figure 1B
illustrates the paradigm.

Electroencephalography Acquisition and
ERP Analysis of N160 and P300
All subjects completed the 3-back task four times: before
training/practice (W0), after a week (W1), 2 weeks (W2) and
3 weeks (W3) from recruitment. When the participants were
performing the spatial three-back task, we acquired a 16-channel
EEG (F3, Fz, F4, C3, Cz, C4, T7, T8, P7, P3, Pz, P4, P8, Oz, O1,
O2) with 2,000 Hz sampling rate. To obtain the most significant
WM training effects, we analyzed only the EEG data acquired
at W0 and W3 in this study. We processed the EEG data using
SPM12 and a standard EEG pre-processing procedure to obtain
the ERPs. We band-pass filtered the EEG data (0.01–58 Hz)
and epoched the trials with a peristimulus window of −2,000 to
+2,500 ms, where the time zero indicated the presence of the
stimulus. We removed electrooculography contamination trials
when EEG amplitude was greater than 100 mV from the epoched
data, and those electrooculography-free trials were divided into
correct and incorrect trials depending on the participant’s
response. Only the correct trials were further filtered with
the 30-Hz low-pass filter, down-sampled to 250 Hz, baseline-
corrected (−200 to 0 ms), and averaged across trials (for a
detailed description of this processing procedure see Kundu
et al., 2013). The resulting mean ERPs in both the WM and

FIGURE 1 | (A) Illustration of the training material. (B) The experimental paradigm of the 3-back task. (C) Architectures of the three plausible DCMs. ACC, anterior
cingulate cortex; DLPFC, dorsolateral pre-frontal cortex; IPL/S, intraparietal lobe/sulcus; V1, primary visual cortex; MFG, middle frontal gyrus; SFG, superior frontal
gyrus; PMA, premotor area.
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the control groups were first examined phenomenally to identify
the N160 (negative peak around 150–220 ms) and P3 (positive
peak around 250–500ms). In addition, mean P300 signal changes
were obtained by averaging over a period of post-stimulus time
from 250 to 600 ms, because the peak value of P300 exhibited
large individual differences (Zhao et al., 2013). Finally, the
ERPs were analyzed with the effective connectivity of dynamic
causal modeling (DCM) of ERPs (David and Friston, 2003;
David et al., 2006).

The Analysis of Effective Connectivity
We analyzed the effective connectivity during visual 3-back
task using an established method, DCM for ERPs (David and
Friston, 2003; David et al., 2006). The theoretical background
can be found in David et al. (2006) and David and Friston
(2003). Here, we briefly introduce the concepts of DCM for
ERPs. DCM for ERPs aims to explain ERPs using a network
of coupled cortical sources based on a biologically plausible
model, the neural mass model. In DCM, the neural populations
receive exogenous perturbations that alter their coupling strength
and lead to the changes of ERPs. Estimates of the coupling
strength alternation in the presumed network given the data
and the experimental manipulation allow the understanding of
where and how much the neural network has been changed.
Henceforth, DCM for ERPs is a hypothesis-driven method and
the first step for applying it is to form a hypothesis and construct
the plausible models.

In this study, we used only neuronal responses recorded
between −300 and 1,000 ms because these signals can capture
the cortical responses for N160 and P300 while excluding the
movement-related responses and applied the two-step strategy
to reduce the number of potential model combinations (Chen
et al., 2014). First, we specified three plausible models to test
whether WM training and practice effects were mediated by
various mechanisms based on the previous studies discussed in
the ‘‘Introduction’’ section (Huang et al., 2005; Crottaz-Herbette
and Menon, 2006; Schneiders et al., 2011; Chen et al., 2014;
Thompson et al., 2016). The three models shared the bilateral
primary visual cortex (V1), but they differed in some higher
areas and connections. Model 1 was a distributed parietal-
frontal network comprising bilateral DLPFC [−34 25 29; 37
23 30], IPL [−37 50 46; 46 46 41], and ACC [1 4 29] for
P300 generation during the oddball task (Huang et al., 2005;
Chen et al., 2014). Model 2 engaged ECN and DAN seen
after intensive WM training (Schneiders et al., 2011; Thompson
et al., 2016). Model 3 included bilateral IPL [−40 −38 56;
46 −26 32] and left PMA [−32 −16 −64] derived from the
result of Crottaz-Herbette and Menon (2006) for attentional
control. The source locations in these models (in Talairach
coordinates) were taken from the cited studies that motivated
the models as the initial guesses. The modulation resulting from
WM training and practice in these networks was assumed to
be reciprocal in all connections at this step. Figure 1C shows
the connection architectures of three plausible models. Second,
after establishing the most likely connection models for the WM
and control groups, we further examined where the specific
modulation at W3 occurred. We altered the modulation as

forward (F), backward (B), or lateral (L), thereby constructing
five additional models (denoted as F, B, FB, FL, and BL) that
contrasted with the modulations in all the connection models
that resulted from the first step (i.e., FBL). Bayesian inversion
of DCM provided the estimates of these model parameters and
the optimal source locations for each individual. After Bayesian
inversion of DCM, Bayesian model selection was employed to
identify the optimal models among those being tested at the
individual and the group levels (Stephan et al., 2009, 2010).
Details on this standard procedure of the DCM analysis can be
found in several previous studies (Garrido et al., 2007, 2008; Chen
et al., 2014).

Statistical Tests
The behavioral data of task performance, including accuracy and
reaction time, were entered into a 2 × 4 repeated measures
ANOVA with two factors, namely group (WM and control)
and session (W0 to W3), to test whether WM training affected
accuracy and reaction time and whether these effects relied
on the duration of training. To test whether the WM training
altered neuronal activities, the ERPs of N160 and P300 were
entered into a 2 × 2 × 16 repeated measures ANOVA with
three factors, namely group, session, and electrode. Finally, the
post hoc test was performed to assess any differences among the
factors. The significance level was set at p < 0.05 after correction
for multiple comparisons (Bonferroni–Dunn correction). For
the DCM analysis, after identifying the optimal model by using
Bayesian model selection, we tested the modulatory effect of the
experimental manipulation by performing a t-test to identify
significant modulatory connection parameters.

RESULTS

Behavioral Data and ERPs
Figure 2A summarizes the statistical results of the accuracy. The
ANOVA result indicated a significant factor of session (F = 19.33,
p< 0.05) and a significant interaction between session and group
(F = 6.04, p < 0.05). The post hoc test revealed that the WM
group displayed significantly higher accuracy at W3 than did
the control group (p = 0.04). The nonsignificant group effect at
W0 confirmed that the two groups did not differ significantly
at baseline. Regarding the impact of session on accuracy, the
WMgroup shows a significant improvement in accuracy between
W0–W2 (p < 0.01), W1–W3(p = 0.04) and W0–W3 (p < 0.01)
whereas the control group exhibits a significant improvement in
accuracy between W0–W2 (p < 0.01), W1–W2 (p = 0.01) and
W0–W3 (p < 0.01).

With respect to the reaction time, there is only a significant
factor of session (F = 16.011, p < 0.05). Figure 2B showed
that the reaction time was significantly shorter between W0–W2
(p < 0.01) and W0–W3 (p < 0.01) for both groups, and
additional W1–W2 (p < 0.01) and W1–W3 (p < 0.01)
significance for the control.

Session was a significant factor for the N160 amplitudes
(F = 2.920, p < 0.05), and there were significant interactions
between group, session, and electrode (F = 4.06, p< 0.05). When
compared with the control group, the WM group displayed a
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FIGURE 2 | Statistical results of (A) the accuracy and (B) the reaction time. The error bars indicate the standard error of the mean (SEM).

FIGURE 3 | Group-specific mean time courses of the event-related potentials (ERPs) at W0 (red lines) and W3 (blue lines) over channel P8 (A), T8 (B), C4 (C)
and Pz (D).

significant increase in N160 amplitude at P8 (p = 0.046), T8
(p = 0.006), and C4 (p = 0.038) at W3 after training. Specifically,
the N160 peaks over P8 revealed different patterns for training
and practice. At W3, the N160 amplitude of the WM group
increased (p = 0.008) but that of the control group decreased
(p = 0.017) when compared with those at W0.

After WM training, both the WM and control groups
exhibited a greater P300 peak amplitude over Pz atW3 compared
with that at W0, but these results were nonsignificant. After
averaging the P300 amplitude from 250 to 600 ms, we obtained
a significant result from the interaction between electrode and
session (F = 3.14, p < 0.05). Both groups increased the mean
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P300 amplitude over Pz at W3 (p = 0.045 and p = 0.037 for
the WM and control groups, respectively), but this enhancement
did not differ between the two groups. Figure 3 displays the
group-specific mean time courses of the ERPs (averaged across
participants) over channels P8 (A), T8 (B), C4 (C), and Pz (D) at
W0 and W3.

Inferences on Model Space
We inverted three plausible DCM models for each participant
(Figure 1C). Figure 4A indicates the Bayesian model selection
results at the individual level (upper panel) and the group
level (lower panel). In the WM group, three, five, and two
participants had Model 1, Model 2, and Model 3 as their
optimal model, respectively. These models were optimal for
four, three, and three participants, respectively, in the control
group. At the group level, the Bayesian model selection results
indicated that Model 2 for the WM group (Figure 4A, right
lower panel) and Model 1 for the control group (Figure 4A,
left lower panel) were the optimal models. Having identified
the best model, we further investigated the modulation
mechanism by comparing the optimal model against five
derivative models (see ‘‘The Analysis of Effective Connectivity’’
Section). For the WM group, the FBL model under the ECN
and DAN architecture can best explain the training-induced
alternations in the effective connectivity (Figure 4B; right).
For the control group, the practice effects were medicated
by the FB loop in the parietal-frontal effective connection
(Figure 4B; left).

Inference on Modulatory Effects
The t-test was applied to the modulation parameter matrices
of the optimal models for participants in the same group
to assess modulation effects at W3. Figure 4C illustrates the
statistical results of themodulatory parameters. In theWMgroup
(Figure 4C; right), five modulations were statistically significant
after training, including the forward modulations from left IPS
to SFG and from SFG to right MFG, the lateral modulation
between the two IPSs, and the backward modulations from
right MFG to SFG and from right IPS to V1. All but one of
the five significant modulations were excitatory. The exception
was the backward modulation from right MFG to SFG (blue
line, Figure 4C), which was significantly down-regulated after
visual WM training. By contrast, the control group had only
one significant excitatory feedback modulation from right IPL
to right V1 at W3 in the parietal-frontal network underlying
P300 production (Figure 4C; left).

DISCUSSION

In this study, we examined the differences in the behavioral
data and the neuronal signals during visual three-back task after
visual WM training and repetitive task practice. We found that:
(1) behaviorally, both the WM and control groups improved
their task performance and the accuracy improvement of the
WM group after training was significantly greater than that of
the control group; (2) both visual WM training and practice
enhanced the P300 amplitudes, but only training can yield an

FIGURE 4 | (A) Model selection results at the individual level (upper panel) and the group level for the control (left, lower panel) and the working memory (WM)
training (right, lower panel) groups. C1–10: the control group; M1–10: the WM group. The colored box under each subject indicates the subject-specific winning
model. (B) Model selection results of the modulatory effects for the control (left) and the WM training groups (right). B, backward; F, forward; L, lateral.
(C) Group-specific modulations at W3. Left, the control group; Right, the WM group.
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increased N160 peak amplitude; and (3) the underlying neural
connectivity patterns for visual WM training and practice are
not identical. Visual WM training alters the frontal-parietal
connections for the executive control and attention while WM
practice engages the parietal-frontal connections with the ACC
for selective attention.

Visual WM Training Boosts the Learning
Process of Simple Tasks
Accuracy and reaction time improved with the retest times
in both groups, indicating that practice can enhance task
performance. The result that the accuracy improvement of
the WM group at W3 was significantly greater than that of
the control group indicates a further beneficial effect on task
performance after training. Interestingly, we observed that from
W2 to W3, the mean accuracy of both groups did not have a
significant increase (Figure 2A). The reason that the accuracy at
W3was significantly greater in theWMgroup than in the control
group is because of the decrease in the between-participant
variability [i.e., a smaller standard error of the mean (SEM)] in
the control group. In other words, practice increased the stability
of task performance in the control group at W3, likely through
reducing the chance of success by guessing. By contrast, the
WM group reached a stable performance (a small SEM) with a
mean accuracy greater than 90% at W2. As a stable and accurate
performance is an indication of the learning endpoint, our result
implies that visual WM training can boost the learning process of
this task.

Training Effects on the N160 Peak
Amplitude
N160 peak amplitude was reported to be related to the selective
allocation of attention during a visual-spatial n-back task
(McEvoy et al., 2001) and WM training can augment the
N160 amplitude over the frontal-central area (Covey et al., 2018)
and the right temporal-parietal area (Zhao et al., 2013). In a
review article, it was proposed that the N160 elicited by visual
stimuli can be divided into functionally distinct subcomponents:
the frontal-central (anterior) components related to the detection
of novelty or mismatch and the cognitive control (encompassing
response inhibition, response conflict, and errormonitoring) and
the posterior N160 related to some aspects of visual attention
(Folstein and Van Petten, 2008). A greater N160 amplitude
is related to more neuron-related cognitive control (Xiao
et al., 2019), in particular, the inhibitory control for irrelevant
information and a diminished N2 amplitude was seen in the
error trials, suggesting that the impaired cognitive control
leads to errors (Kok et al., 2004; Falkenstein, 2006; O’Connell
et al., 2009). In this study, we showed that, only after visual
WM training but not practice, the N160 peak amplitude
increased significantly at W3 over C4 (frontal-central area),
T8 and P8 (temporal-parietal area). In contrast, in the control
group, we observed a decreased N160 amplitude over P8 at
W3 and a stable N160 amplitude over the other channels.
In summary, visual WM training additionally modulates
the anterior N160 components related to the detection of
novelty and the cognitive control whereas practice reduces the

posterior N160 amplitude to decrease visual attention. Hence,
N160 difference between the WM and control groups may
indicate different mechanisms for mediating the training and
practice effects.

Visual WM Training and Practice
Separately Modulate the Neuronal
Connections
The Bayesian model selection result revealed that visual
WM training and practice can lead to different levels of
neuroplasticity; visual WM training alters the frontal-parietal
connections, comprising the ECN and DAN, with bilateral MFG
on top of the neural hierarchy, whereas WM practice engages
the parietal-frontal connections with ACC on top. The ECN
and DAN were thought to underlie WM and WM training
can increase their functional connectivity (Thompson et al.,
2016). In this study, we further demonstrated that ECN exerted
a modulatory suppression on the DAN through the feedback
loop from right MFG to SFG after visual WM training. This
modulatory suppression may reflect the mechanism used by
MFG as a neuronal gatekeeper to prevent irrelevant information
from entering the WM system (McNab and Klingberg, 2008).
Moreover, we observed significant excitatory modulation effects
from SFG to right MFG and from right IPS to right V1 after
WM training. Schmicker et al. (2016) reported that there was
a lateralized enhancement of the activity over the right MFG
and the occipital visual area during WM tasks measured using
fMRI after attentional filtering training. The authors interpreted
the increase in activity as a strengthened neuronal loop for the
effective control of visual information processing (Schmicker
et al., 2016). Our results of the excitatory inferences from
SFG to right MFG and from right IPS to right V1 after WM
training may disclose the possible production mechanisms for
this strengthened neuronal loop.

Regarding the WM practice effect, it was thought that
WM practice can lead to a greater ability to filter irrelevant
information (Berry et al., 2009) and increased neural efficiency,
particularly in task-relevant sensory areas, such as visual areas
(Garavan et al., 2000). In this study, we found a significant
excitatory inference from the right IPL to right V1 in the parietal-
frontal connections for P300 generation after WM practice.
Given that the stimuli and task were not changed, the result of
the excitatory IPL-V1 connection may indicate a better neural
efficiency after WM practice such that the identical stimulus
leads to a greater response.

Both WM Training and Practice Enhance
the P300 Amplitude
The P300 was reported to be significantly enhanced after WM
updating function training (Zhao et al., 2013) and higher-
order cognitive strategy training (Motes et al., 2014). Both
studies obtained the mean P300 signal changes by averaging
over a period of poststimulus time from 250 to 600 ms (Zhao
et al., 2013; Motes et al., 2014) because the peak value of
P300 exhibited large individual differences (Zhao et al., 2013).
In our study, the enhancement of P300 peak amplitude after
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training was nonsignificant in both the WM (p = 0.051) and
control groups (p = 0.053) due to substantial between-subject
variabilities. We obtained a significant P300 increase at Pz in
both groups only after averaging over time. This result, together
with the previous reports, suggest that the analysis of WM
training effects should take into account a longer period of brain
dynamics to best capture the underlying brain mechanism. As
the functional role of P300 is related to the attention, our result
of P300 enhancement in both groups demonstrates that attention
modulation can be yielded through both practice and training,
although the underlying mechanisms are not identical.

Nonsignificant P2 Modulation After WM
Training and Practice in Visual 3-Back Task
P2, the positive peak around 200 ms, is part of memory
information process related to memory updating (Lenartowicz
et al., 2010; Yuan et al., 2016) and is a potential candidate for
investigating the WM training effects. P2 amplitude decreased
in the error trials (Xiao et al., 2019) and after WM training
in 2-back task (Zhao et al., 2013) but increased in the frontal-
central sites in the 1-back and 2-back conditions after exposure
to long-term stress (Yuan et al., 2016) or high altitude (Ma et al.,
2019). In this study, neither increase nor decrease in P2 peak
can be observed in both groups. At first glance, our result of
nonsignificant P2 modulation after training seems to contradict
the previous reports. However, none of the previous studies
employed the 3-back task. As memory load is an important
aspect of evaluating WM function, our result only indicates that
the 3-back task is not suitable for probing the P2 modulation
after WM training/practice. Whether P2 is modulated after WM
training or practice remains inconclusive in this study.

Considerations on the Sources of EEG
Signals and the DCM Results
In this study, we measure the scalp EEG but examine the
connectivity alternations among cortical areas after WM training
and practice. Given that the spatial resolution is limited in
our EEG, it is impractical to localize the origins of these
activities directly using the EEG data. Therefore, instead of
searching for the source locations (i.e., solving the inverse
problem), we inform the DCM analysis of EEG by using
previous fMRI results of source locations and the connection
architecture (for a review, see Kiebel et al., 2009). This is
based on the fact that there is a congruity between fMRI
activity and the corresponding magnetoelectrical dipoles when
measured spontaneously (Korvenoja et al., 2006; David et al.,
2008; Lenartowicz et al., 2016). By employing the fMRI priors,
the analytic strategy (fMRI-informed DCM analysis) provides a
unique solution for the data features (for a detailed discussion
on the question of model specification, see our previous work,
Chen et al., 2008). Through iteratively comparing the acquired
EEG data to the synthetic scalp data generated from the
pre-assumed sources and the connection parameters (i.e., the
plausible model) via the lead field matrix, the source locations
and the connection parameters can be optimized on a single
subject basis such that the difference between the synthetic data
and the EEG is minimal. It should be noted that the low spatial

resolution EEG are inadequate to detect the activities from deep
or local small sources, but receive the most vigorous features
from the cortical areas. Hence, we limited our analysis to only
cortical sources. In addition, a few patterns are not shared by
fMRI and EEG (David et al., 2008; Lenartowicz et al., 2016)
and cannot be used in the analysis. Importantly, the analytic
results are always conditional on the hypothesis being tested
(i.e., the plausible models) and the experimental settings. An
appropriate hypothesis constitutes a trustworthy result. Studies
that employ different tasks, devices and plausible models may
lead to different results.

In summary, visual WM training altered the feedforward
and feedback connections under the ECN and DAN,
whereas the practice engaged the parietal-frontal network
for P300 generation. Importantly, the results of N160 amplitude
increase and the right MFG to SFG suppression after training
suggest that only training canmodulate the inhibitory machinery
for cognitive control.

Limitations
First, because we recruited only 20 participants and observed
a substantial between-group difference in the winning model,
it is possible that the results reveal only the features of small
samples. Future studies with an adequate number of participants
may assist in clarifying the training-specific neuroplasticity.
Second, it was suggested that the task design is important in
the interpretation of the results (Morrison and Chein, 2011).
In this study, the used task may be too easy to fully probe the
training effects, because all participants performed well after
three repetitions at W2 (accuracy >90) and the mean accuracy
did not improve from W2 to W3 in both groups, indicating the
ceiling effects of simple tasks. As a result, only minor behavioral
differences between the two groups can be established. A more
complex task, such as dual visual n-back tasks (Schneiders et al.,
2011; Kundu et al., 2013; Thompson et al., 2016) may help reveal
the behavioral differences and the neuronal correlates after WM
training and practice. Finally, as we did not give any training
to the control group, the fact that the WM group have done
something more may contribute to the observed between-group
differences to some degree in this study. Further study with an
active control group can help to solve this confounding.

In conclusion, the connection alternation induced by WM
training differs from that induced by WM practice. The WM
training effects were mediated by feedforward and feedback
connections under the ECN and DAN, whereas theWM practice
effects were most manifested in the parietal-frontal network
for P300 generation. Our findings provide a reference for
distinguishing the visual WM training and practice effects by the
underlying neuroplasticity.
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